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Review of Recommendations

Recommendation 1.
Prepare problems and use them in whole-class instruction.

1. Include both routine and non-routine problems in problem-solving activities.

2. Ensure that students will understand the problem by addressing issues students might  
encounter with the problem’s context or language.

3. Consider students’ knowledge of mathematical content when planning lessons. 

Recommendation 2.
Assist students in monitoring and reflecting on the problem-solving process.

1. Provide students with a list of prompts to help them monitor and reflect during the problem-
solving process.

2. Model how to monitor and reflect on the problem-solving process. 

3. Use student thinking about a problem to develop students’ ability to monitor and reflect.

Recommendation 3.
Teach students how to use visual representations.

1. Select visual representations that are appropriate for students and the problems they  
are solving.

2. Use think-alouds and discussions to teach students how to represent problems visually.

3. Show students how to convert the visually represented information into mathematical notation.

Recommendation 4.
Expose students to multiple problem-solving strategies.

1. Provide instruction in multiple strategies.

2. Provide opportunities for students to compare multiple strategies in worked examples.

3. Ask students to generate and share multiple strategies for solving a problem.

Recommendation 5.
Help students recognize and articulate mathematical concepts and notation.

1. Describe relevant mathematical concepts and notation, and relate them to the  
problem-solving activity.

2. Ask students to explain each step used to solve a problem in a worked example.

3. Help students make sense of algebraic notation.
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Levels of Evidence for Practice Guides

Institute of Education Sciences Levels of Evidence for Practice Guides

This section provides information about the role of evidence in Institute of Education Sciences’ 
(IES) What Works Clearinghouse (WWC) practice guides. It describes how practice guide panels 

determine the level of evidence for each recommendation and explains the criteria for each of the 
three levels of evidence (strong evidence, moderate evidence, and minimal evidence). 

The level of evidence assigned to each recom-
mendation in this practice guide represents the 
panel’s judgment of the quality of the existing 
research to support a claim that, when these 
practices were implemented in past research, 
positive effects were observed on student 
outcomes. After careful review of the studies 
supporting each recommendation, panelists  
determine the level of evidence for each recom-
mendation using the criteria in Table 1. The 
panel first considers the relevance of individ-
ual studies to the recommendation and then 
discusses the entire evidence base, taking the 
following into consideration:  

• the number of studies

• the design of the studies

• the quality of the studies

• whether the studies represent the range  
of participants and settings on which the 
recommendation is focused

• whether findings from the studies can be 
attributed to the recommended practice  

• whether findings in the studies are consis-
tently positive

A rating of strong evidence refers to consistent 
evidence that the recommended strategies, 
programs, or practices improve student 
outcomes for a wide population of students.1 
In other words, there is strong causal and 
generalizable evidence.

A rating of moderate evidence refers either to 
evidence from studies that allow strong causal 
conclusions but cannot be generalized with 
assurance to the population on which a recom-
mendation is focused (perhaps because the 
findings have not been widely replicated) or to 
evidence from studies that are generalizable 
but have some causal ambiguity. It also might 
be that the studies that exist do not specifi-
cally examine the outcomes of interest in the 
practice guide, although they may be related.

A rating of minimal evidence suggests that the 
panel cannot point to a body of research that 
demonstrates the practice’s positive effect on 
student achievement. In some cases, this simply 
means that the recommended practices would 
be difficult to study in a rigorous, experimental 
fashion;2 in other cases, it means that research-
ers have not yet studied this practice, or that 
there is weak or conflicting evidence of effec-
tiveness. A minimal evidence rating does not 
indicate that the recommendation is any less 
important than other recommendations with  
a strong evidence or moderate evidence rating.

In developing the levels of evidence, the panel 
considers each of the criteria in Table 1. The 
level of evidence rating is determined as the 
lowest rating achieved for any individual cri-
terion. Thus, for a recommendation to get a 
strong rating, the research must be rated as 
strong on each criterion. If at least one criterion 
receives a rating of moderate and none receive 
a rating of minimal, then the level of evidence 
is determined to be moderate. If one or more 
criteria receive a rating of minimal, then the 
level of evidence is determined to be minimal.
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Levels of Evidence for Practice Guides (continued)

Table 1. Institute of Education Sciences levels of evidence for practice guides

Criteria
STRONG  

Evidence Base
MODERATE  

Evidence Base
MINIMAL  

Evidence Base

Validity High internal validity (high-
quality causal designs). 
Studies must meet WWC 
standards with or without 
reservations.3 
AND 
High external validity  
(requires multiple studies  
with high-quality causal 
designs that represent the 
population on which the  
recommendation is focused). 
Studies must meet WWC 
standards with or without 
reservations.

High internal validity but  
moderate external validity  
(i.e., studies that support 
strong causal conclusions but 
generalization is uncertain).  
OR 
High external validity but 
moderate internal validity 
(i.e., studies that support the 
generality of a relation but 

4the causality is uncertain).

The research may include 
evidence from studies that 
do not meet the criteria  
for moderate or strong  
evidence (e.g., case studies, 
qualitative research).

Effects on  
relevant 
outcomes

Consistent positive effects 
without contradictory  
evidence (i.e., no statisti-
cally significant negative 
effects) in studies with high 
internal validity. 

A preponderance of evidence 
of positive effects. Contradic-
tory evidence (i.e., statisti-
cally significant negative 
effects) must be discussed 
by the panel and considered 
with regard to relevance to 
the scope of the guide and 
intensity of the recommenda-
tion as a component of the 
intervention evaluated.

There may be weak or  
contradictory evidence  
of effects.

Relevance to 
scope

Direct relevance to scope 
(i.e., ecological validity)—
relevant context (e.g., 
classroom vs. laboratory), 
sample (e.g., age and char-
acteristics), and outcomes 
evaluated.

Relevance to scope (ecologi-
cal validity) may vary, includ-
ing relevant context (e.g., 
classroom vs. laboratory), 
sample (e.g., age and char-
acteristics), and outcomes 
evaluated. At least some  
research is directly relevant 
to scope (but the research 
that is relevant to scope does 
not qualify as strong with  
respect to validity).

The research may be  
out of the scope of the 
practice guide.

Relationship  
between  
research and 
recommendations

Direct test of the recom-
mendation in the studies  
or the recommendation  
is a major component of  
the intervention tested in 
the studies.

Intensity of the recommen-
dation as a component of 
the interventions evaluated 
in the studies may vary.

Studies for which the  
intensity of the recommen-
dation as a component of 
the interventions evaluated 
in the studies is low; and/or 
the recommendation  
reflects expert opinion 
based on reasonable extrapo-
lations from research.

(continued)
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Levels of Evidence for Practice Guides (continued)

Table 1. Institute of Education Sciences levels of evidence for practice guides (continued)

Criteria
STRONG  

Evidence Base
MODERATE  

Evidence Base
MINIMAL  

Evidence Base

Panel confidence Panel has a high degree of 
confidence that this practice 
is effective.

The panel determines that 
the research does not rise 
to the level of strong but 
is more compelling than a 
minimal level of evidence.

Panel may not be confident 
about whether the research 
has effectively controlled 
for other explanations or 
whether the practice would 
be effective in most or all 
contexts.

In the panel’s opinion, the 
recommendation must be 
addressed as part of the 
practice guide; however, the 
panel cannot point to a body 
of research that rises to the 
level of moderate or strong.

Role of expert 
opinion

Not applicable Not applicable Expert opinion based on  
defensible interpretations  
of theory (theories). (In some 
cases, this simply means 
that the recommended 
practices would be diffi-
cult to study in a rigorous, 
experimental fashion; in 
other cases, it means that 
researchers have not yet 
studied this practice.)

When assess-
ment is the 
focus of the 
recommendation 

For assessments, meets the 
standards of The Standards 
for Educational and Psycho-
logical Testing.5

For assessments, evidence 
of reliability that meets The 
Standards for Educational 
and Psychological Testing 
but with evidence of valid-
ity from samples not ad-
equately representative of 
the population on which the 
recommendation is focused.

Not applicable

The panel relied on WWC evidence standards to assess the quality of evidence supporting educational 
programs and practices. WWC evaluates evidence for the causal validity of instructional programs 
and practices according to WWC standards. Information about these standards is available at  
http://ies.ed.gov/ncee/wwc/DocumentSum.aspx?sid=19. Eligible studies that meet WWC evidence 
standards or meet evidence standards with reservations are indicated by bold text in the endnotes 
and references pages.
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Introduction

Introduction to the Improving Mathematical Problem Solving  
in Grades 4 Through 8 Practice Guide 

This section outlines the importance of improving mathematical problem solving for students 
in grades 4 through 8 and explains key parameters considered by the panel in developing the 

practice guide. It also summarizes the recommendations for readers and concludes with a discus-
sion of the research supporting the practice guide. 

The goal of this practice guide is to give 
teachers and administrators recommendations 
for improving mathematical problem-solving 
skills, regardless of which curriculum is used. 
The guide offers five recommendations that 
provide teachers with a coherent approach 
for regularly incorporating problem solving 
into their classroom instruction to achieve this 
end. It presents evidence-based suggestions 
for putting each recommendation into practice 
and describes roadblocks that may be encoun-
tered, as well as possible solutions.

Scope of the practice guide

Audience and grade level. The need for 
effective problem-solving instruction is par-
ticularly critical in grades 4 through 8, when 
the mathematics concepts taught become 
more complicated and when various forms 
of assessments—from class tests to state and 
national assessments—begin incorporating 
problem-solving activities. In this guide, the 
panel provides teachers with five recom-
mendations for instructional practices that 
improve students’ problem-solving ability. 
Math coaches and other administrators also 
may find this guide helpful as they prepare 
teachers to use these practices in their class-
rooms. Curriculum developers may find the 
guide useful in making design decisions, and 
researchers may find opportunities to extend 
or explore variations in the evidence base.

Content. The literature reviewed for this 
guide was restricted to mathematical prob-
lem-solving topics typically taught in grades 
4 through 8. The panelists reviewed a num-
ber of definitions of problem solving as part 
of the process of creating this guide, but a 
single, prevalent definition of problem solving 
was not identified. This is understandable, 

Students who develop proficiency in mathemat-
ical problem solving early are better prepared 
for advanced mathematics and other complex 
problem-solving tasks.6 Unfortunately, when 
compared with students in other countries, 
students in the U.S. are less prepared to solve 
mathematical problems.7 For example, recent 
Trends in International Mathematics and Sci-
ence Study (TIMSS) data suggest that, when 
compared to other industrialized countries 
such as the Netherlands, China, and Latvia, U.S. 
4th-graders rank tenth and 8th-graders rank 
seventh out of 41 countries in problem solving.8 

Problem solving involves reasoning and analy-
sis, argument construction, and the develop-
ment of innovative strategies. These abilities 
are used not only in advanced mathematics 
topics—such as algebra, geometry and calcu-
lus—but also throughout the entire mathemat-
ics curriculum beginning in kindergarten, as 
well as in subjects such as science. Moreover, 
these skills have a direct impact on students’ 
achievement scores, as many state and 
national standardized assessments and college 
entrance exams include problem solving.9 

Traditional textbooks10 often do not provide 
students rich experiences in problem solv-
ing.11 Textbooks are dominated by sets of 
problems that are not cognitively demanding, 
particularly when assigned as independent 
seatwork or homework, and teachers often 
review the answers quickly without discuss-
ing what strategies students used to solve 
the problems or whether the solutions can 
be justified.12 The lack of guidance in text-
books is not surprising, given that state and 
district standards are often less clear in their 
guidelines for process skills, such as problem 
solving, than they are in their wording of 
grade-level content standards.13
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Introduction (continued)

given the different contexts in which the 
term problem solving is used in mathematics. 
Some definitions are exceedingly broad and 
applied to a general level of problem solving 
that goes beyond mathematics into everyday 
human affairs. For example, problem solving  
is often defined as the “movement from a 
given state to a goal state with no obvious 
way or method for getting from one to the 
other.”14 This kind of definition underscores 
the non-routine nature of problem solving 
and the fact that it is not the execution of 
memorized rules or shortcuts, such as using 
key words, to solve math word problems.

More contemporary definitions of problem 
solving focus on communication, reasoning, and 
multiple solutions. In addition to the non-routine 
nature of the process, this kind of mathematical 
problem solving is portrayed as the opportunity 
to engage in mathematics and derive a reason-
able way or ways to solve the problem.15 In light 
of the long-standing historical variations and 
disputes over definitions of problem solving, the 
panel ultimately decided that it was not in their 
purview to resolve this issue. The panel defined 
the characteristics of problem solving that 
applied to this guide as follows: 

• First, students can learn mathematical 
problem solving; it is neither an innate tal-
ent nor happenstance that creates skilled 
problem solvers. 

• Second, mathematical problem solving is 
relative to the individual. What is challeng-
ing or non-routine for one student may be 
comparatively straightforward for a more 
advanced student. 

• Third, mathematical problem solving need 
not be treated like just another topic in the 
pacing guide; instead, it can serve to sup-
port and enrich the learning of mathemat-
ics concepts and notation.

• Fourth, often more than one strategy 
can be used to solve a problem. Learning 
multiple strategies may help students see 
different ideas and approaches for solving 
problems and may enable students to think 

more flexibly when presented with a prob-
lem that does not have an obvious solution.

Problem solving includes more than work-
ing word problems. While word problems 
have been the mainstay of mathematics 
textbooks for decades, they are only one 
type of math problem. Other types of math 
problems appropriate to grades 4 through 
8, such as algebraic and visual-spatial prob-
lems (e.g., “How many squares are there on a 
checkerboard?”), are addressed in this guide. 
The panel excluded whole number addition 
and subtraction, which are typically taught 
in kindergarten through grade 3, as well as 
advanced algebra and advanced geometry, 
which are typically taught in high school. 

When developing recommendations, the panel 
incorporated several effective instructional 
practices, including explicit teacher modeling 
and instruction, guided questions, and efforts 
to engage students in conversations about 
their thinking and problem solving. The panel 
believes it is important to include the variety 
of ways problem solving can be taught. 

There are several limitations to the scope of this 
guide. The literature reviewed for this guide was 
limited to studies pertaining to mathematical 
problem solving; therefore, it did not include 
cognitive or psychological dimensions of 
problem solving that fell outside of this topic 
area.16 While the panel considered studies that 
included students with disabilities and students 
who were learning English, this guide does not 
address specific instructional practices for these 
groups. Instead, this guide is intended for use by 
all teachers, including general education, special 
education teachers, and teachers of English 
learners, of mathematics in grades 4 through 8.

Summary of the recommendations

The five recommendations in this guide can 
be used independently or in combination 
to help teachers engage students in prob-
lem solving on a regular basis. To facilitate 
using the recommendations in combination, 
the panel provided a discussion of how the 
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Introduction (continued)

recommendations can be combined in the 
lesson-planning process. This discussion is pre-
sented in the conclusion section of the guide.

Recommendation 1 explains how teachers 
should incorporate problem-solving activities 
into daily instruction, instead of saving them for 
independent seatwork or homework. The panel 
stresses that teachers must consider their unit 
goals and their students’ background and inter-
ests when preparing problem-solving lessons. 

Recommendation 2 underscores the impor-
tance of thinking through or reflecting on the 
problem-solving process. Thinking through 
the answers to questions such as “What is 
the question asking me to do?” and “Why did 
these steps in solving the problem work or 
not work?” will help students master multi-
step or complex problems. 

Recommendations 3, 4, and 5 focus on specific 
ways to teach problem solving.

Recommendation 3 covers instruction in 
visual representations, such as tables, graphs, 
and diagrams. Well-chosen visual representa-
tions help students focus on what is central 
to many mathematical problems: the relation-
ship between quantities. 

Recommendation 4 encourages teachers 
to teach multiple strategies that can be used 
to solve a problem. Sharing, comparing, and 
discussing strategies afford students the 
opportunity to communicate their thinking 
and, by listening to others, become increas-
ingly flexible in the way they approach and 
solve problems. Too often students become 
wedded to just one approach and then floun-
der when it does not work on a different or 
more challenging problem.

Recommendation 5 encourages teachers to 
help students recognize and articulate math-
ematical concepts and notation during problem-
solving activities. The key here is for teachers 
to remember that students’ problem solving will 
improve when students understand the formal 
mathematics at the heart of each problem.

Of the five recommendations the panel shares 
in this guide, the panel chose to present the 
recommendation (Recommendation 1) that 
provides guidance for preparing problem-
solving activities first. Even though the level 
of evidence supporting this recommendation 
is not strong, the panel believes teachers 
should plan before undertaking these activi-
ties. The first two recommendations can be 
used regularly when preparing and imple-
menting problem-solving lessons; in contrast, 
the panel does not think recommendations 
3 through 5 must be used in every lesson. 
Instead, teachers should choose the recom-
mendations that align best with their goals for 
a given lesson and its problems. For example, 
there are occasions when visual representa-
tions are not used as part of problem-solving 
instruction, such as when students solve an 
equation by considering which values of the 
variable will make both sides equal. 

Use of research

The evidence used to create and support 
the recommendations in this practice guide 
ranges from rigorous experimental studies to 
expert reviews of practices and strategies in 
mathematics education; however, the evidence 
ratings are based solely on high-quality group-
design studies (randomized controlled trials 
and rigorous quasi-experimental designs) that 
meet What Works Clearinghouse (WWC) stan-
dards. Single-case design studies that meet 
WWC pilot standards for well-designed single-
case design research are also described, but 
do not affect the level of evidence rating. The 
panel paid particular attention to a set of high-
quality experimental and quasi-experimental 
studies that meets the WWC criteria, including 
both national and international studies of strat-
egies for teaching problem solving to students 
in grades 4 through 8.17 This body of research 
included strategies and curricular materials 
developed by researchers or ones commonly 
being used by teachers in classrooms. The 
panel also considered studies recommended 
by panel members that included students in 
grades 3 and 9. 
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Introduction (continued)

Studies of problem-solving interventions in 
the past 20 years have yielded few causal 
evaluations of the effectiveness of the variety 
of approaches used in the field. For example, 
as much as the panel believes that teaching 
students to persist in solving challenging 
problems is important to solving math prob-
lems, it could not find causal research that 
isolated the impact of persistence. The panel 
also wanted to include studies of teachers  
using their students’ culture to enhance 
problem-solving instruction; however, panel-
ists could not find enough research that met 
WWC standards and isolated this practice. 
The panel was able to include suggestions for 
teaching the language of mathematics and for 
adapting problems so that contexts are more 
relevant to students—but these suggestions 
are supported by limited evidence.

The research base for this guide was identi-
fied through a comprehensive search for 
studies evaluating instructional practices for 
improving students’ mathematical problem 
solving. An initial search for literature related to 
problem-solving instruction in the past 20 years 
yielded more than 3,700 citations; the panel 
recommended an additional 69 citations. Peer 
reviewers suggested several additional studies. 
Of these studies, only 38 met the causal valid-
ity standards of the WWC and were related to 
the panel’s recommendations.18

The supporting research provides a strong 
level of evidence for two of the recommen-
dations, a moderate level of evidence for 
another two of the recommendations, and 
a minimal level of evidence for one recom-
mendation. Despite the varying levels of 
evidence, the panel believes all five recom-
mendations are important for promoting 
effective problem-solving skills in students. 
The panel further believes that even though 
the level of evidence for Recommendation 
1 is minimal, the practice holds promise for 
improving students’ mathematical problem 
solving. Very few studies examine the effects 
of teacher planning on student achievement; 
therefore, few studies are available to sup-
port this recommendation. Nonetheless, the 
panel believes that the practice of intention-
ally preparing problem-solving lessons can 
lead to improvement in students’ problem-
solving abilities. 

Table 2 shows each recommendation and 
the strength of the evidence that supports 
it as determined by the panel. Following the 
recommendations and suggestions for car-
rying out the recommendations, Appendix D 
presents more information on the research 
evidence that supports each recommenda-
tion. It also provides details on how studies 
were assessed as showing positive, negative, 
or no effects.

Levels of Evidence

Recommendation
Strong 

Evidence
Moderate  
Evidence

Minimal  
Evidence

1. Prepare problems and use them in whole-class instruction. 

2. Assist students in monitoring and reflecting on the problem-
solving process. 



3. Teach students how to use visual representations. 

4. Expose students to multiple problem-solving strategies. 

5. Help students recognize and articulate mathematical concepts 
and notation.



Table 2. Recommendations and corresponding levels of evidence
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Recommendation 1

Prepare problems and use them in whole-class instruction.
A sustained focus on problem solving is often missing in mathematics instruction, in large part 
due to other curricular demands placed on teachers and students.19 Daily math instruction 
is usually limited to learning and practicing new skills, leaving problem-solving time to 
independent seatwork or homework assignments.20 The panel believes instruction in problem 
solving must be an integral part of each curricular unit, with time allocated for problem-
solving activities with the whole class. In this recommendation, the panel provides guidance for 
thoughtful preparation of problem-solving lessons. Teachers are encouraged to use a variety 
of problems intentionally and to ensure that students have the language and mathematical 
content knowledge necessary to solve the problems. 

Summary of evidence: Minimal Evidence

Few studies directly tested the suggestions 
of this recommendation, leading the panel 
to assign a level of evidence rating for this 
recommendation of “minimal evidence.” 
Although the panel believes teacher planning 
should incorporate both routine and non-
routine problems, no studies meeting WWC 
standards directly examined this issue. 

One study found that students performed 
better when teacher planning considered 
students’ mathematical content weaknesses 

and understanding of language and context.21 
However, this intervention included addi-
tional instructional components that may 
have caused the positive results. Similarly, 
while another study found that incorporating 
familiar contexts into instruction can improve 
problem-solving skills, the intervention 
included other instructional components that 
may have caused these positive results.22

On a related issue, a few well-designed studies 
did find that students who have practiced with 
word problems involving contexts (people, 
places, and things) they like and know do 
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Recommendation 1 (continued)

better on subsequent word-problem tests 
than do students who have practiced with 
generic contexts.23 These achievement gains 
occurred when computer programs were used 
to personalize problem contexts for individual 

Routine problems are not only the one- and 
two-step problems students have solved 
many times, but they can also be cognitively 
demanding multistep problems that require 
methods familiar to students. For example, 
see problem 3 in Example 1. The typical chal-
lenge of these problems is working through 
the multiple steps, rather than determining 
new ways to solve the problem. Thus, sixth- 
or seventh-grade students who have been 
taught the relevant geometry (e.g., types of 
triangles, area formulas for triangles) and 
basic features of coordinate graphs should be 
able to solve this problem by following a set 
of steps that may not differ significantly from 
what they may have already been shown or 
practiced. In this instance, it would be reason-
able for an average student to draw a line 
between (0,4) and (0,10), observe that the 
length of this distance is 6, and then use this 
information in the area formula A = ½ × b × h.  
If the student substitutes appropriately for 
the variables in the formula, the next set is to 
solve for the height: 12 = ½ × 6 × h. This step 
yields a height of 4, and a student could then 
answer the question with either (4,0) or (4,10). 
The routine nature of the problem solving 
is based on the fact that this problem may 
require little or no transfer from previously 
modeled or worked problems.

How to carry out the recommendation

1. Include both routine and non-routine problems in problem-solving activities.

Definitions of routine and non-routine  
problems

students or when contexts were based on the 
common preferences of student groups.24

The panel identified three suggestions for 
how to carry out this recommendation.

Routine problems can be solved using 
methods familiar to students25 by repli-
cating previously learned methods in a 
step-by-step fashion.26

Non-routine problems are problems for 
“which there is not a predictable, well-
rehearsed approach or pathway explicitly 
suggested by the task, task instructions, 
or a worked-out example.”27

Teachers must consider students’ previ-
ous experience with problem solving 
to determine which problems will be 
routine or non-routine for them. A seem-
ingly routine problem for older students 
or adults may present surprising chal-
lenges for younger students or those 
who struggle in mathematics.

Teachers should choose routine problems if 
their goal is to help students understand the 
meaning of an operation or mathematical  
idea. Collections of routine problems can  
help students understand what terms such as 
multiplication and place value mean, and how 
they are used in everyday life.28 For example,  
6 ÷ 2/3 may become more meaningful when 
incorporated into this word problem: “How 
many 2/3-foot long blocks of wood can a carpen-
ter cut from a 6-foot long board?” (See Example 
1 for additional sample routine problems.)
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Recommendation 1 (continued)

When the primary goal of instruction is to 
develop students’ ability to think strategically, 
teachers should choose non-routine problems 
that force students to apply what they have 
learned in a new way.29 Example 2 provides 
samples of problems that are non-routine for 
most students. For students who have not had 
focused instruction on geometry problems like 
problem 1 in Example 2, the task presents a 
series of challenges. Much more time needs to 
be spent interpreting the problem and deter-
mining what information is relevant, as well as 
how it should be used. Time also needs to be 
spent determining or inferring if information not 
presented in the problem is relevant (e.g., what 
the measures of the supplementary angles are 
in the problem, how this information might be 
used to solve the problem). All of these features 
increase the cognitive demands associated 
with solving this problem and make it non-
routine. Finally, competent students who solve 
this problem would also spend additional time 
double-checking the correctness of the solution.

1. Carlos has a cake recipe that calls 
for 23/4 cups of flour. He wants to 
make the recipe 3 times. How much 
flour does he need? 

This problem is likely routine for a student 
who has studied and practiced multipli-
cation with mixed numbers.

2. Solve 2y + 15 = 29 

This problem is likely routine for a student 
who has studied and practiced solving  
linear equations with one variable.

3. Two vertices of a right triangle are 
located at (0,4) and (0,10). The area of 
the triangle is 12 square units. Find a 
point that works as the third vertex. 

This problem is likely routine for a student 
who has studied and practiced determin-
ing the area of triangles and graphing in 
coordinate planes.

1. Determine angle x without measur-
ing. Explain your reasoning.

parallel

155°

110°

x

This problem is likely non-routine for a 
student who has only studied simple ge-
ometry problems involving parallel lines 
and a transversal.

2. There are 20 people in a room. Ev-
erybody high-fives with everybody 
else. How many high-fives occurred? 

This problem is likely non-routine for 
students in beginning algebra.

3. Solve for the variables a through f in 
the equations below, using the digits 
from 0 through 5. Every digit should 
be used only once. A variable has the 
same value everywhere it occurs, and 
no other variable will have that value.

a + a + a = a2

b + c = b

d × e = d

a – e = b

b2 = d

d + e = f

The problem is likely non-routine for a 
student who has not solved equations by 
reasoning about which values can make 
an equation true. 

4. In a leap year, what day and time are  
exactly in the middle of the year?

This problem is likely non-routine for a 
student who has not studied problems in 
which quantities are subdivided into un-
equal groups.

Example 1. Sample routine problems Example 2. Sample non-routine problems
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Recommendation 1 (continued)

depending on students’ backgrounds. 
Example 3 shows how one 5th-grade 
teacher identified vocabulary and contex-
tual terms that needed to be clarified for 
her students.

• Reword problems, drawing upon 
students’ experiences. Reword prob-
lems so they are familiar to students by 
drawing upon students’ personal, familial, 
and community experiences.36 Teachers 
can replace unfamiliar names, objects, and 
activities that appear in the problem with 
familiar ones, so as to create a problem-
solving context that is more aligned with 
students’ experiences. In this way, the 
problem becomes more culturally relevant 
and easier for students to respond to. For 
example, soccer may be more familiar to 
some students than hockey, apples more 
familiar than soybeans, and the guitar 
more familiar than the oboe. By reword-
ing a problem to meet the needs of their 
students, teachers may not only increase 
comprehension levels, but also motivate 
their students to become more involved 
in the problem-solving activity.37 Please 
note that teachers need not always reword 
the problems themselves. They can dis-
cuss with their students how to make the 
problems more familiar, interesting, and 
comprehensible. For instance, teachers can 
ask students questions such as “Can we 
change Ms. Inoye to the name of a person 
you know?” or “This problem says we have 
to measure the shag carpet in the living 
room. Can we use other words or just the 
word carpet in this problem to make it 
easier to understand?”

Given the diversity of students in today’s 
classrooms, the problems teachers select for 
lesson plans may include contexts or vocabu-
lary that are unfamiliar to some.30 These 
students may then have difficulty solving 
the problems for reasons unrelated to the 
students’ understanding of concepts or their 
ability to compute answers.31 This is a par-
ticularly significant issue for English language 
learners and for students with disabilities. 

The goal of ensuring that students under-
stand the language and context of problems 
is not to make problems less challenging. 
Instead, it is to allow students to focus on the 
mathematics in the problem, rather than on 
the need to learn new background knowledge 
or language. The overarching point is that 
students should understand the problem and 
its context before attempting to solve it.32

Here are some ways teachers can prepare les-
sons to ensure student understanding:

• Choose problems with familiar con-
texts. Students can often solve problems 
more successfully when they are familiar 
with the subject matter presented.33

• Clarify unfamiliar language and con-
texts. Identify the language and contexts 
that need to be clarified in order for 
students to understand the problem.34 
Teachers should think about students’ 
experiences as they make these deter-
minations. For example, an island in the 
kitchen, a yacht, the Iditarod dog sled race, 
a Laundromat, or sentence structures such 
as “if…, then…”35 might need clarification, 

2. Ensure that students will understand the problem by addressing issues students 
might encounter with the problem’s context or language.
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Recommendation 1 (continued)

Example 3. One teacher’s efforts to clarify vocabulary and context

Mary, a 5th-grade teacher, identified the following vocabulary, contextual terms, and content for 
clarification, based on the background of her students.

Example Problem Vocabulary Context

In a factory, 54,650 parts were 
made. When they were tested,  
4% were found to be defective. 
How many parts were working?

Students need to understand  
the term defective as being the  
opposite of working and the  
symbol % as percent to cor-
rectly solve the problem.

What is a factory?

What does parts mean in this 
context?

At a used-car dealership, a car 
was priced at $7,000. The sales-
person then offered a discount 
of $350.  
What percent discount, applied 
to the original price, gives the  
offered price?

Students need to know what  
offered and original price mean  
to understand the goal of the 
problem, and they need to 
know what discount and per-
cent discount mean to under-
stand what mathematical op-
erators to use.

What is a used-car dealership?

Problem

Mathematical content needed for solution

Sarah Sanchez is planning 
to build a corral on her 
ranch for her two horses. 
She wants to build the 
corral in the shape of a 
rectangle. Here is a draw-
ing of one side of the cor-
ral, and as you can see, 
this side is 20 yards wide. 

It will take 480 yards of railing to build the corral based on Sarah’s plan.

1. What will be the perimeter of the corral?

2. What will be the area of the corral?

3. Can you show a way that Sarah can use the same amount of railing and build a 
corral with a bigger area for her horses?

• Addition, subtraction, multiplication and division.

• Opposite sides of rectangles are equal.

• The perimeter of a shape can stay the same, but its area can change.

10 feet

post

railing

20 yards (i.e., 60 feet)

Example 4. What mathematical content is needed to solve the problem?
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Recommendation 1 (continued)

As teachers plan problem-solving instruction, 
they should identify the mathematical content 
needed to solve the included problems. It is 
important to remember that problems that 
align with the current unit often draw on 
skills taught in prior units or grade levels. In 
the problems listed in Example 3, students 
need to understand (1) what percent means 
(i.e., that 4% is 4 out of 100 or 4/100 or 0.04), 
and (2) how to calculate the value of a percent 
of a quantity or percent of a change. Strug-
gling students are likely to benefit from a 
quick review of the relevant skills needed to 
understand and solve the problem, especially 
if the mathematical content has not been 
discussed recently or if a non-routine problem 
is presented.38 A brief review of skills learned 
earlier also helps students see how this 
knowledge applies to challenging problems.39

For example, teachers may need to review 
the difference between fractions and ratios 
before students are asked to solve ratio and 
proportion problems. Similarly, before solving 

the fourth-grade problem shown in Example 
4, students should know and be able to apply 
several facts about area and perimeter.

Mathematical language in problems may also 
need to be reviewed with students. For exam-
ple, before presenting students with a problem 
such as the one in Example 5, a teacher might 
need to clarify the terms in the problem. 

3. Consider students’ knowledge of mathematical content when planning lessons.

Example 5. Mathematical language 
to review with students

Potential roadblocks and solutions

Roadblock 1.1. Teachers are having trouble 
finding problems for the problem-solving 
activities.

Suggested Approach. Textbooks usually 
include both routine and non-routine prob-
lems, but teachers often have a hard time 
finding non-routine problems that fit their 
lesson’s goals. In addition to the class text, 
teachers may need to use ancillary materi-
als, such as books on problem solving and 
handouts from professional-development 
activities. Teachers also can ask colleagues 
for additional problem-solving activities or 
work on teams with other teachers or with 
instructional leaders using lesson study to 
prepare materials for problem-solving instruc-
tion. Teachers also can search the Internet for 

examples. Helpful online resources include 
Illuminations from the National Council of 
Teachers of Mathematics, problems of the 
week from the Math Forum at Drexel Univer-
sity, and practice problems from high-quality 
standardized tests such as the state assess-
ments, the Trends in International Mathemat-
ics and Science Study (TIMSS), the Programme 
for International Student Assessment (PISA), 
and the Scholastic Assessment Test (SAT).40

Roadblock 1.2. Teachers have no time to  
add problem-solving activities to their math-
ematics instruction. 

Suggested Approach. The panel believes 
that including problem-solving activities 
throughout each unit is essential. To make 
time during instruction, teachers should 
consider balancing the number of problems 

Two vertices of a triangle are located at 
(0,4) and (0,10). The area of the triangle 
is 12 square units. What are all possible 
positions for the third vertex?

• vertices  • triangle

• area square units  • vertex

Problem

Mathematical language that needs  
to be reviewed 
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Recommendation 1 (continued)

students are required to solve during seat-
work activities with worked examples stu-
dents can simply study. Worked examples 
could benefit student learning and decrease 
the time necessary to learn a new skill.41 For 
more information on how to use worked 
examples as a part of problem-solving 
instruction, see Recommendations 2 and 4 
of this practice guide or Recommendation 
2 of the Organizing Instruction and Study to 
Improve Student Learning practice guide.42 

Overview of Recommendation 2 in the 
Organizing Instruction and Study to 
Improve Student Learning practice guide43

1. Teachers should give students 
assignments that provide already 
worked solutions for students to 
study, interleaved with problems  
for them to solve on their own.

2. As students develop greater problem- 
solving abilities, teachers can reduce 
the number of worked problems they 
provide and increase the number of 
problems that students should solve 
independently.

Roadblock 1.3. Teachers are not sure which 
words to teach when teaching problem solving. 

Suggested Approach. The panel believes 
academic language, including the language 
used in mathematics, should be taught 
explicitly so that all students understand 
what is being asked in a problem and how 
the problem should be solved. Identifying the 
language used in a problem-solving task can 
guide lesson planning. Based on the scope 
and sequence of the curricular material, math 
coaches or specialists can provide a list of  
academic words and phrases (e.g., addition, 
not greater than)44 that are essential for 
teaching a given unit. The list can also focus 
on the language that will be necessary for 
students to know as they progress to the  
next grade level. Teachers can work with  
colleagues to solve problems and identify 
words students need to understand to solve 
the problem. They also can look for impor-
tant academic terms and vocabulary in the 
class textbook or the mathematics standards 
for the state. 
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Recommendation 2

Assist students in monitoring and reflecting on the 
problem-solving process.
Students learn mathematics and solve problems better when they monitor their thinking and 
problem-solving steps as they solve problems.45 Monitoring and reflecting during problem 
solving helps students think about what they are doing and why they are doing it, evaluate 
the steps they are taking to solve the problem, and connect new concepts to what they 
already know. The more students reflect on their problem-solving processes, the better their 
mathematical reasoning—and their ability to apply this reasoning to new situations—will be.46

In this recommendation, the panel suggests that teachers help students learn to monitor and 
reflect on their thought process when they solve math problems. While the ultimate goal is for 
students to monitor and reflect on their own while solving a problem, teachers may need to 
support students when a new activity or concept is introduced. For instance, a teacher may 
provide prompts and use them to model monitoring and reflecting as the teacher solves a 
problem aloud. In addition, a teacher can use what students say as a basis for helping the 
students improve their monitoring and reflecting. Teachers can use students’ ideas to help 
students understand the problem-solving process. 

Summary of evidence: Strong Evidence

Several studies with diverse student samples directly tested this recommendation and consistently 
found positive effects. As a result, the panel determined there was strong evidence to support  
this recommendation.47
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Recommendation 2 (continued)

The relevant studies examined students’ 
mathematics achievement in different content 
areas, including numbers and operations, 
data analysis and probability, algebra, and 
geometry. Two studies found that provid-
ing students with a task list that identified 
specific steps to solving problems resulted 
in better student achievement.48 Two addi-
tional studies found that a self-questioning 
checklist improved achievement,49 and in one 
study, this effect persisted for at least four 

months after instruction ended;50 however, 
both studies included additional instructional 
components (visual aids and multiple-strategy 
instruction) that may have produced the posi-
tive results. Similarly, five studies found that 
student performance improved when teachers 
modeled a self-questioning process and then 
asked students to practice it.51

The panel identified three suggestions for 
how to carry out this recommendation.

How to carry out the recommendation

1. Provide students with a list of prompts to help them monitor and reflect during the 
problem-solving process.

The prompts that teachers provide can either 
be questions that students should ask and 
answer as they solve problems (see Example 6) 
or task lists that help students complete steps 
in the problem-solving process (see Example 
7).52 The questions teachers provide should 
require students to think through the problem-
solving process, similar to the way in which 
task lists guide students through the process. 
Select a reasonable number of prompts, rather 
than an exhaustive list, as too many prompts 
may slow down the problem-solving process 
or be ignored. Ensure that the prompts help 
students evaluate their work at each stage of 
the problem-solving process, from initially 
reading and understanding the problem, to 
determining a way to solve the problem, and 
then to evaluating the appropriateness of the 
solution given the facts in the problem.53

Encourage students to explain and justify their 
response to each prompt, either orally54 or in 
writing.55 Students can use the prompts when 
working independently, in small groups,56 or 
even when solving problems at a computer.57 
When working in small groups, students can 

take turns asking and answering questions 
or reading each action aloud and responding 
to it. As they share in small groups, students 
serve as models for others in their group, 
allowing all the students to learn from one 
another. Teachers may wish to post prompts 
on the board, include them on worksheets,58 
or list them on index cards for students.59

When students first use the prompts, they 
may need help. Teachers can participate in 
the questioning or refer to tasks in the task 
list when students work in small groups or 
during whole-group discussions. If, for exam-
ple, a student solves a problem incorrectly, 
ask him what questions he should have asked 
himself to help him reason out loud, rather 
than providing him with the correct answer.60 
Alternatively, provide the correct answer, but 
ask the student to explain why it is right and 
why his original answer is not.61 As students 
become more comfortable with their reason-
ing abilities and take greater responsibility 
for monitoring and reflecting during problem 
solving, teachers can gradually withdraw the 
amount of support they provide.62
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Recommendation 2 (continued)

Model how to monitor and reflect while solv-
ing a problem using the prompts given to 
students.64 This can be done when introduc-
ing a problem-solving activity or a new con-
cept to the whole class or as students work 
independently or in small groups.65 Say aloud 
not only the response to each prompt, but 
also the reasons why each step was taken. 
Alternatively, say which step was taken, but 
ask students to explain why this would work. 
Make sure to use a prompt at each stage in 

the problem-solving process, for example, 
when first reading the problem, when 
attempting a strategy to solve the problem, 
and after solving the problem.

Example 8 describes one teacher’s experience 
with modeling how to monitor and reflect 
using questions. It illustrates the importance 
of persistence if the student fails to under-
stand the problem or the appropriate method 
to employ for solving it. 

Example 6. Sample question list Example 7. Sample task list63

• What is the story in this problem 
about?

• What is the problem asking?

• What do I know about the problem so 
far ? What information is given to me? 
How can this help me?

• Which information in the problem  
is relevant?

• In what way is this problem similar  
to problems I have previously solved?

• What are the various ways I might  
approach the problem?

• Is my approach working? If I am stuck, is 
there another way I can think about solv-
ing this problem?

• Does the solution make sense? How 
can  
I verify the solution? 

• Why did these steps work or not work?

• What would I do differently next time?

Note: These are examples of the kinds of ques-
tions that a teacher can use as prompts to 
help students monitor and reflect during the 
problem-solving process. Select those that are 
applicable for your students, or formulate new 
questions to help guide your students.

• Identify the givens and goals of  
the problem.

• Identify the problem type.

• Recall similar problems to help solve  
the current problem.

• Use a visual to represent and solve  
the problem.

• Solve the problem.

• Check the solution.

2. Model how to monitor and reflect on the problem-solving process.
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Example 8. One way to model monitoring and reflecting using questions

Last year was unusually dry in Colorado. Denver usually gets 60 inches of snow per year. Vail, 
which is up in the mountains, usually gets 350 inches of snow. Both places had 10 inches of 
snow less than the year before. Kara and Ramon live in Colorado and heard the weather re-
port. Kara thinks the decline for Denver and Vail is the same. Ramon thinks that when you 
compare the two cities, the decline is different. Explain how both people are correct.

TEACHER: First, I ask myself, “What is this story about, and what do I need to find 
out?” I see that the problem has given me the usual amount of snowfall and the change in 
snowfall for each place, and that it talks about a decline in both cities. I know what decline 
means: "a change that makes something less." Now I wonder how the decline in snowfall 
for Denver and Vail can be the same for Kara and different for Ramon. I know that a decline 
of 10 inches in both cities is the same, so I guess that’s what makes Kara correct. How is 
Ramon thinking about the problem?

I ask myself, “Have I ever seen a problem like this before?” As I think back to the  
assignments we had last week, I remember seeing a problem that asked us to calculate  
the discount on a $20 item that was on sale for $15. I remember we had to determine  
the percent change. This could be a similar kind of problem. This might be the way  
Ramon is thinking about the problem.

Before I go on, I ask myself, “What steps should I take to solve this problem?”  
It looks like I need to divide the change amount by the original amount to find the  
percent change in snowfall for both Denver and Vail.

Denver: 10 ÷ 60 = 0.166 or 16.67% or 17% when we round it to the nearest whole number

Vail: 10 ÷ 350 = 0.029 or 2.9% or 3% when we round it to the nearest whole number

So the percent decrease in snow for Denver was much greater (17%) than for Vail (3%).  
Now I see what Ramon is saying! It’s different because the percent decrease for Vail is  
much smaller than it is for Denver.

Finally, I ask myself, “Does this answer make sense when I reread the problem?” 
Kara’s answer makes sense because both cities did have a decline of 10 inches of snow. 
Ramon is also right because the percent decrease for Vail is much smaller than it is for 
Denver. Now, both of their answers make sense to me.

Problem

Solution
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students clarify and refine their thinking and 
to help them establish a method for monitor-
ing and reflecting that makes sense to them 
(see Example 9). This is helpful for students 
who dislike working with teacher-provided 
prompts or who are having difficulty under-
standing and using these prompts. 

The panel believes that, by building on 
students’ ideas, teachers can help students 
clarify and refine the way they monitor and 
reflect as they solve a problem. Teachers can 
help students verbalize other ways to think 
about the problem. The teacher-student dia-
logue can include guided questioning to help 

Example 9. Using student ideas to clarify and refine the monitoring and reflecting process

3. Use student thinking about a problem to develop students’ ability to monitor  
and reflect.

Find a set of five different numbers whose average is 15.

TEACHER: Jennie, what did you try?

STUDENT: I’m guessing and checking. I tried 6, 12, 16, 20, 25 and they didn’t work. The  
average is like 17.8 or something decimal like that.

TEACHER: That’s pretty close to 15, though. Why’d you try those numbers?

STUDENT: What do you mean?

TEACHER: I mean, where was the target, 15, in your planning? It seems like it was in your 
thinking somewhere. If I were choosing five numbers, I might go with 16, 17, 20, 25, 28.

STUDENT: But they wouldn’t work—you can tell right away.

TEACHER: How?

STUDENT: Because they are all bigger than 15.

TEACHER: So?

STUDENT: Well, then the average is going to be bigger than 15.

TEACHER: Okay. That’s what I meant when I asked “Where was 15 in your planning?”  
You knew they couldn’t all be bigger than 15. Or they couldn’t all be smaller either?

STUDENT: Right.

TEACHER: Okay, so keep the target, 15, in your planning. How do you think five numbers 
whose average is 15 relate to the number 15?

STUDENT: Well, some have to be bigger and some smaller. I guess that is why I tried the 
five numbers I did.

TEACHER: That’s what I guess, too. So, the next step is to think about how much bigger 
some have to be, and how much smaller the others have to be. Okay?

STUDENT: Yeah.

TEACHER: So, use that thinking to come up with five numbers that work.

Problem

Solution
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Roadblock 2.3. Students take too much  
time to monitor and reflect on the problem-
solving process.

Suggested Approach. It is likely that when 
students initially learn the tasks of monitoring 
and reflecting, they will be slow in using the 
prompts. However, after a bit of practice, they 
are likely to become more efficient at using 
the prompts.

Roadblock 2.4. When students reflect on 
problems they have already solved, they resort 
to using methods from those problems rather 
than adapting their efforts to the new problem 
before them.

Suggested Approach. While students 
should consider whether they have seen 
a similar problem before, sometimes they 
overdo it and simply solve the problem using 
similar methods, rather than using methods 
that will work for the problem they are solv-
ing. To help students overcome this, try ask-
ing them to explain why the solution method 
worked for the previous problem and what 
components of it may or may not be useful 
for the new problem.

Potential roadblocks and solutions

Roadblock 2.1. Students don’t want to  
monitor and reflect; they just want to solve  
the problem.

Suggested Approach. The panel believes 
that students need to develop the habit of 
monitoring and reflecting throughout the 
problem-solving process, from setting up the 
problem to evaluating whether their solution 
is accurate. Ideally, whenever students solve 
problems, they should practice monitor-
ing and reflecting on their problem-solving 
process. Acknowledge that simply solving 
a problem may seem easier, but encour-
age students to incorporate monitoring and 
reflecting into their process every time they 
solve a problem. Inform students that doing 
so will help them understand and solve 
problems better, as well as help them convey 
their strategies to classmates.66 Explain that 
expert problem solvers learn from unsuccess-
ful explorations and conjectures by reflecting 
on why they were unsuccessful.

Roadblock 2.2. Teachers are unclear  
on how to think aloud while solving a non-
routine problem. 

Suggested Approach. Prepare ahead of 
time using the list of prompts given to stu-
dents. Outline responses to the prompts in 
advance of the lesson. It might also help to 
anticipate how students would think about 
the prompts as they solved the problem. A 
colleague or math coach can help teachers 
think through the prompts and the problem-
solving process if they get stuck.
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Teach students how to use visual representations.
A major task for any student engaged in problem solving is to translate the quantitative 
information in a problem into a symbolic equation—an arithmetic/algebraic statement—
necessary for solving the problem. Visual representations help students solve problems by 
linking the relationships between quantities in the problem with the mathematical operations 
needed to solve the problem. Students who learn to visually represent the mathematical 
information in problems prior to writing an equation are more effective at problem solving.67

Visual representations include tables, graphs, number lines, and diagrams such as strip 
diagrams, percent bars, and schematic diagrams. Example 10 provides a brief explanation 
of how a few types of visual representations can be used to solve problems.68 In the 
panel’s opinion, teachers should consistently teach students to use a few types of visual 
representations rather than overwhelming them with many examples. In this recommendation, 
the panel offers suggestions for selecting appropriate visual representations to teach and 
methods for teaching students how to represent the problem using a visual representation.

Definitions of strip diagrams, percent bars, and schematic diagrams

Strip diagrams use rectangles to represent quantities presented in the problem.

Percent bars are strip diagrams in which each rectangle represents a part of 100 in the problem.

Schematic diagrams demonstrate the relative sizes and relationships between quantities  
in the problem.
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Example 10. Sample table, strip diagram, percent bar, and schematic diagram

Cheese costs $2.39 per pound. Find the cost of 0.75 pounds of cheese.69

Eva spent 2/5 of the money she had on a coat and then spent 1/3 of what was left on a
sweater. She had $150 remaining. How much did she start with?

This table depicts the relationship between the weight of cheese and its cost. Every pound 
of cheese will cost $2.39, and this relationship can be used to determine the cost of 0.75 
pounds of cheese by using the rule “times 2.39,” which can be stated in an equation as  
x = 0.75 × 2.39.

Problem

Problem

Sample table

Sample strip diagram

2/5 spent on a coat. 1/3 spent on a sweater. 

Total Budget
This strip diagram depicts the money Eva spent on a coat and a sweater. It shows how the 
amount of money she originally had is divided into 5 equal parts and that 2 of the 5 parts 
are unspent. The problem states that the unspent amount equals $150. Several strategies 
can then be employed to make use of this information in an equation, such as 2/5 × x = 150,
to determine the original amount.

(continued)

Cost of Cheese Pounds of Cheese

(a)
2.39 1

? 0.75

(b)
2.39 2.39 1

x 2.39 0.75
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Example 10. Sample table, strip diagram, percent bar, and schematic diagram (continued)

During a sale, prices were marked down by 20%. The sale price of an item was $84. What 
was the original price of the item before the discount?70

John recently participated in a 5-mile run. He usually runs 2 miles in 30 minutes. Because 
of an ankle injury, John had to take a 5-minute break after every mile. At each break he 
drank 4 ounces of water. How much time did it take him to complete the 5-mile run?

Problem

Problem

Sample percent bar 

Sample schematic diagram

Original Decrease Final Amount

100%
x

20%
y

80%
$84

These percent bars depict the relative values of the original, decrease, and final amounts 
as 100:20:80, which can be reduced to 5:1:4. The relationship between the original and 
final amount (5:4) can be used in an algebraic equation, such as x /84 = 5/4, to determine 
the original amount when the final amount is $84. 

15 15 15 15 15

5 5 5 5

Start End

This schematic diagram depicts the amount of time John needed to run 5 miles when 
each mile took him 15 minutes to run and he took a 5-minute break after every mile.  
The total time (x) it took him to complete the run is equal to the total number of minutes 
in this diagram, or x = (5 × 15) + (4 × 5).
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Summary of evidence: Strong Evidence

The panel determined there is strong evidence 
supporting this recommendation because six 
studies with middle school student samples 
consistently found that using visual representa-
tions improved achievement.71 Both general 
education students and students with learning 
disabilities performed better when taught to 
use visual representations72 such as identifying 
and mapping relevant information onto sche-
matic diagrams.73

In four of the six studies, students were taught 
to differentiate between types of math prob-
lems and then to implement an appropriate 
diagram for the relevant type.74 An additional 
study involving an alternative problem-solving 
approach integrated with visual representa-
tions also resulted in higher achievement.75 
Finally, one study showed that if teachers help 
students design, develop, and improve their 
own visual representations, student achieve-
ment improves more than if students simply 
use teacher- or textbook-developed visuals.76

The panel identified three suggestions for 
how to carry out this recommendation.

How to carry out the recommendation

1. Select visual representations that are appropriate for students and the problems  
they are solving.  

2. Use think-alouds and discussions to teach students how to represent problems visually.

Sometimes curricular materials suggest using 
more than one visual representation for a 
particular type of problem. Teachers should 
not feel obligated to use all of these; instead, 
teachers should select the visual representation 
that will work best for students and should use 
it consistently for similar problems.77 

For example, suppose a teacher introduced a 
ratio or proportion problem using a diagram 
that students found helpful in arriving at the 
equation needed to solve the problem. The 
teacher should continue using this same dia-
gram when students work on additional ratio 
or proportion problems. Remember, students 
may need time to practice using visual repre-
sentations and may struggle before achieving 

success with them.78 If, after a reasonable 
amount of time and further instruction, the 
representation still is not working for indi-
vidual students or the whole class, consider 
teaching another type of visual representation 
to the students in the future. Teachers can 
also consult a mathematics coach, other math 
teachers, or practitioner publications to iden-
tify more appropriate visual representations. 

Also keep in mind that certain visual rep-
resentations are better suited for certain 
types of problems.79 For instance, schematic 
diagrams work well with ratio and propor-
tion problems, percent bars are appropriate 
for percent problems, and strip diagrams are 
suited for comparison and fraction problems.

When teaching a new visual representation or 
type of problem, demonstrate how to repre-
sent the problem using the representation. 
Teachers should think aloud about the deci-
sions they make as they connect the problem 
to the representation.80 Thinking aloud is 
more than just the teacher telling students 
what he or she is doing. It also involves the 
teacher expressing his or her thoughts as 

he or she approaches the problem, includ-
ing what decisions he or she is making and 
why he or she is making each decision (see 
Example 11). 

Teachers should explain how they identified 
the type of problem—such as proportion, 
ratio, or percent—based on mathematical 
ideas in the problem and why they think a 
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Demonstrate to students how to represent 
the information in a problem visually.83 
Teach students to identify what information 
is relevant or critical to solving the problem. 
Often, problems include information that is 
irrelevant or unnecessary. For instance, in 
Example 11, students need to determine how 
many red roses are in Monica’s bouquet. The 
number of pink roses in Bianca’s bouquet 
is irrelevant; students need only focus on 
Monica’s bouquet. 

certain visual representation is most appro-
priate. For example, proportion problems 
describe equality between two ratios or rates 
that allows students to think about how both 
are the same. Teachers should be careful not 
to focus on surface features such as story 
context.81 In Example 12, the story contexts 
are different, but the problem type is the 
same. Students who cannot articulate the 
type of problem may struggle to solve it, 
even if they have the basic math skills.82

Example 11. One way of thinking aloud84

Monica and Bianca went to a flower shop to buy some roses. Bianca bought a bouquet 
with 5 pink roses. Monica bought a bouquet with two dozen roses, some red and some 
yellow. She has 3 red roses in her bouquet for every 5 yellow roses. How many red roses 
are in Monica’s bouquet?

Problem

Solution

TEACHER: I know this is a ratio problem because two quantities are being compared: the 
number of red roses and the number of yellow roses. I also know the ratio of the two quan-
tities. There are 3 red roses for every 5 yellow roses. This tells me I can find more of each 
kind of rose by multiplying.

I reread the problem and determine that I need to solve the question posed in the last sen-
tence: “How many red roses are in Monica’s bouquet?” Because the question is about Monica, 
perhaps I don’t need the information about Bianca. The third sentence says there are two 
dozen red and yellow roses. I know that makes 24 red and yellow roses, but I still don’t know 
how many red roses there are. I know there are 3 red roses for every 5 yellow roses. I think I 
need to figure out how many red roses there are in the 24 red and yellow roses. 

Let me reread the problem… That’s correct. I need to find out how many red roses there 
are in the bouquet of 24 red and yellow roses. The next part of the problem talks about the 
ratio of red roses to red and yellow roses. I can draw a diagram that helps me understand 
the problem. I’ve done this before with ratio problems. These kinds of diagrams show the 
relationship between the two quantities in the ratio.

Base

Ratio value

Compared

(continued)
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Example 11. One way of thinking aloud (continued)

TEACHER: I write the quantities and units from the problem and an x for what must be 
solved in the diagram. First, I am going to write the ratio of red roses to yellow roses 
here in the circle. This is a part-to-whole comparison—but how can I find the whole in 
the part-to-whole ratio when we only know the part-to-part ratio (the number of red roses 
to the number of yellow roses)? 

I have to figure out what the ratio is of red roses to red and yellow roses when the prob-
lem only tells about the ratio of red roses to yellow roses, which is 3:5. So if there are 
3 red roses for every 5 yellow roses, then the total number of units for red and yellow 
roses is 8. For every 3 units of red roses, there are 8 units of red and yellow roses, which 
gives me the ratio 3:8. I will write that in the diagram as the ratio value of red roses to 
red and yellow roses. There are two dozen red and yellow roses, and that equals 24 red 
and yellow roses, which is the base quantity. I need to find out how many red roses (x) 
there are in 24 red and yellow roses.

I can now translate the information in this diagram to an equation like this:

Base

Ratio value

Compared

x
red roses

24
red and yellow

roses

3

8

Then, I need to solve for x.

x red roses

24 red-and-yellow roses

3

8

3

8

x

24

3

8

72

8

x

24
24 24( ) ( )

x

x 9
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• What kind of problem is this? How do  
you know?

• What is the relevant information in this 
problem? Why is this information relevant?

• Which visual representation did you use 
when you solved this type of problem  
last time?

• What would you do next? Why?

Encourage students to discuss similarities  
and differences among the various visuals 
they have learned or used. When students 
use their own visual representations to solve 
a problem correctly, teachers can emphasize 
noteworthy aspects of the representations 
and ask the students to share their visual 
representations with the class. They also may 
ask the students to explain how and why they 
used a particular representation to solve a 
problem. By sharing their work, students are 
modeling how to use visual representations 
for other students, allowing them to learn 
from one another.  

Promote discussions by asking students guid-
ing questions as they practice representing 
problems visually.85 For example, teachers 
can ask the following questions: 

Example 12. Variations in story 
contexts for a proportion problem

Solve 2/10 = x /30

Sara draws 2 trees for every 10 animals. 
How many trees will she need to draw if 
she has 30 animals? 

Sarah creates a tiled wall using 2 black 
tiles for every 10 white tiles. If she has 
30 white tiles, how many black tiles will 
she need?

Problem

Context 1

Context 2

3. Show students how to convert the visually represented information into  
mathematical notation.

After representing the relevant information 
in a problem visually, demonstrate how each 
part of the visual representation can be trans-
lated into mathematical notation.86 Students 
must see how each quantity and relationship 
in the visual representation corresponds to 
quantities and relationships in the equation.

Sometimes, the translation from representa-
tion to equation is as simple as rewriting 
the quantities and relationships without the 

boxes, circles, or arrows in the visual rep-
resentation (see Example 11). Other times, 
correspondence between the visual repre-
sentation and the equation is not as simple, 
and teachers must illustrate the connections 
explicitly. For example, a teacher using the 
table in Example 10 should demonstrate  
how to represent the cost of 0.75 pounds  
of cheese as x and the rule “times 2.39” with 
the correct notation in an equation.

Potential roadblocks and solutions

Roadblock 3.1. Students do not capture the 
relevant details in the problem or include 
unnecessary details when representing a 
problem visually.

Suggested Approach. Often, when repre-
senting a problem visually, students do not 
capture the relevant details and relationships 
in the problem, or include unnecessary details, 
such as the dots on a ladybug or a picket 
fence around a house. Consequently, such 
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representations do not correctly depict or help 
identify the mathematical nature of the prob-
lem. Teachers can help students improve their 
representations by building upon students’ 
thinking. They can ask guiding questions 
that will help students clarify and refine their 
representations. Once a student has revised 
his or her representation, teachers can ask him 
or her to explain what was missing from the 
representation and why the representation did 
not work initially. Teachers should be sure to 
point out specific aspects of the representation 
that the student did correctly. This will encour-
age students to keep trying. 

If necessary, teachers also can demonstrate 
how to alter the representation to represent 
and solve the problem correctly, using stu-
dents’ representations as a springboard for 
refinement.87 Teachers can show students 
how their diagrams can be modified to 
represent the relevant information without 
the unnecessary details. It is important to 
help students improve their representations, 
because students who represent irrelevant 
information could be less effective problem 
solvers than those who draw diagrams with 
relevant details from the problem.88 Teach-
ers also can help by explaining what the 
difference is between relevant and irrelevant 
details and how a visual representation can 
capture relevant details and relationships. 
They also should emphasize that a diagram’s 
goal is to illustrate the relationships that are 
important for solving the problem.

Consider the river-crossing problem detailed 
in Example 13. The first representation is a 
simple narrative description of the story that 
depicts the boat and river, and the adults and 
children waiting to cross the river. The sche-
matic diagram, on the other hand, outlines 
the sequence of trips and boat occupants that 
are needed to take 4 adults and 2 children 
across the river in a small boat. The sche-
matic diagram better represents the relevant 
information in the problem and is helpful in 
arriving at the symbolic equation. 

Example 13. Diagrams with relevant 
and irrelevant details89

There are 4 adults and 2 children who 
need to cross the river. A small boat is 
available that can hold either 1 adult or 
1 or 2 small children. Everyone can row 
the boat. How many one-way trips does 
it take for all of them to cross the river? 

Using a representation without rele-
vant details and with irrelevant details  
to represent the problem:

Using a schematic diagram with  
relevant details and without irrelevant 
details to represent the problem:

Problem
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professional-development materials they 
may have collected or search the Internet for 
more examples. Using an overhead projector, 
a document reader, or an interactive white-
board, teachers can incorporate these visuals 
into their lessons.

Roadblock 3.2. The class text does not use 
visual representations.

Suggested Approach. Teachers can ask 
colleagues or math coaches for relevant visual 
representations, or they can develop some 
on their own. Teachers also can look through 
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effects for some algebra outcomes—two of 
these studies also found positive effects for 
some outcomes. Consequently, the panel 
determined that there is moderate evidence 
to support this recommendation. 

Six of the seven studies that included proce-
dural flexibility outcomes found that exposing 
students to multiple problem-solving strategies 

Expose students to multiple problem-solving strategies.
Problem solvers who know how to use multiple strategies to solve problems may be more 
successful.90 When regularly exposed to problems that require different strategies, students 
learn different ways to solve problems. As a result, students become more efficient in selecting 
appropriate ways to solve problems91 and can approach and solve math problems with greater 
ease and flexibility.92

In this recommendation, the panel suggests ways to teach students that problems can be 
solved in more than one way and that they should learn to choose between strategies based 
upon their ease and efficiency. The panel recommends that teachers instruct students in a 
variety of strategies for solving problems and provide opportunities for students to use, share, 
and compare the strategies. Teachers should consider emphasizing the clarity and efficiency of 
different strategies when they are compared as part of a classroom discussion.

Summary of evidence: Moderate Evidence

Eight studies found positive effects of teach-
ing and encouraging multiple problem-solving 
strategies, although in some of these studies 
the effects were not discernible across all 
types of outcomes. Three additional studies 
involving students with limited or no knowl-
edge of algebraic methods found negative 
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improved students’ procedural flexibility—
their ability to solve problems in different ways 
using appropriate strategies.93 However, the 
estimated effects of teaching multiple strate-
gies on students’ ability to solve problems 
correctly (procedural knowledge) and aware-
ness of mathematical concepts (conceptual 
knowledge) were inconsistent.94

Three studies found that when students 
were instructed in using multiple strate-
gies to solve the same problem, procedural 
knowledge improved; however, all of these 
studies included additional instructional 
components (checklists and visual aids) that 
may have produced the positive results.95 
Another study with an eight-minute strategy 
demonstration found no discernible effects.96 
Providing students with worked examples 
explicitly comparing multiple-solution strate-
gies had positive effects on students’ proce-
dural flexibility in three of the four studies 
that examined this intervention; however, 
the three studies found inconsistent effects 

on students’ procedural knowledge and 
conceptual knowledge.97 The fourth study 
providing students with worked examples 
found that the effects varied by baseline 
skills—the intervention had a negative effect 
on procedural knowledge, conceptual knowl-
edge, and procedural flexibility for students 
who did not attempt algebra reasoning on a 
pretest, but no discernible effect for students 
who had attempted algebraic reasoning on 
the pretest (correctly or incorrectly).98 Finally, 
when students attempted to solve problems 
using multiple strategies and then shared 
and compared their strategies, their ability 
to solve problems did improve.99 Two addi-
tional studies involving students with no or 
minimal algebra knowledge found that asking 
students to re-solve an algebra problem using 
a different method had negative effects on 
procedural knowledge measures and positive 
effects on procedural flexibility.100

The panel identified three suggestions for 
how to carry out this recommendation.

How to carry out the recommendation

1. Provide instruction in multiple strategies.

Teach students multiple strategies for solving 
problems.101 These can be problem-specific102 
or general strategies for use with more than 

one type of problem.103 For instance, in Example 
14, a teacher shows his or her students two 
ways to solve the same problem. 

Example 14. Two ways to solve the same problem

Ramona’s furniture store has a choice of 3-legged stools and 4-legged stools. There are 
five more 3-legged stools than 4-legged stools. When you count the legs of the stools, 
there are exactly 29 legs. How many 3-legged and 4-legged stools are there in the store?

4 × 4 legs = 16 legs 9 × 3 legs = 27 legs total = 43 legs

3 × 4 legs = 12 legs 8 × 3 legs = 24 legs total = 36 legs

2 × 4 legs = 8 legs 7 × 3 legs = 21 legs total = 29 legs

Problem

Solution 1: Guess and check

TEACHER: This works; the total equals 29, and with two 4-legged stools and seven 
3-legged stools, there are five more 3-legged stools than 4-legged stools.

(continued)
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When teaching multiple strategies, periodically 
employ unsuccessful strategies and dem-
onstrate changing to an alternate strategy 
to show students that problems are not 
always solved easily the first time and that 

sometimes problem solvers need to try more 
than one strategy to solve a problem. This 
will help students develop the persistence the 
panel believes is necessary to complete chal-
lenging and non-routine problems.

Example 14. Two ways to solve the same problem (continued)

Solution 2

TEACHER: Let’s see if we can solve this problem logically. The problem says that there 
are five more 3-legged stools than 4-legged stools. It also says that there are 29 legs alto-
gether. If there are five more 3-legged stools, there has to be at least one 4-legged stool  
in the first place. Let’s see what that looks like.

TEACHER: I think this works. We have a total of 29 legs, and there are still five more 
3-legged stools than 4-legged stools. We solved this by thinking about it logically. We 
knew there was at least one 4-legged stool, and there were six 3-legged stools. Then we 
added to both sides so we always had a difference of five stools.  

TEACHER: We can add a stool to each group, and there will still be a difference of five stools.

stools

total legs 4 × 1 = 4 3 × 6 = 18

4 + 18 = 22

+

stools

total legs 4 × 2 = 8 3 × 7 = 21

8 + 21 = 29

+



( 35 )

Recommendation 4 (continued)

Teachers should present worked examples 
side-by-side on the same page, rather than on 
two separate pages, to facilitate more effec-
tive comparisons (see Example 15).108 Teach-
ers also should include specific questions to 
facilitate student discussions.109 For example, 
teachers can ask these questions:

• How are the strategies similar? How are 
they different? 

• Which method would you use to solve 
the problem? Why would you choose this 
approach? 

• The problem was solved differently, 
but the answer is the same. How is that 
possible? 

Ask students to respond to the questions first 
verbally and then in writing.110 See Example 
15 for an example of how these questions can 
be tailored to a specific problem.

Worked examples allow for quick, efficient 
comparisons between strategies.104 Success-
ful students should be able to compare the 
similarities and differences among multiple 
strategies.105 They may reap more benefits 
from comparing multiple strategies in worked 
examples when they work with a partner 
instead of alone106 and when they can actively 
participate in the learning process.107 Teachers 
should provide opportunities for students to 
work together and should use worked exam-
ples to facilitate the comparison of strategies. 

Teachers can use worked examples to facili-
tate comparison of strategies with interesting 
contrasts and not just minor differences. An 
added benefit of comparing strategies is that 
certain examples allow for concepts to be 
highlighted. The strategies used in Example 
15 allow for a discussion of treating (y + 1) as 
a composite variable.

2. Provide opportunities for students to compare multiple strategies in worked examples.

Example 15. A comparison of strategies111

Mandy’s solution Erica’s solution

5(y + 1) = 3(y + 1) + 8 

5y + 5 = 3y + 3 + 8 Distribute

5y + 5 = 3y + 11 Combine

2y + 5 = 11 Subtract on both

2y = 6 Subtract on both

y = 3 Divide on both

5(y + 1) = 3(y + 1) + 8 

2(y + 1) = 8 Subtract on both

y + 1 = 4 Divide on both

y = 3 Subtract on both

TEACHER: Mandy and Erica solved the problem differently, but they got the same answer. 
Why? Would you choose to use Mandy’s way or Erica’s way? Why?

Worked examples, of course, should be used 
alongside opportunities for students to solve 
problems on their own. For instance, teachers 
can provide worked examples for students to 
study with every couple of practice problems. 

Students who receive worked examples early 
on in a lesson may experience better learning 
outcomes with less effort than students who 
only receive problems to solve.112
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Encourage students to generate multiple 
strategies as they work independently113 or 
in small groups.114 In Example 16, students 
share their strategies in a small group. Provide 

opportunities for students to share their strate-
gies with the class. When students see the vari-
ous methods employed by others, they learn to 
approach and solve problems in different ways. 

3. Ask students to generate and share multiple strategies for solving a problem.

Find the area of this pentagon.

Problem115

Solution strategies

Ali and Maria each worked on this problem individually. 
After 20 minutes in a small-group activity, they talked to 
each other about how they approached the problem.

ALI: The pentagon is slanted, so first I looked for figures for 
which I knew how to compute the area. Look what I found: 
six right triangles inside; and they get rid of the slanted 
parts, so what’s left are rectangles. 

Then, I noticed that the right triangles are really three pairs 
of congruent right triangles. So together, the ones marked 
1 have an area of 2 × 3 = 6 square units. The ones marked 
2 combine for an area of 3 × 1 = 3 square units. The ones 
marked 3 also combine for an area of 3 square units.

What’s left inside is a 2-by-3 rectangle, with an area of 6 
square units; a 1-by-4 rectangle, with an area of 4 square units;  
and a 1-by-3 rectangle, with an area of 3 square units.

So, the area of the pentagon is 6 + 3 + 3 + 6 + 4 + 3 = 25 square units.

MARIA: You looked inside the pentagon, but I looked  
outside to deal with the slanted parts. I saw that I could  
put the pentagon inside a rectangle. I colored in the pen-
tagon and figured if I could subtract the area of the white 
space from the area of the rectangle, I’d have the area of the 
pentagon.

I know the area of the rectangle is 6 × 7 = 42 square units.

I saw that the white space was really five right triangles plus a 
little rectangle. The little rectangle is 1 by 2 units, so its area 
is 1 × 2 = 2 square units. Then, I figured the areas of the five right triangles: 1.5 square units, 
1.5 square units, 3 square units, 3 square units, and 6 square units. So, the area of the white 
space is 2 + 1.5 + 1.5 + 3 + 3 + 6 = 17 square units.

To get the area of the pentagon, I subtracted 17 from 42 and, like you, I got 25 square units 
for the area of the pentagon.

Example 16. How students solved a problem during a small-group activity
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the problem using a strategy other than the 
one demonstrated, or a strategy not used by 
others in the class. Example 17 illustrates how 
two students might share their strategies for 
solving a fractions problem.

Rather than randomly calling on students to 
share their strategies, select students pur-
posefully based on the strategies they have 
used to solve the problem. For instance, 
teachers can call on students who solved 

Example 17. Two students share their strategies for solving a fractions problem

Problem116

Solution strategies

STUDENT 2: I see that the original green part and the part I’ve colored black have the 
same area. So the original green part is ½ of the parts black and green, or ½ of 5/6 of  
the entire rectangle. This tells me that the green and black part is ½ × 5/6 = 5/12 of the  
entire rectangle.

Ensure that students present not only their 
strategy but also an explanation for using 
the strategy. Engage students in a discussion 
about the specifics of their strategy by ques-
tioning them as they explain their thinking. For 
example, after the first student in Example 
17 said, “I see that on the left, the green part 

is 1/3,” the teacher could ask, “How do you 
know?” The teacher also could ask, “How did 
you know that the green part on the right 
is half the area?” For the second student in 
Example 17, the teacher could ask, “How did 
you know that the green part is the same as 
the area colored black?”  

STUDENT 1: If I think of it as what’s to the left of the middle plus what’s to the right of 
the middle, then I see that on the left, the green part is 1/3 of the area; so that is 1/3 of ½ 
of the entire rectangle. On the right, the green part is ½ of the area; so it is ½ of ½ of 
the entire rectangle. This information tells me that the green part is

(1/3 × ½) + (½ × ½) = 1/6 + 1/4 = 2/12 + 3/12 = 5/12 of the entire rectangle.

What fraction of the whole rectangle is green?
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Potential roadblocks and solutions

Roadblock 4.1. Teachers don’t have enough 
time in their math class for students to present 
and discuss multiple strategies.

Suggested Approach. Teachers will need 
to purposefully select three to four strategies 
for sharing and discussing. To reduce the time 
students take to present their work to the class, 
ask them to use personal whiteboards or chart 
paper, or to bring their work to the document 
reader, so that they do not have to take time 
rewriting their strategies on the board. Teachers 
can document the strategies that different stu-
dents use during independent or small-group 
work and summarize or display them for the 
whole class. This is likely to take less time than 
having students take turns sharing their own 
strategies. Teachers can also have students do 
a problem-solving task at the beginning of the 
school day as they settle in or at the beginning 
of the math class as a warm-up activity and 
devote 5–10 minutes to sharing and discussion.  

Roadblock 4.2. Not all students are willing  
to share their strategies.

Suggested Approach. Fear of presenting 
wrong answers may limit the willingness of 
some students to share their strategies. It is 
important to create an environment in which 
students feel supported and encouraged to 
share, whether their strategy is correct or not. 
Teachers should emphasize that most problems 
can be solved using a variety of strategies and 
that each student may present a way to solve 
the problem that other students in the class 
had not thought to use. The panel believes that 
students will be more willing to explain their 
strategies once they notice that sharing helps 
them understand and solve problems better 
and gives students an opportunity to teach 
their classmates. Make sharing a regular part of 
mathematics instruction. Point out the benefits 
of sharing, such as how it enables students to 
teach their peers new ways to approach prob-
lems and to learn potentially quicker, easier, and 
more effective strategies from their peers. 

Roadblock 4.3. Some students struggle to 
learn multiple strategies. 

Suggested Approach. For some students 
who lack the prerequisite knowledge or do not 
remember the required skills, exposure to multi-
ple strategies may be challenging.117 For example, 
some students who do not remember their mul-
tiplication and division facts will have difficulty 
determining which strategy to use based on the 
numbers in a problem. Teachers may need to ask 
these students to take a minute and write down 
their facts before asking them to solve problems. 
Teachers also may need to change the problem 
to include numbers that allow these students to 
focus on the problem solving rather than on the 
arithmetic. For example, teachers could change 
the number 89.5 to 90. Some students may also 
get confused when multiple strategies for solving 
a problem are presented. Solving a problem one 
way, erasing it, and then solving it in another way 
can be difficult for students to comprehend if 
no opportunity is given to compare the meth-
ods side-by-side.118 Students will also benefit 
from slowing down and having some time to 
get familiar with one strategy before being 
exposed to another or comparing it to a previ-
ously learned strategy.119

Roadblock 4.4. Some of the strategies 
students share are not clear or do not make 
sense to the class.

Suggested Approach. Students may have 
trouble articulating their strategies clearly so 
they make sense to the class. As students solve 
a problem, circulate among them and ask them 
to privately explain how they are working it. 
This will give teachers a clearer idea of the stu-
dents’ strategies. Then, when a student shares 
with the class, teachers will be better equipped 
to clarify the student’s thinking by asking guid-
ing questions or by carefully rewording what a 
student shares.120 Another way to help students 
share is by asking another student to restate 
what the student has said.121 Be careful not to 
evaluate what students share (e.g., “Yes, that is 
the right answer.” or “No, that’s not correct.”) 
as students explain their thinking. Instead, ask 
students questions to help them explain their 
reasoning out loud (see Recommendation 2).
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The first suggestion for implementing this 
recommendation, explaining relevant concepts 
and notation, was supported by a study find-
ing that student achievement improved when 
teachers discussed math problems conceptu-
ally (without numbers) and then represented 
them visually.126 Three studies examined the 
second suggestion for implementing this 

Help students recognize and articulate mathematical 
concepts and notation.
Mathematical concepts and notation provide students with familiar structures for organizing 
information in a problem; they also help students understand and think about the problem.122 
When students have a strong understanding of mathematical concepts and notation, they are 
better able to recognize the mathematics present in the problem, extend their understanding 
to new problems,123 and explore various options when solving problems.124 Building from 
students’ prior knowledge of mathematical concepts and notation is instrumental in developing 
problem-solving skills.

In this recommendation, the panel suggests that teachers explain relevant concepts and 
notation in the context of a problem-solving activity, prompt students to describe how worked 
examples are solved using mathematically valid explanations, and introduce algebraic notation 
systematically. The panel believes these actions will help students develop new ways of 
reasoning, which in turn will help students successfully solve new mathematical challenges. 

Summary of evidence: Moderate Evidence

Three studies directly support two sugges-
tions for implementing this recommendation, 
and although the findings for the other sug-
gestion are inconsistent, the panel believes 
there is moderate evidence supporting this 
recommendation.125
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recommendation, providing students with 
worked examples and asking them to explain 
the process used to solve a problem; two 
studies reported positive effects, and one 
study reported no discernible effects.127 Finally, 
two studies supported the third suggestion 
for implementing this recommendation, 
algebraic notation. The first study found that 
providing students with concrete intermediate  
arithmetic problems before asking them 
to understand the algebraic notation for a 

different problem significantly improved 
achievement.128 The second study found that 
having students practice symbolic algebraic 
problems (substituting one expression into 
another) improved performance on two-step 
word problems more than practicing with 
one-step word problems.129

The panel identified three suggestions for 
how to carry out this recommendation.

How to carry out the recommendation

1. Describe relevant mathematical concepts and notation, and relate them to the  
problem-solving activity.

Students tend to enter school with informal, 
personally constructed ways of making sense 
of math.130 Students often use this informal 
understanding to solve problems.131 Teachers 
can turn problem-solving activities into learn-
ing opportunities by connecting students’ 
intuitive understanding to formal mathemati-
cal concepts and notation.132

Teachers can watch and listen for opportu-
nities to call attention to the mathematical 
concepts and notation that students use as 
they solve problems. For example, if teachers 
notice students informally using the commu-
tative property to solve a problem, teachers 
can explain this concept, ask students if it 

will always work in similar situations, and 
describe the property’s usefulness to the 
class.133 If teachers see students talking about 
formal mathematical notation in an informal 
way, teachers can connect students’ informal 
language to the formal notation or symbol, 
pointing out that there is often more than  
one mathematically correct way to state it 
(e.g., “12 take away 3”, “12 minus 3”, and “12 
less 3” are all equal to 9). The teacher in Exam-
ple 18 uses this technique to help her student 
better understand number theory. This 
example illustrates how students can better 
grasp formal mathematical concepts when 
teachers interpret the informal ideas and 
concepts students use to solve problems.134
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Sometimes, teachers may need to draw atten-
tion to mathematical ideas and concepts by 
directly instructing students in them before 
engaging the students in problem solving.135 
For instance, some middle graders think of 
area as a product of numbers, rather than a 
measure of an array of units.136 Faced with a 
problem such as the problem in Example 16 
that asks them to find the area of a penta-
gon, students might measure the lengths of 
each side of the pentagon and calculate area 
by multiplying two or more of the numbers 
together. To offset this mistaken approach, 
their teacher might explicitly define area as 
“the measure of the space inside a figure.”

2. Ask students to explain each step 
used to solve a problem in a worked 
example.

Routinely provide students with opportunities 
to explain the process used to solve a prob-
lem in a worked example and to explain why 
the steps worked.137 Students will develop a 
better understanding of mathematical con-
cepts when they are asked to explain the 
steps used to solve a problem in a worked 
example, and this understanding will help 
them solve problems successfully.138 Studying 
worked examples could help accelerate learn-
ing and improve problem solving.139

Use small-group activities to encourage 
students to discuss the process used to solve 
a problem in a worked example and the 
reasoning for each step. Alternatively, ask one 
student to repeat another student’s explana-
tion and to then state whether he or she 
agrees and why.

Initially, students may not provide math-
ematically valid explanations. For example, 
students may restate the correct steps but 
fail to provide good reasons or justifications. 
The panel believes that teachers should ask 
students probing questions to help them 
articulate mathematically valid explanations. 
Mathematically valid explanations are fac-
tually and mathematically correct, logical, 

Example 18. Students’ intuitive understanding 
of formal mathematical concepts

Is the sum of two consecutive numbers 
always odd?

Problem

Solution

STUDENT: Yes.

TEACHER: How do you know?

STUDENT: Well, suppose you take a  
number, like 5. The next number is 6.

For 5, I can write five lines, like this:

 | | | | |
For 6, I can write five lines and one  
more line next to it, like this:

 | | | | |   |
Then, I can count all of them, and I get  
11 lines. 

See? It’s an odd number.

TEACHER: When you say, “It’s an odd 
number,” you mean the sum of the two 
consecutive numbers is odd. So, can you 
do that with any whole number, like n? 
What would the next number be?

STUDENT: It would be n + 1.

TEACHER: So, can you line them up like 
you did for 5 and 6?

STUDENT: You mean, like this?

 n

 n + 1

TEACHER: Right. So, what does that tell 
you about the sum of n and n + 1?

STUDENT: It’s 2 n’s and 1, so it’s odd.

TEACHER: Very good. The sum, which  
is n + n + 1 = 2n + 1, is always going to  
be odd.
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thorough, and convincing.140 See Example 19 
for sample student explanations that are not 
mathematically valid. Teachers also might 
need to provide students with examples of 
mathematically valid explanations or help 

reword their partially correct explanations. 
Example 19 also illustrates how teacher 
questioning can help students better organize 
their thoughts when their explanation is not 
mathematically valid. 

Example 19. Sample student explanations: How mathematically valid are they?

Are 2/3 and 8/12 equivalent fractions? Why or why not?

Problem

An explanation that is not math-
ematically valid 

A mathematically valid explanation 

A correct description, but still not 
a complete explanation

STUDENT: To find an equivalent fraction, 
whatever we do to the top of 2/3, we must
do to the bottom.

This description is not mathematically valid 
because, using this rule, we might think we 
could add the same number to the numera-
tor and denominator of a fraction and ob-
tain an equivalent fraction. However, that 
is not true. For example, if we add 1 to both 
the numerator and denominator of 2/3, we
get (2 + 1)/(3 + 1), which is 3/4. 3/4 and 2/3
are not equivalent. Below is an explanation  
of how teacher questioning can clarify stu-
dents’ explanations and reasoning.

TEACHER: What do you mean?

STUDENT: It just works when you multiply.

TEACHER: What happens when you multi-
ply in this step?

STUDENT: The fraction stays…the same.

TEACHER: That’s right. When you multiply 
a numerator and denominator by the same 
number, you get an equivalent fraction. 
Why is that?

STUDENT: Before there were 3 parts, but 
we made 4 times as many parts, so now 
there are 12 parts. 

TEACHER: Right, you had 2 parts of a 
whole of 3. Multiplying both by 4 gives you 
8 parts of a whole of 12. That is the same 
part-whole relationship—the same fraction, 
as you said. Here’s another way to look at it: 

when you multiply the fraction by 4/4, you
are multiplying it by a fraction equivalent 
to 1; this is the identify property of multi-
plication, and it means when you multiply 
anything by 1, the number stays the same.

STUDENT: You can get an equivalent frac-
tion by multiplying the numerator and de-
nominator of 2/3 by the same number. If we
multiply the numerator and denominator 
by 4, we get 8/12.
If I divide each of the third pieces in the 
first fraction strip into 4 equal parts, then 
that makes 4 times as many parts that 
are shaded and 4 times as many parts in 
all. The 2 shaded parts become 2 × 4 = 8 
smaller parts and the 3 total parts be-
come 3 × 4 = 12 total smaller parts. So the 
shaded amount is 2/3 of the strip, but it is
also 8/12 of the strip.

STUDENT: Whatever we multiply the top of 
2/3 by, we must also multiply the bottom by.

This rule is correct, but it doesn’t explain 
why we get an equivalent fraction this way. 

This explanation is correct, complete, 
and logical.

2/3 

8/12
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Understanding the symbolic notation used in 
algebra takes time. The panel suggests that 
teachers introduce it early and at a moder-
ate pace, allowing students enough time to 
become familiar and comfortable with it. 
Teachers should engage students in activities 
that facilitate understanding and better or cor-
rect use of symbols.141 For instance, teachers 
can provide familiar arithmetic problems as 
an intermediate step before asking students 
to translate a problem into an algebraic equa-
tion (see Example 20).142 Simple arithmetic 

3. Help students make sense of algebraic notation.

Example 20. How to make sense of algebraic 
notation: Solve a problem arithmetically 
before solving it algebraically143

A plumbing company charges $42 per 
hour, plus $35 for the service call.

Problem

Solution

TEACHER: How much would you pay 
for a 3-hour service call? 

STUDENT: $42 × 3 + $35 = $161 for  
a 3-hour service call.

TEACHER: What will the bill be for  
4.5 hours?

STUDENT: $42 × 4.5 + $35 = $224 for 
4.5 hours.

TEACHER: Now, I’d like you to assign 
a variable for the number of hours the 
company works and write an expression 
for the number of dollars required.

STUDENT: I’ll choose h to represent the 
number of hours the company works.

42h + 35 = $ required

TEACHER: What is the algebraic equa-
tion for the number of hours worked if 
the bill comes out to $140?

STUDENT: 42h + 35 = 140

problems draw on students’ prior math expe-
rience, so the problems are more meaningful. 
By revisiting their earlier knowledge of simple 
arithmetic, students can connect what they 
already know (arithmetic) with new informa-
tion (algebra). 

Teachers also can ask students to explain each 
component of an algebraic equation by having 
them link the equation back to the problem 
they are solving (see Example 21).144 This will 
help students understand how components 
in the equation and elements of the problem 
correspond, what each component of the 
equation means, and how useful algebra is 
for solving the problem.

Example 21. How to make sense of algebraic  
notation: Link components of the equation  
to the problem145

Joseph earned money for selling 7 CDs 
and his old headphones. He sold the 
headphones for $10. He made $40.31. 
How much did he sell each CD for?

Problem

Solution

The teacher writes this equation: 

10 + 7x = 40.31

TEACHER: If x represents the number 
of dollars he sold the CD for, what does 
the 7x represent in the problem? What 
does the 10 represent? What does the 
40.31 represent? What does the 10 + 7x 
represent?
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Potential roadblocks and solutions

Roadblock 5.1. Students’ explanations  
are too short and lack clarity and detail.  
It is difficult for teachers to identify which 
mathematical concepts they are using.

Suggested Approach. Many students 
in the United States are not given regular 
opportunities to explain why steps to solve 
problems work;146 without this experience 
to draw from, students who are suddenly 
given sharing opportunities often provide 
quick explanations that lack detail and clar-
ity. They do not yet know how to explain the 
problem-solving process, which information 
to present, or how much detail to provide. 
To anticipate which mathematical concepts 
students might use to solve the problem, 
teachers may need to prepare for each lesson 
by solving the problem themselves.

To help students explain their thoughts in 
more detail, teachers can ask them specific 
questions about how a problem was solved 
and how they thought about the problem. 
Teachers can also have students create a 
“reason sheet” of mathematical rules (e.g., 

“the identity property of multiplication for 
fractions—multiplying a fraction by 1 keeps 
the same value,” “2/2 and 3/3 are fractions equal 
to 1,” and so on). Students should only include 
a few key rules, as too many may make reason-
ing more difficult. Some helpful ones may 
appear in the student textbook as definitions, 
properties, rules, laws, or theorems. Ask stu-
dents to use reasons from their reason sheet 
when composing explanations.

Roadblock 5.2. Students may be confused 
by mathematical notations used in algebraic 
equations. 

Suggested Approach. Students may have 
difficulty interpreting mathematical notations 
used as variables in algebraic equations when 
the notations relate to items in the problem. 
Students may misinterpret the notations as 
labels for items in the problem (e.g., c stands 
for cookies). Teachers should encourage 
students to use arbitrary variables, such as 
non-mnemonic English letters (x and y) or 
Greek letters (Φ and Ω).147 Arbitrary variables 
can facilitate student understanding of the 
abstract role that variables play in represent-
ing quantities.
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2. Depending on the content or goal of the 
lesson, teach students how to use visual 
representations (Recommendation 3), 
expose students to multiple problem-
solving strategies (Recommendation 4), 
and/or help students recognize and 
articulate mathematical concepts and 
notation (Recommendation 5).

If visual representations are featured in the 
lesson:

• Use think-alouds and discussions 
to teach students how to represent 
problems visually (Recommendation 3). 
Teachers should clarify the type of prob-
lem and how to determine which informa-
tion in the problem is relevant. Teachers 
should then talk students through how 
to map the relevant information onto an 
appropriate visual representation and lead 
a discussion to compare representations. 
Allow students to share their work so 
that students can learn from others in the 
class. When students use their own rep-
resentations, have them explain why and 
how they are using the representation. If 
any refinement is needed, build upon the 
student representation.

• Show students how to convert the 
visually represented information into 
mathematical notation (Recommenda-
tion 3). Teachers should demonstrate how 
each quantity and relationship in the visual 
representation corresponds to components 
of the equation.

If the goal is to teach students multiple 
strategies:

• Provide instruction in multiple strate-
gies (Recommendation 4). Teachers should 
teach students a variety of ways to solve 
problems. These can be generic strategies 

The recommendations in this practice guide include research-based practices for teaching math-
ematical problem solving. Below is an example of how these recommendations can be incor-

porated into a lesson using a four-step process. It is important to consider all of the recommended 
practices when conducting a lesson from start to finish, even though you may not be able to apply 
all four steps for every problem-solving lesson.

1. Plan by preparing appropriate problems 
and using them in whole-class instruc-
tion (Recommendation 1) and by selecting 
visual representations that are appro-
priate for students and the problems 
they are solving (Recommendation 3).

• Include a variety of problem-solving 
activities (Recommendation 1). Teachers 
should ask themselves, “Is the purpose of 
these problems to help students understand 
a key concept or operation? To help students 
learn to persist with solving difficult prob-
lems? To use a particular strategy? To use a 
visual representation?” Teachers should select 
problems that fit the goal of the lesson.

• Ensure that students will understand 
the problem by addressing issues stu-
dents might encounter with the prob-
lem’s context or language; consider 
students’ knowledge of mathematical 
content when planning the lesson  
(Recommendation 1). Some problems may 
have complex or unusual vocabulary, 
depend on specific background knowledge, 
or reference ideas that are unfamiliar to 
some students. In some cases, it may be 
necessary to modify problems based on 
the learning or cultural needs of the stu-
dents. In other cases, teachers may need to 
explain the context or language to students 
before asking them to solve the problem.

• Select visual representations that 
are appropriate for students and the 
problems they are solving (Recommen-
dation 3). If the lesson will include a visual 
representation, teachers should consider 
the types of problems they plan to pres-
ent and should select appropriate visual 
representations. Also, teachers should con-
sider students’ past experience with visual 
representations to determine whether a 
new representation should be presented.
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that work for a wide range of problems or 
specific strategies that work for a given 
type of problem. Teachers can model the 
use of strategies by thinking aloud about 
why they selected the particular strategy 
and how they would work a problem.

• Ask students to generate multiple 
strategies for solving a problem 
(Recommendation 4). Encourage students 
to generate strategies of their own as they 
work through the problems they are given. 

If the goal is to help students recognize and 
articulate mathematical concepts and notation:

• Describe relevant mathematical con-
cepts and notation, and relate them  
to the problem-solving activity  
(Recommendation 5). Teachers should look 
for opportunities to explain the formal 
mathematical concepts and notation used 
in the problem-solving activity.  

• Help students make sense of algebraic 
notation (Recommendation 5). One way 
to do this is to introduce similar arithmetic 
problems before algebraic problems to 
revisit students’ earlier mathematical under-
standing. Another way is to help students 
explain how the algebraic notation repre-
sents each component in the problem.

3. Assist students in monitoring and 
reflecting on the problem-solving 
process (Recommendation 2).

• Provide students with a list of prompts 
to help them monitor and reflect dur-
ing the problem-solving process  
(Recommendation 2). It may be necessary 
to assist students as they begin to work 
with prompts. Assisting means more than 
simply telling students what to do next. 
Teachers can assist by asking students 
guiding questions to help them learn to use 
the prompts when they solve problems.

• Model how to monitor and reflect on 
the problem-solving process (Recom-
mendation 2). Teachers can state a prompt 
in front of the class and describe how they 
used it to solve a problem. This will help 
students see how prompts or items from 
a task list can be used to solve problems. 
Teacher modeling is a useful way to show 
how people think as they solve problems.

• Use student thinking about a problem 
to develop students’ ability to monitor 
and reflect on their thought process 
while solving a problem (Recommenda-
tion 2). Teachers can ask guiding questions 
to help students verbalize what they could 
do to improve their monitoring and reflec-
tion during the problem-solving process.

4. Conduct discussions to help students 
recognize and articulate mathemati-
cal concepts and notation (Recommen-
dation 5) and to expose students to 
multiple problem-solving strategies 
(Recommendation 4).

• Ask students to explain each step used 
to solve a problem (Recommendation 5).  
Debriefing each step allows teachers to 
connect the problem-solving activity to rel-
evant mathematical concepts and notation.

• Provide opportunities for students 
to compare multiple strategies in 
worked examples; ask students to 
generate, share, and compare mul-
tiple strategies for solving a problem 
(Recommendation 4). This approach allows 
students to hear multiple problem-solving 
strategies, which is particularly beneficial 
if the strategies are more advanced than 
those used by most students in the class-
room. It also affords students the chance 
to present and discuss their strategies, 
thereby building their confidence levels.
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and summarizing the research and in producing 
the practice guide.

IES practice guides are then subjected to 
rigorous external peer review. This review 
is done independently of the IES staff that 
supported the development of the guide. A 
critical task of the peer reviewers of a practice 
guide is to determine whether the evidence 
cited in support of particular recommenda-
tions is up-to-date and that studies of similar 
or better quality that point in a different direc-
tion have not been overlooked. Peer reviewers 
also evaluate whether the level of evidence 
category assigned to each recommendation is 
appropriate. After the review, a practice guide 
is revised to meet any concerns of the review-
ers and to gain the approval of the standards 
and review staff at IES. 

A final note about IES practice guides

In policy and other arenas, expert panels typi-
cally try to build a consensus, forging state-
ments that all its members endorse. Practice 
guides do more than find common ground; 
they create a list of actionable recommenda-
tions. Where research clearly shows which 
practices are effective, the panelists use this 
evidence to guide their recommendations. 
However, in some cases, research does not 
provide a clear indication of what works, and 

How are practice guides developed? 

To produce a practice guide, IES first selects a 
topic. Topic selection is informed by inquiries 
and requests to the What Works Clearinghouse 
Help Desk, formal surveys of practitioners, 
and a limited literature search of the topic’s 
research base. Next, IES recruits a panel chair 
who has a national reputation and expertise 
in the topic. The chair, working with IES, then 
selects panelists to co-author the guide. Panel-
ists are selected based on their expertise in the 
topic area and the belief that they can work 
together to develop relevant, evidence-based 
recommendations. IES recommends that the 
panel include at least one practitioner with 
relevant experience. 

The panel receives a general template for 
developing a practice guide, as well as exam-
ples of published practice guides. Panelists 
identify the most important research with 
respect to their recommendations and aug-
ment this literature with a search of recent 
publications to ensure that supporting evi-
dence is current. The search is designed to 
find all studies assessing the effectiveness of 
a particular program or practice. These stud-
ies are then reviewed against the What Works 
Clearinghouse (WWC) standards by certified 
reviewers who rate each effectiveness study. 
WWC staff assist the panelists in compiling 

Postscript from the Institute of Education Sciences

What is a practice guide? 

The Institute of Education Sciences (IES) publishes practice guides to share rigorous evidence and 
expert guidance on addressing education-related challenges not solved with a single program, 
policy, or practice. Each practice guide’s panel of experts develops recommendations for a coherent 
approach to a multifaceted problem. Each recommendation is explicitly connected to supporting 
evidence. Using standards for rigorous research, the supporting evidence is rated to reflect how 
well the research demonstrates that the recommended practices are effective. Strong evidence 
means positive findings are demonstrated in multiple well-designed, well-executed studies, leav-
ing little or no doubt that the positive effects are caused by the recommended practice. Moderate 
evidence means well-designed studies show positive impacts, but some questions remain about 
whether the findings can be generalized or whether the studies definitively show the practice is 
effective. Minimal evidence means data may suggest a relationship between the recommended 
practice and positive outcomes, but research has not demonstrated that the practice is the cause  
of positive outcomes. (See Table 1 for more details on levels of evidence.) 
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obtain on its own. Practice guide authors 
are nationally recognized experts who col-
lectively endorse the recommendations, 
justify their choices with supporting evidence, 
and face rigorous independent peer review 
of their conclusions. Schools and districts 
would likely not find such a comprehensive 
approach when seeking the advice of indi-
vidual consultants. 

Institute of Education Sciences 

panelists’ interpretation of the existing (but 
incomplete) evidence plays an important role 
in guiding the recommendations. As a result, 
it is possible that two teams of recognized 
experts working independently to produce a 
practice guide on the same topic would come 
to very different conclusions. Those who use 
the guides should recognize that the recom-
mendations represent, in effect, the advice 
of consultants. However, the advice might 
be better than what a school or district could 
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In this practice guide, a group-design study150 
result is classified as having a positive or 
negative effect when:

• The result is statistically significant (p ≤ 
0.05) or marginally statistically significant 
(0.05 < p ≤ 0.10)

• The result is substantively important as 
defined by the WWC (effect sizes larger 
than 0.25 or less than –0.25)151

When a result meets none of these criteria, it 
is classified as having “no discernible effect.”

Some studies meet WWC standards (with or 
without reservations) for causal designs but 
do not adjust statistical significance for mul-
tiple comparisons or student clusters where 
the unit of assignment is different from the 
unit of analysis (e.g., classrooms are assigned 
to conditions, but student test scores are 
analyzed). When full information is available, 
the WWC adjusts for clustering and multiple 
comparisons within a domain.152

The three outcome domains153 for this practice 
guide are as follows:

• Procedural knowledge, which relates 
to whether students choose mathematical 

operations and procedures that will help 
them solve the problem and to how well 
they carry out the operations and proce-
dures they choose to use. When students 
correctly solve a math problem, they have 
likely chosen the appropriate operation or 
procedure and executed it correctly.

• Conceptual understanding, which 
relates to how well students understand 
mathematical ideas, operations, and proce-
dures, as well as the language of mathemat-
ics. One way for students to express their 
conceptual understanding is to accurately 
and completely explain the operations and 
ideas used to solve a problem. Another way 
to show conceptual understanding is for 
students to explain relationships between 
ideas, operations, and/or procedures as 
they relate to a problem.

• Procedural flexibility, which relates to 
whether students can identify and carry 
out multiple methods to solve math prob-
lems. If students can adaptively choose the 
most appropriate strategy for a particular 
problem and can attempt to solve a math 
problem in multiple ways, then they have 
likely developed procedural flexibility, a 
skill that may help them solve problems 
more efficiently in the future.

Rationale for Evidence Ratingsa

Appendix D provides further detail about studies that the panel used to determine the evidence base 
for the five recommendations in this guide. Studies that examined the effectiveness of recommended 
practices using strong designs for addressing questions of causal inference including randomized 
controlled trials and rigorous quasi-experimental designs and that met What Works Clearinghouse 
(WWC) standards (with or without reservations) were used to determine the level of evidence and are 
discussed here. This appendix also includes one study with a strong correlational design.148

Four studies met the WWC pilot standards for well-designed single-case design research and are 
included as supplemental evidence for Recommendations 2 and 3 in this guide. Single-case design 
studies do not contribute to the level of evidence rating. While the panel believes that qualitative 
studies, case studies, and other correlational studies contribute to the literature, these studies were 
not eligible for WWC review, did not affect the level of evidence, and are not included in this appen-
dix. Some studies have multiple intervention groups; only interventions relevant to this guide’s 
recommendations are included.149

a Eligible studies that meet WWC evidence standards or meet evidence standards with reservations are indicated by bold text in the 
endnotes and references pages.
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Most studies only examined outcomes in 
the procedural knowledge domain, and thus 
student achievement in this appendix refers to 
outcomes in the procedural knowledge domain 
except where otherwise specified. To facilitate 
comparisons, the appendix text focuses on the 
outcome closest to the end of the intervention; 
these are labeled posttests. All outcome mea-
sures administered after the posttest are labeled 
maintenance in appendix tables. Measures 
the panel believes require students to apply 
knowledge or skills in a new context are labeled 
transfer outcomes in appendix tables. When 
studies have multiple posttest outcome mea-
sures administered within the same domain, 
effect sizes for each measure are averaged,154 
and the overall average is reported.

Recommendation 1.  
Prepare problems and use them  
in whole-class instruction.

Level of evidence: Minimal Evidence

Few studies directly tested the suggestions 
of this recommendation, leading the panel to 
assign a minimal level of evidence. Although 
the panel believes teacher planning should 
incorporate both routine and non-routine 
problems, no studies meeting WWC standards 
directly examined this issue. 

One study did find higher student achieve-
ment when teacher planning considered 
students’ mathematical content weaknesses 
and whether students would understand 
language and context prior to instruction 
(see Table D.1).155 Another study showed that 
incorporating a variety of familiar contexts 
into instruction also may improve problem-
solving skills.156 The panel interpreted these 
results cautiously, however, since both of these 
studies included additional instructional com-
ponents (e.g., student monitoring and reflec-
tion). The panel did find several well-designed 
studies showing that Taiwanese and American 
students who solve word problems incorporat-
ing well-liked and well-known contexts do bet-
ter on subsequent word problems tests than 
students presented with generic contexts.157

Routine and non-routine problems. The 
panel’s suggestion to integrate a variety of 
targeted problem-solving activities into whole-
class instruction is based primarily on the 
expertise of its members. No studies meeting 
WWC standards directly tested the complemen-
tary uses of routine and non-routine problems.

Problem context and vocabulary. Overall, 
no studies included interventions that solely 
tested this recommendation suggestion. 
One study meeting WWC standards involved 
teacher planning that considered whether stu-
dents would have difficulty understanding the 
language, context, or mathematical content 
in word problems (see Table D.1).158 Teachers 
also reviewed the problems’ vocabulary with 
students during instruction. This planning 
and instruction were part of a broader inter-
vention that also involved teaching students 
to pose questions to themselves while prob-
lem solving. The overall intervention had a 
significant positive effect on students’ ability 
to solve word problems.

Another study involved word problems that 
incorporated contexts familiar to the 5th-grade 
students in the study.159 However, these con-
texts were only one component of an interven-
tion that also focused on teaching students a 
five-step strategy for solving word problems. 
Although the study reported a positive effect, 
the panel cannot isolate the separate effect of 
posing familiar word problems.

Four additional studies found that incorporating 
favorite contexts into practice word problems 
improved students’ ability to solve multiplica-
tion and division word problems.160 Three of the 
studies were conducted in Taiwan with 4th- and 
5th-grade students, and one took place in the 
United States with students in grades 6 through 
8. None of these studies had transfer or mainte-
nance outcomes. In all of the studies, research-
ers asked students about their favorite places, 
foods, friends, sports, and so on, and then 
incorporated that information into the practice 
problems. In two of the studies, word problems 
used during classroom instruction were based 
on the most common survey responses.161 In the 
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other two, students completed computer-based 
word problems that incorporated their individual 
survey responses.162

These favorite-context interventions were 
conducted in two to four sessions, each lasting 
between 40 and 50 minutes. Students in the 
control group received the same word problems 
but without the personalized content. Three of 
the four studies found that personalizing the 
content of word problems improved students’ 
subsequent performance on a posttest that 
included both personalized and nonpersonalized 

word problems.163 In the study that found 
no discernible effects, the panel believes the 
outcome measure limited the study’s ability to 
detect differences between groups.

Planning using students’ math knowledge.  
Teachers in the study on teacher vocabulary 
planning164 also used information from earlier 
student performances to help them under-
stand and plan for difficulties with mathemat-
ical content that students might have. The 
overall intervention had a positive effect on 
students’ ability to solve word problems. 

Table D.1. Studies of interventions that involved problem selection and contribute to the  
level of evidence rating 

Study Comparison Duration Students Math Content Outcomes165 Effect Size

Familiar Contexts in Problems

Verschaffel et al. 
(1999)  
Quasi-experi-
mental design

Word problems with 
familiar contexts for 
students166 vs. tradi-
tional instruction and 
standard textbook 
problems

A total of  
20 sessions, 
each lasting 
50–60 minutes

A total of 203 
students in the 
5th grade in 
Belgium

Word problems  
involving 
numbers and 
operations

Posttest (average  
of a posttest 
and a retention 
test)167

0.31**168

General math 
achievement

Transfer 0.38**169

Preferred Contexts in Problems

Chen and Liu 
(2007)  
Randomized  
controlled trial

Word problems fea-
turing students’ pref-
erences vs. standard 
textbook problems 

A total of  
four sessions, 
each lasting  
50 minutes

A total of 165 
students in the 
4th grade in 
Taiwan

Word problems  
involving 
numbers and 
operations

Posttest 0.72**

Ku and Sullivan 
(2000)  
Randomized  
controlled trial

Word problems fea-
turing students’ pref-
erences vs. standard 
textbook problems 

A total of  
two sessions, 
each lasting  
50 minutes

A total of 72  
students in the 
5th grade in 
Taiwan

Word problems 
involving num-
bers and opera-
tions (multiplica-
tion and division)

Posttest (average 
of subtests with 
personalized and 
nonpersonalized 
problems)

0.13, ns

Ku and Sullivan 
(2002)  
Randomized  
controlled trial

Word problems fea-
turing students’ pref-
erences vs. standard 
textbook problems 

A total of  
three sessions, 
each lasting  
40 minutes

A total of 136 
students in the 
4th grade in 
Taiwan

Word problems  
involving 
numbers and 
operations 

Posttest (average 
of subtests with 
personalized and 
nonpersonalized 
problems)

0.34*

Ku et al. (2007) 
Randomized  
controlled trial

Word problems fea-
turing students’ pref-
erences vs. standard 
textbook problems 

A total of  
two sessions, 
each lasting  
42 minutes

A total of 104 
students in 
grades 6–8 in 
the United States

Word problems  
involving 
numbers and 
operations 

Posttest 0.28, ns

Clarifying Vocabulary and Math Content

Cardelle-Elawar 
(1995) 
Randomized  
controlled trial

Teacher consideration 
for whether students 
would understand 
problems and review 
of vocabulary and 
math content with 
students170 vs. tradi-
tional instruction 

One year A total of 463 
students in 
grades 4–8 
in the United 
States171 

Word problems  
involving 
general math 
achievement

Posttest (average 
of posttest and 
two retention 
tests adminis-
tered over seven 
months)172

2.18**

** = statistically significant at 0.05 level
* = statistically significant at 0.10 level
ns = not statistically significant
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Recommendation 2.  
Assist students in monitoring and 
reflecting on the problem-solving process.

Level of evidence: Strong Evidence

The panel assigned a rating of strong evi-
dence to this recommendation based on 
nine studies that met WWC standards with 
or without reservations (see Table D.2).173 
All nine studies reported positive effects on 
students’ ability to solve word problems. The 
outcomes measured diverse mathematical 
content, including numbers and operations, 
data analysis and probability, geometry, and 
algebra. Researchers conducted the studies 
in 4th- through 8th-grade classrooms, with 
three of the studies taking place in countries 
outside the United States. All the interventions 
taught students to monitor and structure their 
problem-solving process, although the spe-
cific prompts varied. Four studies provided 
students with a list of key tasks for solving 
word problems,174 while teachers in the other 
five studies taught students to use self-ques-
tioning and reflection.175 Two of these studies 
combined interventions—a task list along 
with visual aids—so the panel could not attri-
bute its results solely to the task checklist.176

Prompting students with lists. Several stud-
ies, including some that also involved teacher 
modeling, prompted students to self-question 
or to complete tasks or steps while problem 
solving. In two studies, teachers guided the 
self-questioning process by including questions 
in students’ practice workbooks.177 Students 
would answer the questions verbally and then 
in writing when using their workbooks.178 In 
another study, students received index cards 
with question prompts and then asked each 
other questions while working in pairs to solve 
word problems in a commercial software 
program.179 In all of these studies, the interven-
tion’s effects were positive.

Other studies examined using task lists to 
prompt students. In one study with 5th-grade 
students in Belgium, teachers discussed strat-
egies for solving word problems across 20 

lessons in four months.180 Teachers combined 
whole-class instruction with small-group 
work and individual assignments. The control 
group received traditional instruction for word 
problems, which did not include using a task 
list. Results from the study showed that the 
intervention had a positive effect on students’ 
ability to solve word problems.

In two other studies, students received check-
lists with four-step strategies and were encour-
aged to think aloud while solving problems 
independently.181 The interventions in these 
two studies were very similar and included the 
use of both schematic diagrams and other non-
prompting components. Comparison teachers 
used district-adopted textbooks that focused 
on direct instruction, worked examples, and 
student practice. Instruction in the first study 
occurred during 10 classes, each 40 minutes 
long. The intervention had a positive effect on 
7th-grade students’ ability to solve ratio and 
proportion word problems, both immediately 
afterward and four months later.182 Instruction 
in the second study occurred during 29 classes, 
each 50 minutes long. The intervention had a 
positive effect on 7th-grade students’ ability 
to solve ratio, proportion, and percent word 
problems immediately afterward. There was  
no discernible effect on an identical test given 
one month after the intervention ended or on  
a transfer test.183

In a fourth study, 4th- and 5th-grade students 
received a five-step strategy list.184 Teachers 
demonstrated how to use the strategy and 
then asked students to complete two prac-
tice problems individually. Finally, students 
discussed in pairs how they implemented the 
strategy. Comparison students solved the 
same problems individually and in groups, 
but without the five-step strategy. The study 
found that use of the checklist strategy 
improved students’ performance on a four-
item test of word problems measuring gen-
eral math achievement.

Modeling monitoring and reflection. 
Five randomized controlled trials and 
quasi-experimental studies examined how 
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self-questioning could help students monitor, 
reflect, and structure their problem solving.185 
In these studies, teachers modeled the self-
questioning process and taught students how 
to ask themselves questions while problem 
solving.186 For example, in one study, teach-
ers modeled the self-questioning process by 
reading the questions and verbalizing their 
thoughts aloud.187 Compared to students who 
completed the same problems but were not 
told to question one another, students in this 
intervention experienced positive effects on 
their ability to solve geometry word prob-
lems. Similarly, four studies found positive 
results when teachers modeled multistep 
strategies using task lists and then asked 
students to structure their problem solving 
around those strategies.188

In two of the self-questioning studies, teach-
ers modeled desired problem solving by 
asking and answering questions derived from 
a problem-solving model.189 Teachers also 
were taught to practice self-questioning when 
preparing lessons (e.g., asking, “What are the 
key errors students might make?”). These two 
studies provided similar instruction but dif-
fered in student samples and duration: one 
study involved six hours of oral feedback over 
three weeks to low-achieving 6th-grade bilin-
gual students,190 and the other study followed 
students in grades 4 through 8, including sev-
eral bilingual classes, and took place over the 
course of an entire school year.191 Both studies 
found positive effects on students’ ability to 
solve word problems compared to students 
who received only traditional instruction with 
lectures and worksheets.

Two additional studies in Israel had teach-
ers model a self-questioning approach 
(the IMPROVE method) for the whole class. 

Teachers instructed 8th-grade students to ask 
themselves four types of questions while solv-
ing word problems: (1) comprehension ques-
tions, to ensure they understood the task or 
concept in the problem; (2) connection ques-
tions, to think through similarities between 
problem types; (3) strategic questions, to 
focus on how to tackle the problem; and (4) 
reflection questions, to think about what they 
wanted to do during the solution process.192 
Comparison conditions differed for the studies: 
in one, students received worked examples 
followed by practice problems,193 while in the 
other, instruction involved whole-class lectures 
and practice problems. Both studies found a 
positive effect of teaching and actively sup-
porting students to use the questions.194

Supplemental evidence comes from three 
single-case design studies. The first study, 
involving 3rd- and 4th-grade students, found 
that teacher modeling of a self-questioning 
approach improved achievement for students 
with learning disabilities or mild intellectual 
disabilities.195 In this study, students were first 
taught a nine-step problem-solving strategy, 
and the instructor and student discussed 
the importance of self-questioning. After 
the students generated statements applying 
the strategy, the instructor and student then 
modeled the self-questioning process. The 
two other single-case design studies found 
no evidence of positive effects.196 However, 
in one study, students were already achiev-
ing near the maximum score during baseline, 
and thus the outcome could not measure any 
improvement.197 In the other study, middle-
school students with learning disabilities were 
taught a seven-step self-questioning process. 
Based on the findings reported, there is no 
evidence that this intervention had a positive 
impact on student achievement. 
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Study Comparison Duration Students Math Content Outcomes198 Effect Size

Cardelle-Elawar 
(1990)  
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using 
questions vs. traditional 
instruction 

Six hours A total of 80 low-
achieving 6th-
grade students 
from bilingual 
classes in the 
United States

Word problems  
involving 
general math 
achievement

Posttest 2.54**199

Cardelle-Elawar 
(1995)  
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using 
questions vs. traditional 
instruction 

One school year A total of 463  
students in 
grades 4–8 in the 
United States200

Word problems  
involving 
general math 
achievement

Posttest 
(average of a 
posttest and 
two retention 
tests given over  
seven months)201

2.18**

Hohn and Frey 
(2002) 
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using a 
task list vs. no instruc-
tion in monitoring and 
reflecting

A total of  
four sessions  
presented  
every two days

A total of 72  
students in the 
4th and 5th 
grades (location 
not reported)202

Word problems  
involving 
general math 
achievement

Posttest 0.79, ns

Jitendra et al. 
(2009)  
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using 
questions and a task 
list203 vs. traditional 
instruction

A total of  
10 sessions,  
each lasting  
40 minutes

A total of 148 
students in the 
7th grade in the 
United States

Word problems  
involving 
numbers and 
operations 

Posttest 0.33, ns

Maintenance 
(four months 
after posttest)

0.38, ns

State assesment Transfer 0.08, ns

Jitendra et al. 
(2010)  
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using 
questions and a task 
list204 vs. traditional 
instruction

A total of  
29 sessions,  
each lasting  
50 minutes

A total of 472 
students in the 
7th grade in the 
United States

Word problems  
involving 
numbers and 
operations

Posttest 0.21**

Maintenance 
(one month 
after posttest)

0.09, ns

Transfer –0.01, ns

King (1991) 
Randomized 
controlled trial 
with high attri-
tion and baseline 
equivalence

Instruction in monitoring  
and reflecting using 
questions vs. no  
instruction in monitoring  
or reflecting

A total of  
six sessions,  
each lasting  
45 minutes, across 
three weeks

A total of 30 
students in the 
5th grade in the 
United States

Word problems 
and problem 
solving involving 
geometry

Posttest 0.98*205

Kramarski and 
Mevarech (2003) 
Randomized  
controlled trial 
with unknown  
attrition and 
baseline 
equivalence

Instruction in monitoring  
and reflecting using 
questions vs. no  
instruction in monitoring  
and reflecting

A total of  
10 sessions,  
each lasting  
45 minutes

A total of 384 
students in the 
8th grade in 
Israel

Multiple-choice 
problems and 
word problems 
involving data 
analysis 

Posttest 0.48

Data analysis Posttest 
(flexibility 
competency)

0.77

Data analysis Transfer 
(graphical 
representations)

0.37

Mevarech and 
Kramarski (2003) 
Randomized  
controlled trial

Instruction in monitoring  
and reflecting using 
questions vs. instruc-
tion that had students 
study worked examples 
and then discuss their 
solutions to problems 

Four weeks A total of 122  
students in the 
8th grade in 
Israel

Word problems  
involving 
algebra

Posttest 0.34, ns

Maintenance 
(one year after 
posttest)

0.31, ns

Table D.2. Studies of interventions that involved monitoring and contribute to the  
level of evidence rating

(continued)
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Study Comparison Duration Students Math Content Outcomes198 Effect Size

Verschaffel et al. 
(1999)  
Quasi-experi-
mental design

Instruction in monitoring  
and reflecting using a 
task list vs. traditional 
instruction 

A total of  
20 sessions,  
each lasting 
50–60 minutes

A total of 203  
students in the 
5th grade in 
Belgium

Word problems  
involving 
numbers and 
operations

Posttest  
(average of a 
posttest and 
a retention 
test)206

0.31**207

General math 
achievement

Transfer 0.38**208

Table D.2. Studies of interventions that involved monitoring and contribute to the  
level of evidence rating (continued)

Table D.3. Supplemental evidence supporting the effectiveness of Recommendation 2

** = statistically significant at 0.05 level
* = statistically significant at 0.10 level
ns = not statistically significant

Study Comparison Duration Students Math Content Outcomes209 Effect Size210 

Cassel and Reid 
(1996) 
Single-case 
design

Instruction in monitoring  
and reflecting using 
questions and a task 
list211 vs. no instruction

Unknown number  
of sessions, each  
lasting 35 minutes

Four 3rd and 4th 
grade students 
with mild mental 
handicaps in the 
United States

Word problems  
involving 
numbers and 
operations

Repeated 
measurement

Positive 
evidence

Case et al. (1992) 
Single-case 
design

Instruction in monitoring  
and reflecting using 
a task list212 vs. no 
instruction

Between four  
and five sessions, 
each lasting 
about 35 minutes

Four 5th and 6th  
grade students 
with learning  
disabilities in the 
United States

Word problems  
involving 
numbers and 
operations

Repeated 
measurement

No evidence

Montague (1992) 
Single-case 
design

Instruction in monitoring  
and reflecting using 
a task list213 vs. no 
instruction

A total of  
three sessions,  
each lasting  
55 minutes

Three students 
with learning  
disabilities in 
grades 6–8 in  
the United States

Word problems  
involving 
numbers and 
operations

Repeated 
measurement

No evidence
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Recommendation 3. Teach students how 
to use visual representations.

Level of evidence: Strong Evidence

The panel determined there is strong evidence 
supporting this recommendation; several 
studies with diverse student samples—mostly 
taking place in the United States, with middle 
school students—consistently found that using 
visual representations improved problem-solv-
ing achievement (see Table D.3).214

Both general-education students and students 
with disabilities performed better when specifi-
cally taught how to use different visual repre-
sentations for different types of problems:215 
for example, to identify and map relevant 
information onto schematic diagrams216 and to 
integrate visual representations.217 One study 
further suggested that student achievement 
increases more when students learn how to 
design, develop, and improve their own repre-
sentations than when students use teacher- or 
textbook-developed visuals.218

Selecting visuals.219 Several studies consis-
tently found positive results when students 
were taught to use visual representations to 
solve problems.220 For example, four studies  
taught students to solve numbers-and-oper-
ations word problems with only schematic 
diagrams.221 In another study, the authors 
taught 7th-grade students to use a linking 
table to overcome students’ mistaken intuitive 
beliefs about multiplication and division.222 
Each study found positive effects compared to 
students who received traditional instruction.

Using visuals. Multiple studies with positive 
results involved teachers providing different 
types of visual representations for different 
types of problems.223 For example, in one 
study, middle school students received papers 
listing the prominent features of two differ-
ent kinds of problems (e.g., for proportion 
problems, “There are two pairs of associations 
between two things that involve four quanti-
ties”).224 Students then used type-specific 

diagrams to represent these problems. Initially, 
student worksheets included just one kind of 
problem, but after students learned how to 
solve both, worksheets with multiple problem 
types were presented, and students could 
compare them. Students receiving this instruc-
tion scored higher than comparison students 
who were taught using the textbook. Teachers 
in the comparison condition also modeled how 
to use representations to represent informa-
tion in problems.

In another study, students practiced identifying 
different problem types and then mapping the 
features of each on a schematic diagram.225 
Practice problems were grouped by problem 
type, with students identifying the critical 
elements. Teachers also repeated explicit 
instructions in order to provide strategy steps 
and clarify misconceptions. Students receiving 
this intervention had higher achievement than 
students in the comparison group on both a 
posttest conducted one to two weeks after 
the intervention and a transfer test that used 
problems taken from a textbook. These posi-
tive effects persisted for four months after the 
intervention; however, the intervention had no 
discernible effects on a state standardized test. 

Supplemental evidence comes from one 
single-case design study in which students 
were taught how to use visual representa-
tions. The study found no evidence of an 
effect.226 Teachers demonstrated the diagram-
mapping process and instructed 6th- and 
7th-grade students with learning disabilities 
on how to represent the diagram information 
as a mathematical sentence. Students were 
taught to identify different types of addition 
and subtraction problems.227

Translating visuals. In two studies involving 
students with learning disabilities or mild disabil-
ities, students were taught to diagram story situ-
ations that contained all necessary information. 
Later, teachers presented these students with 
word problems and asked them to represent 
unknown information with question marks.228  
In one of the studies, instruction emphasized 
that the ultimate mathematical equation could 
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be derived directly from the word problem dia-
gram.229 Similarly, instruction in the other study 
suggested that the mathematical equation 

Study Comparison Duration Students Math Content Outcomes231 Effect Size

Jitendra et al. 
(1998)  
Randomized  
controlled trial

Instruction in the use of 
a visual representation 
(schematic drawing) vs. 
traditional instruction

Between 17 and 
20 sessions, 
each lasting 
40–45 minutes

A total of 34  
students in 
grades 2–5  
in the United 
States232 (most  
students had  
mild disabilities)

Word problems  
involving 
numbers and 
operations

Posttest 0.56, ns

Maintenance 
(one to two 
weeks after 
intervention)

0.85**

Transfer  
(one day after 
posttest)

1.01**

Jitendra et al. 
(2009)  
Randomized  
controlled trial

Instruction in the use of 
a visual representation 
(schematic drawing)233 
vs. traditional instruction

A total of  
10 sessions, 
each lasting  
40 minutes

A total of 148 
students in the 
7th grade in the 
United States

Word problems  
involving 
numbers and 
operations 

Posttest 0.33, ns

Maintenance 
(four months 
after posttest)

0.38, ns

State assessment Transfer 0.08, ns

Jitendra et al. 
(2010)  
Randomized  
controlled trial

Instruction in the use of 
a visual representation 
(schematic drawing)234 
vs. traditional instruction

A total of  
29 sessions, 
each lasting  
50 minutes

A total of 472 
students in the 
7th grade in the 
United States

Word problems  
involving 
numbers and 
operations

Posttest 0.21**

Maintenance 
(one month 
after posttest)

0.09, ns

Transfer –0.01, ns

Selke et al. (1991)  
Randomized  
controlled trial

Instruction in the use of 
a visual representation 
(data table) vs. instruction 
in a substitution strategy

A total of  
10 sessions  
during regular 
math class

A total of 107 
students in the 
7th grade in the 
United States

Word problems  
involving 
numbers and 
operations235

Posttest  
(average of  
two subtests)

1.29**

Xin et al. (2005)  
Randomized  
controlled trial

Instruction in the use of 
a visual representation 
(schematic drawing)  
vs. traditional instruction,  
including the use of a 
semi-concrete repre-
sentation to represent 
information

A total of  
12 sessions, 
each lasting  
one hour

A total of 22  
students in 
grades 6–8 
in the United 
States (most stu-
dents had learn-
ing disabilities)

Word problems  
involving 
numbers and 
operations 

Posttest 1.87**

Maintenance 
(administered  
3–12 weeks  
after 
intervention)236

3.03**

Transfer 1.51**

Student-Generated Visual Representations

Terwel et al. 
(2009)  
Randomized  
controlled trial

Instruction to students on 
generating their own visu-
als vs. providing students 
with teacher-made visuals

A total of  
13 sessions,  
each lasting  
one hour, across 
three weeks

A total of 238 
students in the 
5th grade in the 
Netherlands

Word problems 
involving data 
analysis and 
probability

Posttest 0.41, ns

Transfer 0.64**

Table D.4. Studies of interventions that used visual representations and contribute  
to the level of evidence rating

** = statistically significant at 0.05 level
* = statistically significant at 0.10 level
ns = not statistically significant

could be identified directly from a data table.230 
Both studies found positive effects.
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Recommendation 4. Expose students to 
multiple problem-solving strategies.

Level of evidence: Moderate Evidence

Eight studies found positive effects of teach-
ing and encouraging multiple problem-
solving strategies, although in some studies, 
the effects were not consistent across all 
types of outcomes.240 Three studies involv-
ing students with no or limited knowledge 
of algebra found negative effects for some 
algebra outcomes, but these students had not 
developed sufficient skills in a domain before 
multiple-strategies instruction. Consequently, 
the panel determined that there is moderate 
evidence to support this recommendation. 
Six of the seven studies that examined proce-
dural flexibility—the ability to apply multiple 
problem-solving approaches—found that 
teaching multiple problem-solving strategies, 
either by instruction, worked examples, or 
prompting, improved students’ procedural 
flexibility (see Table D.4).241 Yet teaching mul-
tiple strategies had mixed effects on students’ 
procedural knowledge, or ability to solve 
problems correctly, with five studies report-
ing positive effects on posttests, two stud-
ies reporting no discernible effects, and the 
three studies involving students with no or 
minimal algebra knowledge reporting nega-
tive effects on algebra procedural knowledge 
outcomes.242 Effects on conceptual knowl-
edge of mathematics were inconsistent, with 
two studies finding no discernible effects, one 
study finding positive effects, and one study 
finding that the effects depended on baseline 
knowledge in the domain.243

Multiple-strategies instruction. Two stud-
ies involving multiple-strategies instruction 

found positive effects on procedural knowl-
edge; however, because both of these inter-
ventions incorporated multiple components, 
the panel could not attribute their results 
solely to multiple-strategies instruction. 

One of the studies included instruction that 
emphasized different solution strategies.244 
Teachers directly taught a variety of solu-
tion methods—unit-rate strategies, cross 
multiplication, and equivalent fractions—to 
solve ratio-and-proportion word problems, 
and students learned to identify when a 
particular strategy was appropriate. Seventh-
grade students who received this instruction 
for 10 sessions made greater achievement 
gains than students who received traditional 
lessons including direct instruction, worked 
examples, and guided practice. The second 
study used a similar intervention but with 
more instruction time and professional 
development.245

In another study, 8th-grade students in 
Germany were taught to work forward and 
backward, as needed, to solve problems 
during an after-school tutoring program.246 
These students performed significantly better 
than students who received no after-school 
tutoring. However, because the comparison 
students received no organized instruction, 
the panel is unsure whether this result applies 
to classroom settings.

A final study involving received a brief, 
eight-minute period of strategy instruction.247 
An instructor solved three equations on a 
blackboard using different strategies. For 
each equation, the instructor used the strat-
egy that led to the most efficient solution to 
each problem. Students were not told why 
a particular strategy was selected. Prior to 

Study Comparison Duration Students Math Content237 Outcome Effect Size238 

Jitendra et al. 
(1999)  
Single-case 
design

Instruction in the use of 
a visual representation 
(schematic diagram)239  
vs. no instruction

Unknown  
number of  
sessions,  
each lasting  
45 minutes

Four 6th- and 7th- 
grade students 
with learning  
disabilities in the 
United States

Word problems  
involving 
numbers and 
operations

Repeated 
measurement

No evidence

Table D.5. Supplemental evidence supporting the effectiveness of Recommendation 3



( 63 )

Appendix D (continued)Appendix D (continued)

this instruction, none of the participants had 
received formal instruction on equation solv-
ing. There were no discernable effects for this 
brief intervention.

Worked examples. Three of the four studies 
examining this intervention found that teach-
ing students to compare multiple strategies 
on worked examples improved procedural 
flexibility—but these studies also found that 
the effects on procedural and conceptual 
knowledge were sometimes positive and 
sometimes not discernible.248 In each of 
these studies, students worked in pairs, and 
the researchers manipulated only how the 
worked examples were presented. Both inter-
vention and control students were exposed 
to multiple solution strategies; however, the 
comparison of the multiple solution strategies 
was only facilitated for intervention students. 

For example, all students in one study 
reviewed packets of worked examples, in 
which half the worked examples presented 
the conventional solution method and half 
presented a shortcut solution method.249 
On each page, two worked examples were 
presented side-by-side as a pair. For the inter-
vention group, each worked-example pair 
contained the same equation, solved using 
both the conventional and shortcut strategies. 
In the control group, each worked-example 
pair contained two different problems solved 
with the same solution strategy. Thus, only 
the intervention condition facilitated compari-
sons between different strategies. Students 
were also presented with practice problems. 
In the intervention condition, students were 
asked to solve two practice problems using 
two different strategies for each, while control 
students received four different equations 
and were not asked to use different strate-
gies. Intervention students scored higher than 
control students on measures of conceptual 
knowledge and procedural flexibility, and 
this impact persisted for two weeks after the 
intervention ended. However, there were no 
discernible differences between groups on 
procedural knowledge.

The other two studies facilitated multiple-strat-
egy comparison for intervention students by 
providing worked-example packets with each 
worked example solved in two different ways 
on the same page; control students received 
the same number of worked examples, but 
each of the problems was different and pre-
sented on a separate page.250 In the first study, 
7th-grade students solved algebra problems; 
this study found that facilitating multiple-
strategies comparison improved both proce-
dural knowledge and procedural flexibility, 
but that there was no impact on conceptual 
knowledge. The second study involved mul-
tiplication estimation problems and found no 
discernible effects on procedural or conceptual 
knowledge, either immediately or after two 
weeks; it did, however, find a positive effect 
on procedural flexibility that persisted for two 
weeks after the intervention ended.

The fourth study had a similar intervention, 
but the participants were students with no 
or limited pretest algebra knowledge.251 
Specifically, the study involved two groups of 
students: students who never used an alge-
braic problem-solving approach on a pretest, 
and students who attempted an algebraic 
approach, correctly or incorrectly.252 (Even 
the second group of students had limited 
algebra problem-solving skills—roughly 
two-thirds used algebra incorrectly on the 
pretest.) All participants were 7th- and 8th-
grade students at a low-performing middle 
school. The intervention facilitated multiple-
strategy comparison for intervention students 
by providing worked-example packets with 
each example solved in two different ways 
on the same page, while control students 
received packets with the worked examples 
on a different page. Additionally, at the end of 
the three daily sessions, intervention students 
were presented with two problems and asked 
to solve each of the problems using two dif-
ferent solution methods, while control stu-
dents were presented with four problems and 
allowed to choose their solution method. For 
the students who did not attempt algebraic 
problem solving on the pretest, the study 
found the intervention had negative effects 
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on procedural knowledge, conceptual knowl-
edge, and procedural flexibility. However, 
there were no discernible effects on any of 
these outcomes for students who attempted 
an algebraic approach on the pretest.253

Generating and sharing multiple strategies.  
Four studies, with one study involving two 
comparisons, examined this approach, with 
three comparisons focusing on procedural 
knowledge and finding mixed effects, and 
three comparisons focusing on procedural 
flexibility and finding positive effects.

Of the three studies that examined proce-
dural knowledge, one study found a posi-
tive effect and two studies found negative 
effects.254 The panel believes these different 
findings result from important differences 
in the student samples and how students 
were prompted to generate and share mul-
tiple strategies.255 In the study with positive 
results, there are two comparisons related to 
this recommendation: one involved individual 
students generating multiple strategies, and 
the other considered pairs of students col-
laborating to generate multiple strategies.256 
Students in both groups also shared strategies 
and answers after solving an initial problem, 
and they also used instructional components 
such as manipulatives. In the comparison 
group, multiple strategies were not discussed, 
and students completed their work individu-
ally after being provided with solution steps. 
Although both interventions had positive 
effects on procedural knowledge, the effect 
size for the two-person group comparison 
was about twice as large. Pretest scores 
indicate that the 3rd- and 4th-grade student 
sample had some relevant problem-solving 

knowledge, even though participants scored 
in the lower half of pretest achievement. 

In the two studies with negative findings on 
procedural knowledge, participants did not 
have basic algebra knowledge, and the inter-
ventions involved algebra. In the first study, 
intervention students were prompted to gen-
erate multiple strategies by simply reordering 
problem-solving steps, while comparison 
students were not prompted.257 No teacher 
instruction or student sharing took place. 
None of the participants had received formal 
instruction on equation solving in school. 
Participants in the second study were 6th-
graders with no baseline algebra knowledge 
who received a 30-minute lesson on equation 
solving and then practiced solving algebra 
problems.258 Intervention students were given 
algebra problems they had previously solved 
and were asked to re-solve them using a 
different ordering of steps, while comparison 
students were not given instructions but were 
provided with additional, similar problems. 
The panel noted that both studies found posi-
tive effects on procedural flexibility—a more 
aligned outcome.

This procedural-flexibility finding was sup-
ported by another study, this one involving 
8- and 9-year-olds in the United Kingdom.259 
Working on computers, intervention students 
were provided with a monetary amount 
(represented with coins) and asked to develop 
other combinations of coins that would total 
the same amount. These students scored 
significantly higher on procedural flexibility 
than comparison students, who did not use 
the computer program and were not asked to 
generate multiple combinations.
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Study Comparison Duration Students
Math  
Content

Domain and 
Outcome

Effect 
Size

Instruction in Multiple Strategies

Jitendra et al. 
(2009) 
Randomized  
controlled trial

Instruction in problem- 
specific multiple strategies260 
vs. traditional instruction

A total of  
10 daily  
sessions,  
each lasting 
40 minutes

A total of 148 
students in 
the 7th grade 
in the United 
States

Word problems  
involving 
numbers and 
operations

Procedural posttest 0.33, ns

Procedural mainte-
nance (four months 
after posttest)

0.38, ns

State 
assessment

Procedural transfer 0.08, ns

Jitendra et al. 
(2010) 
Randomized  
controlled trial

Instruction in problem- 
specific multiple strategies261 
vs. traditional instruction

A total of  
29 sessions, 
each lasting  
50 minutes

A total of 472 
students in 
the 7th grade 
in the United 
States

Word problems  
involving 
numbers and 
operations

Procedural posttest 0.21**

Procedural mainte-
nance (one month 
after posttest)

0.09, ns

Transfer –0.01, ns

Perels et al. 
(2005)262 
Randomized  
controlled trial

Instruction in generic multi-
ple strategies after school263 
vs. no instruction

A total of  
six weekly  
sessions,  
each lasting 
90 minutes

Approxi-
mately 116 
students in the 
8th grade in 
Germany

Word problems  
involving 
general math 
achievement

Procedural posttest 0.46**

Star and Rittle-
Johnson (2008) 
Randomized  
controlled trial264

Demonstration of most  
efficient strategy to solve 
three different equations vs. 
additional time to practice 
solving equations 

A total of  
five sessions, 
each lasting one 
hour, conducted 
on consecutive 
days during the 
summer

A total of 66 
students in the 
6th and 7th 
grades in the 
United States

Algebra 
equations

Procedural posttest 0.02, ns

Procedural transfer 0.06, ns

Flexibility posttest 
(average of three 
measures)

0.23, ns

Worked Examples with Students Comparing Strategies

Rittle-Johnson 
and Star (2007) 
Randomized  
controlled trial

Students comparing worked 
examples solved with multiple 
strategies vs. students study-
ing worked examples solved 
with multiple strategies

A total of  
two sessions, 
each lasting  
45 minutes, 
across two days

A total of 70 
students in 
the 7th grade 
in the United 
States

Algebra 
equations

Procedural posttest 0.08**

Conceptual posttest –0.04, ns

Flexibility posttest 0.10**

Rittle-Johnson 
and Star (2009) 
Randomized  
controlled trial

Students comparing worked 
examples of one problem 
solved using multiple strate-
gies vs. students comparing 
worked examples of equiva-
lent problems solved with 
the same strategy

Three  
consecutive 
class periods

A total of 98 
students in the 
7th and 8th 
grades in the 
United States

Algebra 
equations

Procedural  
posttest265

–0.14,  
ns266

Procedural mainte-
nance (two weeks 
after posttest)

0.01, ns

Conceptual posttest 0.36*

Conceptual mainte-
nance (two weeks 
after posttest)

0.29, ns

Flexibility posttest 
(average of two 
measures)

0.36*

Flexibility mainte-
nance (two weeks 
after posttest, aver-
age of two measures)

0.50**

Rittle-Johnson  
et al. (2009) 
Randomized  
controlled trial  
Students not using 
algebra on pretest 

Students comparing worked 
examples of one problem 
solved using multiple strate-
gies vs. students studying 
worked examples solved 
with multiple strategies

A total of three 
daily sessions, 
each lasting 
approximately 
45 minutes

55 students 
in the 7th and 
8th grades 
in the United 
States

Algebra 
equations

Procedural  
posttest

–0.45*267

Conceptual 
posttest

–0.33*

Flexibility posttest –0.35, ns

Table D.6. Studies of interventions that involved multiple problem-solving strategies  
and contribute to the level of evidence rating

(continued)
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Study Comparison Duration Students
Math  
Content

Domain and 
Outcome

Effect 
Size

Rittle-Johnson et 
al. (2009) 
Randomized 
controlled trial 
Students using 
some algebra on 
pretest

Students comparing worked 
examples of one problem 
solved using multiple strate-
gies vs. students studying 
worked examples solved 
with multiple strategies

A total of  
three daily  
sessions,  
each lasting 
approximately  
45 minutes

55 students 
in the 7th and 
8th grades 
in the United 
States

Algebra 
equations

Procedural  
posttest

0.19, 
ns268

Conceptual 
posttest

–0.13, ns

Flexibility posttest 0.12, ns

Star and Rittle-
Johnson (2009a) 
Randomized  
controlled trial

Students comparing worked 
examples solved with mul-
tiple strategies vs. students 
studying worked exam-
ples solved with multiple 
strategies

A total of  
three sessions, 
each lasting 
40 minutes

A total of 157 
students in the 
5th and 6th 
grades in the 
United States

Numbers and 
operations 
estimation

Conceptual 
posttest269

–0.06, ns

Conceptual mainte-
nance (two weeks 
after posttest)

0.00, ns

Flexibility posttest 0.43**

Flexibility mainte-
nance (two weeks 
after posttest)

0.30*

Students Generating and Sharing Multiple Strategies

Ainsworth et al. 
(1998) 
Randomized  
controlled trial

Students generating multiple 
strategies vs. no treatment

A total of  
two sessions, 
with a total 
time of 60–90 
minutes

A total of 48 
students  
(average age 9) 
in the United 
Kingdom

Problem solv-
ing involving 
numbers and 
operations

Flexibility posttest 1.30**

Flexibility  
maintenance  
(delay after post-
test not reported)

1.01**

Ginsburg-Block 
and Fantuzzo 
(1998) 
Randomized  
controlled trial

Students solving a problem  
with a partner, sharing their 
strategy and solution with the 
larger group, and then gener-
ating multiple strategies with 
a partner vs. students solving 
problems individually without 
generating or sharing mul-
tiple strategies

A total of  
14 sessions, 
each lasting 
30 minutes

A total of 52 
students in 
the 3rd and 
4th grades 
in the United 
States270

Word problems  
involving 
numbers and 
operations

Procedural  
posttest271

0.76*272

Ginsburg-Block 
and Fantuzzo 
(1998)  
Additional 
comparison273

Students solving a problem, 
sharing their strategy and so-
lutions with the larger group, 
and then generating multiple 
strategies individually274 vs. 
students solving problems in-
dividually without generating 
or sharing multiple strategies 

A total of  
14 sessions, 
each lasting 
30 minutes

A total of 52 
students in 
the 3rd and 
4th grades 
in the United 
States275

Word problems  
involving 
numbers and 
operations

Procedural  
posttest276

0.32, 
ns277 

Star and Rittle-
Johnson (2008) 
Randomized  
controlled trial278

Students being prompted to 
generate multiple strategies 
by resolving problems using 
different ordering of steps 
vs. students solving similar 
problems without being 
prompted to generate  
multiple strategies 

A total of five 
sessions, each 
lasting one hour, 
conducted on  
consecutive 
days during 
the summer

A total of 63 
students in the 
6th and 7th 
grades in the 
United States

Algebra 
equations

Procedural posttest –0.35

Procedural transfer –0.11, ns

Flexibility posttest 
(average of three 
measures)

0.44*

Star and Seifert 
(2006) 
Randomized  
controlled trial

Students were given prob-
lems they had previously 
solved and were asked to  
re-solve using a different  
ordering of steps vs. students 
solving similar problems

A total of 
three one-hour 
sessions

A total of  
32 students  
in the 6th 
grade in the 
United States

Algebra 
problems

Procedural posttest –0.35, ns

Flexibility posttest 0.43, ns

Table D.6. Studies of interventions that involved multiple problem-solving strategies  
and contribute to the level of evidence rating (continued)

** = statistically significant at 0.05 level
* = statistically significant at 0.10 level
ns = not statistically significant
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Recommendation 5. Help students 
recognize and articulate mathematical 
concepts and notation.

Level of evidence: Moderate Evidence

Three studies directly support two sugges-
tions of this recommendation (see Table D.7), 
and non-robust findings exist for another 
suggestion; overall, the panel believes a 
moderate level of evidence supports the full 
recommendation.279 The first suggestion, 
relating problem solving to mathematical con-
cepts, was supported by a study finding that 
student achievement improved when teachers 
discussed mathematics problems conceptually 
(without numbers) and then represented them 
visually before focusing on the mathematical 
operations and notation.280 Two other stud-
ies that tested the impact of teaching algebra 
notation to students, another suggestion, 
found positive effects.281 Finally, three studies 
examined student self-explanation, the sec-
ond suggestion. The results were inconsistent 
across the studies, with two studies reporting 
positive effects and one reporting no discern-
ible effects.282

Relating mathematics to problem solving.  
One study meeting WWC standards found 
that discussing problem structure and visual 
representation prior to formulating and com-
puting math problems had positive effects 
on student achievement.283 In the intervention, 
teachers discussed word problems with 4th-
grade students without using numbers, to 
encourage students to think about problem 
structure and apply their informal mathematical  
knowledge. Students then visually represented 
the problems; teachers also modeled the 
representation and discussed it with students. 
Only after these conceptual processes did 
students write a number sentence and solve 
the problem. Comparison students received 
practice worksheets with the same problems. 
Intervention students scored higher than 
comparison students on multiplication and 
division word problems, and this positive 
effect persisted for at least two months after 
the intervention ended.284

Student explanation. Three studies used 
worked examples to examine student self-
explanation of the solution process. Results 
were not robust, with two studies finding 
positive results and one study finding no 
discernible effects.285 These four studies had 
diverse student samples and were conducted 
in four different countries, with students 
ranging from 4th to 9th grade.286 The math-
ematical content also was varied, ranging 
from numbers and operations to algebra.287 
The intervention details varied as well.

In one study, teachers had students complete 
four in-class assignments.288 For intervention 
students, these assignments included 5 to 6 
worked examples, some solved correctly and 
some solved incorrectly, and students were 
asked to explain why the solutions were cor-
rect or incorrect. Intervention students also 
received 5 to 6 practice problems to solve. 
Comparison students received 10 to 12 prac-
tice problems only. The authors found positive 
effects on the conceptual knowledge posttest.

In the two other studies, all students received 
worked examples, but only students in the 
intervention group were asked to explain 
each step in the process. Intervention stu-
dents in the first of these were asked to 
self-explain each step in the problem-solving 
process. These students were able to solve 
significantly more word problems than stu-
dents who were asked to review only the 
problems and learn each step.289 This posi-
tive effect persisted for one month after the 
intervention ended. Intervention students 
in the second study were asked to pretend 
they were explaining each step in the worked 
examples to another student; students in the 
comparison condition were asked to study the 
worked examples until they understood how 
the problems were solved.290 This interven-
tion had no discernible effects.

Algebraic problem solving. Two studies 
meeting WWC standards directly tested the 
effect of helping students make sense of alge-
braic notation. The first study used an algebra 
tutoring program to change the order of steps 
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high school students took to solve algebra 
problems—a slight change that had a statisti-
cally significant effect on later achievement.291 
The authors proposed that solving intermedi-
ate arithmetic problems before representing 
them with algebraic notation helps students 
understand problem structure using the math-
ematical knowledge (arithmetic) they already 
possess, and students can then use this exist-
ing knowledge to more easily determine alge-
braic notation.292 In the intervention condition, 
students were asked to solve two intermediate 
arithmetic problems before providing algebraic 
notation, while in the comparison condition 
students were asked to provide algebraic nota-
tion first. Students in both groups then solved 
new algebra word problems, and the authors 

reported that the intervention students solved 
more problems correctly.293

The second study examined two-step word 
problems in which students had to substitute 
one algebraic expression into another.294 Stu-
dents in the intervention condition were given 
four symbolic problems that required them 
to substitute one expression into another (for 
example, “Substitute 62 – f for b in 62 + b.”).  
Comparison students were asked to solve 
four one-step word problems; these word 
problems were very similar in format to one 
step of the two-step word problems that 
were the outcomes. The authors found that 
students in the intervention group correctly 
solved more two-step word problems.
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Table D.7. Studies of interventions that helped students recognize and articulate concepts  
and contribute to the level of evidence rating

** = statistically significant at 0.05 level
* = statistically significant at 0.10 level
ns = not statistically significant

Study Comparison Duration Students Math Content Outcome295 Effect Size

Relating to Conceptual Understanding

Huinker (1992) 
Randomized  
controlled trial

Student and teacher  
discussion of problem 
representation and  
connection to a math-
ematical operation prior 
to formal mathematics296 
vs. solving practice 
problems 

A total of  
18 lessons

A total of 128 
students in the 
4th grade in the 
United States

Word problems  
involving 
numbers and 
operations 

Posttest297 1.21**

Retention 
(two to three 
months after 
posttest)

1.24**

Student Explanation of Worked Examples

Booth et al. 
(2010) 
Randomized  
controlled trial

Students presented with 
worked examples and 
asked to explain why the 
solution was correct or 
incorrect vs. students 
given similar problems 
to solve

Four 
sessions

A total of 51  
high school 
students in the 
United States298

Algebra Conceptual 
posttest299 

0.50*

Mwangi and 
Sweller (1998)300 

Randomized  
controlled trial

Students asked to ex-
plain each step in worked 
examples vs. students 
asked to study worked 
examples until they un-
derstand the solution

One  
session

A total of 48  
students in the 
4th grade in 
Australia

Word problems  
involving 
numbers and 
operations

Posttest 0.00, ns

Retention  
(10 days after 
posttest)

–0.21, ns

Transfer  
(10 days after 
posttest)

–0.11, ns

Tajika et al. 
(2007) 
Quasi-experi-
mental design

Students asked to 
explain each step in 
worked examples vs. 
students provided with 
explanations for each 
step in worked examples 
and told to study them

One  
20-minute 
session

A total of 53  
students in the 
6th grade in 
Japan

Word problems  
involving 
numbers and 
operations 

Posttest  
(one week after 
intervention)

0.93**

Transfer  
(one month 
after posttest)

0.58**

Making Sense of Algebra Notation

Koedinger and 
Anderson (1998) 
Randomized  
controlled trial

Students asked to solve 
related arithmetic ques-
tions before being asked 
to represent the problem 
algebraically vs. stu-
dents asked to represent 
problems algebraically 
before solving related 
arithmetic questions 

Two  
sessions, 
each lasting 
one to two 
hours

A total of 20  
high school 
students in the 
United States301

Word problems  
involving 
general math 
achievement 
(algebra and 
numbers and 
operations)

Posttest Not reported 
(p < 0.05)

Koedinger and 
McLaughlin 
(2010)  
Randomized  
controlled trial

Students given practice 
word problems that in-
volved substituting one 
algebraic expression 
into another vs. students 
given practice word 
problems that did not  
involve substitution

One session A total of 303 
middle school 
students in the 
United States

Word problems  
involving 
algebra

Posttest302 0.26**
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  *On October 4, 2018, the WWC modified this 

guide after identifying one study that was 
listed with the incorrect rating. The study 
was re-reviewed and found not to meet 
WWC single-case design standards following 
the release of updated guidance for single-
case design studies with multiple probes. As 
a result, the study was removed from the 
reference list, from endnotes on pages 71 
and 226, and deleted from the endnote on 
page 227. Revisions were also made to the 
last paragraph on page 60 to reflect these 
findings. The WWC did not change any of 
the other studies included in the evidence 
base, nor the levels of evidence supporting 
the recommendations.

1.  Following WWC guidelines, improved out-
comes are indicated by either a positive, 
statistically significant effect or a positive, 
substantively important effect size. The 
WWC defines substantively important, or 
large, effects on outcomes to be those 
with effect sizes greater than 0.25 stan-
dard deviations. See the WWC guidelines at 
http://ies.ed.gov/ncee/wwc/DocumentSum.
aspx?sid=19.

 2. For more information, see the WWC Fre-
quently Asked Questions page for practice 
guides, http://ies.ed.gov/ncee/wwc/Docu-
ment.aspx?sid=15.

 3. This includes randomized control trials 
(RCTs) and quasi-experimental designs 
(QEDs). Studies not contributing to levels of 
evidence include single-case designs (SCDs) 
evaluated with WWC pilot SCD standards 
and regression discontinuity designs (RDDs) 
evaluated with pilot RDD standards.

 4. The research may include studies generally 
meeting WWC standards and supporting 
the effectiveness of a program, practice, or 
approach with small sample sizes and/or 
other conditions of implementation or analy-
sis that limit generalizability. The research 
may include studies that support the gen-
erality of a relation but do not meet WWC 
standards; however, they have no major 
flaws related to internal validity other than 
lack of demonstrated equivalence at pretest 

for QEDs. QEDs without equivalence must 
include a pretest covariate as a statistical 
control for selection bias. These studies 
must be accompanied by at least one rel-
evant study meeting WWC standards.

 5. American Educational Research Association, 
American Psychological Association, and 
National Council on Measurement in Educa-
tion, 1999.

 6. McCloskey (2007); National Academy of 
Sciences (2007).

 7. Lemke et al. (2004); Perie, Grigg, and Dion 
(2005); Gonzales et al. (2008).

 8. Gonzales et al. (2008).
 9. Kirsch et al. (2007); Lesh, Hamilton, and 

Kaput (2007); Levy and Murnane (2004); 
Uhalde, Strohl, and Simkins (2006).

 10. Traditional mathematics textbooks focus 
instruction on standard arithmetic meth-
ods and procedural aspects of learning 
mathematics, rather than on conceptual 
understanding and having students general-
ize their understanding of mathematics to 
varied contexts.

 11. Jones and Tarr (2007).
 12. Ibid.
 13. Reys et al. (2006).
 14. Mayer and Hegarty (1996).
 15. Hiebert et al. (1997).
 16. For example, Mayer (1992).
 17. While instructional methods may vary, the 

content of mathematical problem solving 
is quite similar internationally. In fact, both 
the Trends in International Mathematics 
and Science Study (TIMSS) and Programme 
for International Student Assessment (PISA) 
assessments include problem-solving items, 
allowing for international comparisons of 
students’ ability to solve problems. Since 
4th- and 8th-grade students in the United 
States are not as proficient at solving prob-
lems as students from other countries (Gon-
zales et al., 2008), it makes sense to include 
international studies in an attempt to learn 
what approaches are effective at teaching 
problem solving.

 18. Reviews of studies for this practice guide 
applied WWC Version 2.0 standards. See 

Endnotesa

a Eligible studies that meet WWC evidence standards or meet evidence standards with reservations are indicated by bold text in the 
endnotes and references pages. For more information about these studies, please see Appendix D.



( 71 )

Endnotes (continued)Endnotes (continued)

http://ies.ed.gov/ncee/wwc/pdf/wwc_pro-
cedures_v2_standards_handbook.pdf.

 19. Stodolsky (1988).
 20. Porter (1989); Weiss et al. (2003).
 21. Cardelle-Elawar (1995).
 22. Verschaffel et al. (1999).
 23. None of these studies estimated impacts on 

transfer or maintenance outcomes: Chen 
and Liu (2007); Ku and Sullivan (2002); 
Ku et al. (2007). While Ku and Sullivan 
(2000) found that incorporating class favor-
ites had no statistically significant effect 
on student word-problem performance, 
students in this study had limited room for 
growth because they had already scored 
high on the test.

 24. Chen and Liu (2007); Ku and Sullivan 
(2002); Ku et al. (2007).

 25. National Research Council (2001).
 26. Pólya (1945).
 27. Stein and Lane (1996, p. 58).
 28. Schoenfeld (1992).
 29. Stein and Lane (1996).
 30. National Council of Teachers of Mathematics 

(2000).
 31. Cummins et al. (1988).
 32. Mayer (1998). 
 33. Cardelle-Elawar (1995); Chen and Liu 

(2007); Ku et al. (2007); Ku and Sul-
livan (2000); Ku and Sullivan (2002); 
Verschaffel et al. (1999); Koedinger and 
Nathan (2004).

 34. Cardelle-Elawar (1995).
 35. Schleppegrell (2007).
 36. Cardelle-Elawar (1995); Chen and Liu 

(2007); Ku et al. (2007); Ku and Sul-
livan (2000); Ku and Sullivan (2002); 
Verschaffel et al. (1999); Koedinger and 
Nathan (2004).

 37. Cordova and Lepper (1996).
 38. Woodward, Monroe, and Baxter (2001).
 39. Donovan and Bransford (2006).
 40. For more information on the TIMSS, see 

http://nces.ed.gov/timss/. For more informa-
tion on PISA, see http://www.oecd.org. For 
more information on Illuminations, see http://
illuminations.nctm.org. For more information 
on the Math Forum, see http://mathforum.

org. For more information on the SAT, see 
http://sat.collegeboard.org/practice.

 41. Atkinson et al. (2000); Sweller and Cooper 
(1985); Cooper and Sweller (1987); Kirschner, 
Sweller, and Clark (2006); Renkl (1997); Ward 
and Sweller (1990).

 42. Pashler et al. (2007).
 43. Ibid.
 44. Schleppegrell (2007).
 45. Hohn and Frey (2002); Jitendra et al. 

(2009); Jitendra et al. (2010); Mevarech 
and Kramarski (2003); Kramarski and 
Mevarech (2003); King (1991); Cardelle-
Elawar (1990); Cardelle-Elawar (1995); 
Verschaffel et al. (1999).

 46. Kramarski and Mevarech (2003); Siegler 
(2003).

 47. Mevarech and Kramarski (2003); 
Cardelle-Elawar (1995); King (1991); 
Kramarski and Mevarech (2003); Ver-
schaffel et al. (1999); Hohn and Frey 
(2002); Jitendra et al. (2009); Jitendra 
et al. (2010). 

 48. Verschaffel et al. (1999); Hohn and Frey 
(2002). 

 49. Jitendra et al. (2009); Jitendra et al. 
(2010).

 50. Jitendra et al. (2009).
 51. Mevarech and Kramarski (2003); 

Cardelle-Elawar (1995); Cardelle-Ela-
war (1990); King (1991); Kramarski and 
Mevarech (2003).

 52. Horn and Frey (2002); Verschaffel et al. 
(1999); Jitendra et al. (2009); Jitendra et 
al. (2010).

 53. Refer to mathematics textbooks at the 
elementary and middle school levels for 
additional sources of questions or task lists.

 54. King (1991); Jitendra et al. (2009); Jiten-
dra et al. (2010). As Kramarski and Mev-
arech (2003) show, while students can 
monitor and reflect on their problem-solving 
processes verbally or in writing, they appear 
to do better when using verbal skills.

 55. Kramarski and Mevarech (2003).
 56. As Kramarski and Mevarech (2003) show, 

while students can monitor and reflect on 
their problem-solving processes individually 
or in small groups, they appear to do better 
in small-group settings.
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 57. King (1991).
 58. Kramarski and Mevarech (2003).
 59. King (1991).
 60. Cardelle-Elawar (1995).
 61. Siegler (2002).
 62. Verschaffel et al. (1999).
 63. Adapted from Hohn and Frey (2002).
 64. Hohn and Frey (2002); Jitendra et al. 

(2009); Jitendra et al. (2010); Mevarech 
and Kramarski (2003); Kramarski and 
Mevarech (2003); King (1991); Cardelle-
Elawar (1990); Cardelle-Elawar (1995).

 65. Kramarski and Mevarech (2003).
 66. King (1991).
 67. Jitendra et al. (1998); Xin, Jitendra, and 

Deatline-Buchman (2005); Jitendra et al. 
(2009); Jitendra et al. (2010); Terwel et al. 
(2009); Selke, Behr, and Voelker (1991).

 68. Refer to Diezmann and English (2001) for 
additional schematic diagrams.

 69. Adapted from Selke et al. (1991).
 70. Adapted from Parker (2004).
 71. Xin et al. (2005); Jitendra et al. (2009); 

Jitendra et al. (2010); Jitendra et al. 
(1998); Selke et al. (1991). 

 72. Xin et al. (2005); Jitendra et al. (1998); 
Selke et al. (1991); Jitendra et al. (2009); 
Jitendra et al. (2010).

 73. Xin et al. (2005); Jitendra et al. (2009); 
Jitendra et al. (2010); Jitendra et al. 
(1998).

 74. Xin et al. (2005); Jitendra et al. (2009); 
Jitendra et al. (2010); Jitendra et al. 
(1998).

 75. Selke et al. (1991).
 76. Terwel et al. (2009).
 77. Jitendra et al. (1998); Xin et al. (2005); 

Jitendra et al. (2009); Jitendra et al. 
(2010); Selke et al. (1991).

 78. Rittle-Johnson and Koedinger (2005). 
 79. Diezmann and English (2001); Ng and Lee 

(2009); Xin et al. (2005).
 80. Jitendra et al. (1998); Xin et al. (2005); 

Jitendra et al. (2009); Jitendra et al. 
(2010).

 81. Jitendra et al. (1998); Xin et al. (2005); 
Jitendra et al. (2009); Jitendra et al. 
(2010); Selke et al. (1991).

 82. Ng and Lee (2009).
 83. Jitendra et al. (1998); Xin et al. (2005); 

Jitendra et al. (2009); Jitendra et al. 
(2010); Selke et al. (1991).

 84. Adapted from Jitendra and Star (2009).
 85. Jitendra et al. (1998); Xin et al. (2005); 

Jitendra et al. (2009); Jitendra et al. (2010).
 86. Jitendra et al. (1998); Xin et al. (2005); 

Jitendra et al. (2009); Jitendra et al. (2010); 
Selke et al. (1991).

 87. Terwel et al. (2009). 
 88. Hegarty and Kozhevnikov (1999).
 89. Adapted from Driscoll (1999).
 90. Dowker (1992); Siegler (2003).
 91. Star and Rittle-Johnson (2008). 
 92. Siegler (2003).
 93. Star and Rittle-Johnson (2008); Ainsworth, 

O’Malley, and Wood (1998); Rittle-Johnson 
and Star (2007); Star and Rittle-Johnson 
(2009a); Rittle-Johnson and Star (2009); 
Star and Seifert (2006). The seventh study, 
Rittle-Johnson et al. (2009), found nega-
tive effects for students with minimal or no 
pretest algebra knowledge and no discern-
ible effects for students who had attempted 
algebraic reasoning on a pretest.

 94. The following studies reported positive 
effects for students’ ability to correctly solve 
problems: Perels, Gurtler, and Schmitz 
(2005); Rittle-Johnson and Star (2007); 
Ginsburg-Block and Fantuzzo (1998); 
Jitendra et al. (2009); Jitendra et al. 
(2010). Rittle-Johnson and Star (2009) 
found no discernible effects. Three studies, 
each involving students with no or mini-
mal algebra knowledge, reported negative 
effects for algebra procedural knowledge 
outcomes: Star and Rittle-Johnson (2008); 
Star and Seifert (2006); Rittle-Johnson 
et al. (2009). On conceptual knowledge, 
Rittle-Johnson and Star (2007) and Star 
and Rittle-Johnson (2009a) found no 
discernible effects, while Rittle-Johnson 
and Star (2009) found a positive effect. 
Rittle-Johnson et al. (2009) found negative 
effects on understanding of mathematical 
concepts among students who attempted no 
algebraic reasoning on a pretest, but there 
were no discernible effects for students who 
had attempted algebraic reasoning at pretest.
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 95. Jitendra et al. (2009); Jitendra et al. 
(2010); Perels et al. (2005).

 96. Star and Rittle-Johnson (2008).
 97. Rittle-Johnson and Star (2007); Star and 

Rittle-Johnson (2009a); Rittle-Johnson 
and Star (2009).

 98. Rittle-Johnson et al. (2009). Roughly two-
thirds of the students who attempted algebraic 
reasoning often used it incorrectly, meaning 
that even these students did not have well-
developed algebra problem-solving skills. 

 99. Ginsburg-Block and Fantuzzo (1998).
100. Star and Seifert (2006); Star and Rittle-

Johnson (2008).
101. Jitendra et al. (2009); Jitendra et al. 

(2010); Perels et al. (2005).
102. Jitendra et al. (2009); Jitendra et al. (2010).
103. Perels et al. (2005).
104. Rittle-Johnson and Star (2007); Rittle-

Johnson and Star (2009); Star and Rittle-
Johnson (2009a).

105. Silver et al. (2005); Stigler and Hiebert (1999); 
National Council of Teachers of Mathematics 
(2000).

106. Johnson and Johnson (1994).
107. Bielaczyc, Pirolli, and Brown (1995); Gentner, 

Loewenstein, and Thompson (2003).
108. Rittle-Johnson and Star (2007); Rittle-

Johnson and Star (2009); Star and Rittle-
Johnson (2009a).

109. Ibid.
110. Rittle-Johnson and Star (2009).
111. Adapted from Rittle-Johnson and Star 

(2007).
112. Atkinson et al. (2000); Sweller and Cooper 

(1985); Cooper and Sweller (1987); Kirschner 
et al. (2006); Renkl (1997); Ward and Sweller 
(1990).

113. Ginsburg-Block and Fantuzzo (1998); 
Ainsworth et al. (1998); Star and Rittle-
Johnson (2008).

114. As Ginsburg-Block and Fantuzzo (1998) 
show, generating multiple strategies in peer-
tutoring dyads appears to be more benefi-
cial to students than having them generate 
multiple strategies individually.

115. Adapted from Driscoll (2007).
116. Adapted from Driscoll (2007).

117. Rittle-Johnson et al. (2009).
118. Star and Rittle-Johnson (2009b).
119. Rittle-Johnson, Star, and Durkin (2009).
120. Chapin, O’Connor, and Anderson (2003).
121. Chapin et al. (2003).
122. Schwartz and Martin (2004).
123. Ibid.
124. Schwartz, Martin, and Pfaffman (2005).
125. Huinker (1992); Koedinger and Anderson 

(1998); Koedinger and McLaughlin (2010).
126. Huinker (1992).
127. Tajika et al. (2007); Booth, Koedinger, 

and Pare-Blagoev (2010); Mwangi and 
Sweller (1998).

128. Koedinger and Anderson (1998). 
Although the panel believes students should 
also explain each component of an algebraic 
equation, no study directly tested the impor-
tance of this.

129. Koedinger and McLaughlin (2010).
130. Garnett (1998); Yetkin (2003); National 

Research Council (2001).
131. National Research Council (2001).
132. Huinker (1992).
133. Jacobs et al. (2007).
134. Garnett (1998); Carpenter et al. (2004); 

Yetkin (2003).
135. Huinker (1992).
136. Lehrer (2003).
137. Tajika et al. (2007); Mwangi and Sweller 

(1998); Booth et al. (2010).
138. Tajika et al. (2007); Booth et al. (2010). 
139. Atkinson et al. (2000). For more information 

on worked examples, refer to Recommenda-
tion 2 of the Organizing Instruction and Study 
to Improve Student Learning practice guide 
(Pashler et al., 2007).

140. Beckmann (2011).
141. Koedinger and Anderson (1998); Koed-

inger and McLaughlin (2010).
142. Koedinger and Anderson (1998).
143. Adapted from Koedinger and Anderson 

(1998).
144. Corbett et al. (2006).
145. Adapted from Corbett et al. (2006).
146. Ma (1999); Hiebert et al. (2003).
147. McNeil et al. (2010). 
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148. The following are considered strong cor-
relational studies for this practice guide: (1) 
an analytical model that includes the pretest 
score as a statistical covariate (e.g., ANCOVA), 
(2) a student fixed-effects analytical model, 
and (3) a two-stage least-squares model that 
uses a valid instrumental variable.

149. In some studies with multiple relevant inter-
vention and comparison groups, our analy-
sis combined groups where appropriate to 
create more statistical power. See footnotes 
in Tables D.1–D.5 for further information.

150. For single-case designs, the effect is based 
on visual analysis. For more information on 
visual analysis, please see the WWC single-
case design technical documentation, avail-
able on the IES website at http://ies.ed.gov/
ncee/wwc/pdf/wwc_scd.pdf.

151. Recognizing that some studies lack the sta-
tistical power to classify practically impor-
tant effects as statistically significant, the 
panel also accepts substantively important 
effects as evidence of effectiveness.

152. For multiple comparison adjustments and 
cluster corrections, see the WWC Handbook.

153. The panel used Adding It Up (National 
Research Council, 2001) as a basis for deter-
mining the three outcome domains, but 
further defined and operationalized them by 
taking into account the outcome measures 
used in contemporary mathematics research 
(e.g., Star and Rittle-Johnson, 2007; Rittle-
Johnson and Star, 2007).   

154. When the authors report unadjusted means 
and a parallel form pretest, the WWC-
reported effect size incorporates the dif-
ferences-in-differences approach (see the 
WWC Handbook). When the authors report a 
pretest that is not a parallel form of the out-
come, the difference-in-difference approach 
is not used.

155. Cardelle-Elawar (1995). This study had a 
randomized controlled trial design and did 
not report baseline sample sizes for each 
condition (and the author was unable to pro-
vide this information). However, based on 
the information reported, the panel believes 
there was not high attrition.

156. Verschaffel et al. (1999). This study had 
a quasi-experimental design and did not 

report standard deviations for the pretest 
(and the authors were unable to provide 
this information). However, based on the 
information reported, the panel believes 
there is baseline equivalence.

157. None of these studies estimated impacts on 
transfer or maintenance outcomes: Chen 
and Liu (2007); Ku and Sullivan (2002); 
Ku et al. (2007). One other study found 
that incorporating class favorites had no 
statistically significant effect on student 
word-problem performance, but students in 
both conditions scored so high on the post-
test that the outcome may have precluded 
measurement of additional growth (Ku and 
Sullivan, 2000).

158. Cardelle-Elawar (1995).
159. Verschaffel et al. (1999).
160. Chen and Liu (2007); Ku and Sullivan 

(2000); Ku and Sullivan (2002); Ku et al. 
(2007).

161. Ku and Sullivan (2000); Ku and Sullivan 
(2002).

162. Chen and Liu (2007); Ku et al. (2007).
163. Chen and Liu (2007); Ku and Sullivan 

(2002); Ku et al. (2007).
164. Cardelle-Elawar (1995).
165. All outcomes for this recommendation 

involved the procedural knowledge domain.
166. Other important components of this inter-

vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

167. Outcomes were not reported separately.
168. The WWC could not compute effect sizes 

based on the information provided in the 
paper. These effect sizes and p-values were 
reported by the authors.

169. The WWC could not compute effect sizes 
based on the information provided in the 
paper. These effect sizes and p-values were 
reported by the authors.

170. Other important components of this inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
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component or a combination of components 
produced any differences between groups.

171. While the study also included 3rd-grade 
students, those students are not included 
in the results reported here.

172. Outcomes were not reported separately.
173. While the text in this section focuses on the 

outcome closest to the end of the interven-
tion, two studies found positive effects with 
maintenance outcomes (Jitendra et al., 2009; 
Mevarech and Kramarski, 2003), and two 
studies found positive effects with transfer 
outcomes (Verschaffel et al. 1999 and Kra-
marski and Mevarech, 2003). There were 
also three single-case design studies that 
met WWC single-case design pilot standards 
with reservations (Cassel and Reid, 1996; 
Montague, 1992; Case et al., 1992). One 
of these studies found strong evidence that 
prompting had a positive effect on student 
achievement (Cassel and Reid, 1996). The 
other two studies found no evidence of an 
effect, although the panel believes that one 
of these studies (Case et al., 1992) was not 
an appropriate test of the intervention as 
students were already achieving at very high 
level during baseline (there were “ceiling 
effects”). These three studies do not affect 
the evidence level.

174. Hohn and Frey (2002); Jitendra et al. 
(2009); Jitendra et al. (2010); Verschaffel 
et al. (1999).

175. Mevarech and Kramarski (2003); 
Cardelle-Elawar (1990); Cardelle-Ela-
war (1995); King (1991); Kramarski and 
Mevarech (2003).

176. Jitendra et al. (2009); Jitendra et al. (2010).
177. Kramarski and Mevarech (2003); Meva-

rech and Kramarski (2003).
178. Ibid.
179. King (1991).
180. Verschaffel et al. (1999).
181. Jitendra et al. (2009); Jitendra et al. (2010).
182. Jitendra et al. (2009).
183. Jitendra et al. (2010).
184. The study by Hohn and Frey (2002) also 

includes 3rd-grade students, who were 
excluded from the WWC review because the 
practice guide targets grades 4 through 8.

185. Mevarech and Kramarski (2003); 
Cardelle-Elawar (1990); Cardelle-Ela-
war (1995); King (1991); Kramarski and 
Mevarech (2003).

186. Cardelle-Elawar (1990); Cardelle-Elawar 
(1995); King (1991); Kramarski and Mev-
arech (2003); Mevarech and Kramarski 
(2003).

187. King (1991).
188. Hohn and Frey (2002); Jitendra et al. 

(2009); Jitendra et al. (2010); Verschaffel 
et al. (1999). To accurately reflect what 
occurred in studies, this appendix distin-
guishes between self-questioning and task 
lists outlining multistep strategies. While 
different in form, the practical effects on 
student problem solving are often indistin-
guishable. For example, in Mevarech and 
Kramarski (2003, p. 469), a self-question-
ing intervention, students are asked, “How is 
this problem/task different from/similar to 
what teachers have already solved?” One of 
the steps in the task-list intervention Hohn 
and Frey (2002, p. 375) is “Links to the 
past remind the student to recall similar 
problems completed earlier that might sug-
gest a solution plan.”

189. Cardelle-Elawar (1990); Cardelle-Elawar 
(1995). The problem-solving model is pre-
sented in Mayer (1985, 1987).

190. Cardelle-Elawar (1990).
191. The study Cardelle-Elawar (1995) also 

includes 3rd-grade students, who were 
excluded from the WWC review because the 
practice guide targets grades 4 through 8.

192. Kramarski and Mevarech (2003); Meva-
rech and Kramarski (2003).

193. Mevarech and Kramarski (2003).
194. Kramarski and Mevarech (2003).
195. Cassel and Reid (1996).
196. Montague (1992); Case et al. (1992).
197. Case et al. (1992).
198. All outcomes for this recommendation 

involved the procedural knowledge domain.
199. The authors only report outcomes by gen-

der. The WWC reports pooled results that 
assume half the students were girls and half 
were boys.
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200. While the study also includes 3rd-grade 
students, those students are not included 
in the results reported here.

201. Outcomes were not reported separately.
202. While the study also includes 3rd-grade 

students, those students are not included 
in the results reported here.

203. Other important components of this inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

204. Other important components of this inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

205. These effect sizes were calculated using 
dyad-level (two-person) standard devia-
tions that are smaller than the student-level 
standard deviations used to calculate other 
effect sizes in this practice guide. These 
effect sizes are larger than they would be 
if student-level standard deviations were 
used. Following the WWC Handbook, the 
effect size, although reported here, was not 
used when determining the level of evidence 
for this recommendation. However, the 
statistical significance of this finding was 
considered when determining the level of 
evidence, because cluster-level findings tend 
to be statistically underpowered.

206. Outcomes were not reported separately.
207. The WWC could not compute effect sizes 

based on the information provided in the 
paper. These effect sizes and p-values were 
reported by the authors.

208. The WWC could not compute effect sizes 
based on the information provided in the 
paper. These effect sizes and p-values were 
reported by the authors.

209. All outcomes for this recommendation 
involved the procedural knowledge domain.

210. The WWC does not compute effect sizes for 
single-case design studies. These studies do 
not affect the evidence level because the 
single-case design studies related to this 
recommendation, as a whole do not meet 

WWC requirements for combining studies in 
a summary rating.

211. This practice guide only reviewed the instruc-
tion involving change/equalize word prob-
lems. The panel believed that this provided 
the most rigorous approach of reviewing 
the study design, and the instruction was 
sufficient to appropriately test the impact 
of monitoring and reflecting for change/
equalize problems.

212. This practice guide only reviewed the instruc-
tion involving addition word problems. The 
panel believed that this provided the most 
rigorous approach of reviewing the study 
design, and the instruction was sufficient to 
appropriately test the impact of monitoring 
and reflecting for addition problems.

213. The findings listed here are from the “meta-
cognitive strategy instruction.” The study 
includes another single-case design evalu-
ation of a similar intervention (“cognitive 
strategy instruction”). The findings are 
similar.

214. Xin et al. (2005); Jitendra et al. (2009); 
Jitendra et al. (2010); Jitendra et al. 
(1998); Selke et al. (1991). There was 
also one single-case design study that met 
WWC single-case design pilot standards with 
reservations (Jitendra et al., 1999). This 
study found no evidence that schematic 
diagram instruction improved achievement 
(Jitendra et al., 1999). This study does not 
affect the evidence level.

215. Xin et al. (2005); Jitendra et al. (1998).
216. Xin et al. (2005); Jitendra et al. (2009); 

Jitendra et al. (2010); Jitendra et al. (1998).
217. Selke et al. (1991).
218. Terwel et al. (2009).
219. Note that a study in the Netherlands found 

higher achievement when students designed 
and developed their own representations, 
with assistance from their teachers, than 
when students simply used visuals provided 
by their teachers and textbooks (Terwel et 
al., 2009).

220. Selke et al. (1991); Xin et al. (2005); Jiten-
dra et al. (2009); Jitendra et al. (2010); 
Jitendra et al. (1998).

221. Xin et al. (2005); Jitendra et al. (2009); 
Jitendra et al. (2010); Jitendra et al. (1998).
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222. Selke et al. (1991). 
223. Xin et al. (2005); Jitendra et al. (2009); 

Jitendra et al. (2010); Jitendra et al. (1998).
224. Xin et al. (2005, p. 185).
225. Jitendra et al. (1998).
226. Jitendra et al., 1999.
227. The study examined instruction on both one-

step and two-step word problems (Jitendra 
et al., 1999). However, this practice guide 
only reviewed the instruction involving one-
step word problems. The panel believed that 
this approach enabled the most rigorous 
review of study design and that the instruction 
was sufficient to appropriately test the impact 
of visuals. The visual instruction in the study 
did have a positive effect on two-step word 
problem achievement, but this outcome did 
not meet WWC single-case design standards. 

228. Xin et al. (2005); Jitendra et al. (1998).
229. Xin et al. (2005).
230. Selke et al. (1991).
231. All outcomes involved the procedural knowl-

edge domain.
232. Eighty-two percent of participants were in 

grade 4 or 5 at the time of the study.
233. Other important components of the inter-

vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

234. Other important components of this inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

235. Students were asked to provide the correct 
arithmetic sentence but not to solve the 
problem.

236. Another maintenance test was administered 
one to two weeks after the intervention. 
Results from that test are not reported here 
because they do not meet WWC standards; 
there was high attrition, and the authors 
failed to adjust for baseline differences.

237. All outcomes involved the procedural knowl-
edge domain.

238. The WWC does not compute effect sizes for 
single-case design studies. This study does 
not affect the evidence level because the 
single-case design studies related to this 
recommendation, as a whole do not meet 
WWC requirements for combining studies in 
a summary rating.

239. This practice guide only reviewed the instruc-
tion involving one-step word problems. The 
panel believed that this approach enabled the 
most rigorous review of the study design, 
and the instruction was sufficient to appro-
priately test the impact of visuals.

240. With a few exceptions, studies relevant to 
the other recommendations in this guide 
only measured student improvement in pro-
cedural knowledge. In contrast, many of the 
studies relevant to this recommendation also 
examined outcomes measuring conceptual 
knowledge and procedural flexibility. The 
panel believes multiple-strategy interven-
tions are most likely to immediately affect 
students’ procedural flexibility, which is the 
most closely aligned competency.

241. Star and Rittle-Johnson (2008); Ainsworth 
et al. (1998); Star and Seifert (2006); Rit-
tle-Johnson and Star (2007); Star and 
Rittle-Johnson (2009a); Rittle-Johnson 
and Star (2009). The exception is Rittle-
Johnson et al. (2009).

242. The following studies reported positive 
effects for procedural knowledge: Perels 
et al. (2005); Rittle-Johnson and Star 
(2007); Ginsburg-Block and Fantuzzo 
(1998); Jitendra et al. (2009); Jitendra et 
al. (2010). The following studies found no 
effects for procedural knowledge: Star and 
Rittle-Johnson (2009a); Rittle-Johnson 
and Star (2009). Star and Rittle-Johnson 
(2008), Star and Seifert (2006), and Rittle-
Johnson and Star (2009) found negative 
effects; each of these three studies involved 
students with no or minimal algebra knowl-
edge solving algebra problems. Rittle-John-
son et al. (2009) found that the negative 
effects did not exist for students who had 
demonstrated minimal algebra knowledge. 

243. Rittle-Johnson and Star (2007) and Star 
and Rittle-Johnson (2009a) found no 
effects on conceptual knowledge, while 
Rittle-Johnson and Star (2009) found a 
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positive effect. Rittle-Johnson et al. (2009) 
found negative effects for students with no 
demonstrated pretest abilities, but no dis-
cernible effects for students who had at least 
minimal algebra knowledge on the pretest.

244. Jitendra et al. (2009).
245. Jitendra et al. (2010).
246. Perels et al. (2005).
247. Star and Rittle-Johnson (2008).
248. Rittle-Johnson and Star (2007); Rittle-

Johnson and Star (2009); Star and Rittle-
Johnson (2009a).

249. Rittle-Johnson and Star (2009).
250. Rittle-Johnson and Star (2007); Star 

and Rittle-Johnson (2009a). The control 
conditions in these studies are only slightly 
different than the control condition in Rit-
tle-Johnson and Star (2009), where the 
different worked-example problems were 
presented on the same page.

251. Rittle-Johnson and Star (2009).
252. Rittle-Johnson and Star (2009).
253. The interaction term in the statistical model 

was always positive and was statistically 
significant for procedural knowledge.

254. Star and Rittle-Johnson (2008); Gins-
burg-Block and Fantuzzo (1998).

255. Some minor differences also existed between 
study samples and content. The study with 
positive findings involved 3rd- and 4th-
graders (more than half were 4th-graders) 
solving numbers and operations problems, 
while the study with the negative result 
involved students entering the 7th- and 
8th-grades solving algebra problems.

256. Ginsburg-Block and Fantuzzo (1998).
257. Star and Rittle-Johnson (2008).
258. Star and Seifert (2006).
259. Ainsworth et al. (1998).
260. Other important components of the inter-

vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

261. Other important components of the inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 

component or a combination of components 
produced any differences between groups.

262. The authors do not report the number of 
students or the attrition for this comparison 
and did not respond to a WWC request for 
this information. The WWC believes high 
attrition was unlikely but was unable to 
verify that information. To compute effect 
sizes and statistical significance, the WWC 
made conservative assumptions regarding 
sample size.

263. Other important components of the inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

264. A second comparison from this study, using 
a different intervention but the same control 
group, is reported in the Students Generating 
and Sharing Multiple Strategies section of 
this table.

265. This posttest includes some near-transfer 
items.

266. The effect sizes and statistical significance 
reported here do not include the imputed 
student data reported in the study.

267. The effect sizes and statistical significance 
reported here do not include the imputed 
student data reported in the study. This 
study also included maintenance outcomes 
that are not reported here. 

268. The effect sizes and statistical significance 
reported here do not include the imputed 
student data reported in the study. This 
study also included maintenance outcomes 
that are not reported here.

269. The study also includes a computation test, 
but those results are not relevant for this 
practice guide.

270. Thirteen dyads (i.e., two people) made up 
each group. While no attrition occurred at 
the dyad level, some attrition took place at 
the individual student level. The authors did 
not respond to a request for this informa-
tion; thus, the actual number of students is 
likely smaller than 52.

271. This practice guide only reports results from 
the word problems posttest. A computation 
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test also exists, but those results are not 
relevant for this practice guide.

272. When only one member of the dyad took the 
posttest, the authors used that score as the 
dyad score. These effect sizes were calcu-
lated using dyad-level (two-person) standard 
deviations that are smaller than the student-
level standard deviations used to calculate 
other effect sizes in this practice guide. 
These effect sizes are larger than they would 
be if student-level standard deviations were 
used. Consistent with the WWC Handbook, 
the effect size, although reported here, was 
not used when determining the level of evi-
dence for this recommendation. However, 
the statistical significance of this finding 
was considered when determining the level 
of evidence, because cluster-level findings 
tend to be statistically underpowered.

273. This study was a randomized controlled trial 
with unknown attrition. (The author did not 
respond to requests for more information.) 
For this comparison, baseline equivalence 
did not meet WWC standards. However, this 
comparison meets strong correlational cri-
teria because the statistical model included 
a pretest covariate.

274. Other important components of this inter-
vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 
component or a combination of components 
produced any differences between groups.

275. Thirteen dyads (i.e., two people) made up 
each group. While no attrition occurred at 
the dyad level, some attrition took place at 
the individual student level. The authors did 
not respond to a request for this informa-
tion; thus, the actual number of students is 
likely smaller than 52.

276. This practice guide only reports results from 
the word problems posttest. A computation 
test also exists, but those results are not 
relevant for this practice guide.

277. When only one member of the dyad took the 
posttest, the authors used that score as the 
dyad score. These effect sizes were calcu-
lated using dyad-level (two-person) standard 
deviations that are smaller than the student-
level standard deviations used to calculate 
other effect sizes in this practice guide. 

These effect sizes are larger than they would 
be if student-level standard deviations were 
used. Consistent with the WWC Handbook, 
the effect size, although reported here, was 
not used when determining the level of evi-
dence for this recommendation. However, 
the statistical significance of this finding 
was considered when determining the level 
of evidence, because cluster-level findings 
tend to be statistically underpowered.

278. A second comparison from this study, using 
a different intervention but the same con-
trol group, is reported in the Instruction in 
Multiple Strategies section of this table.

279. Huinker (1992); Koedinger and Ander-
son (1998); Koedinger and McLaughlin 
(2010).

280. Huinker (1992).
281. Koedinger and Anderson (1998); Koed-

inger and McLaughlin (2010).
282. Tajika et al. (2007); Booth et al. (2010); 

Mwangi and Sweller (1998).
283. Huinker (1992).
284. In two other outcomes, the study did not 

meet WWC standards.
285. Tajika et al. (2007); Booth et al. (2010); 

Mwangi and Sweller (1998).
286. While 9th-grade students are outside the 

grade range for this practice guide, the 
panel believes results from this sample are 
likely to apply to middle school students 
involved in algebra problem solving.

287. The panel had concerns about the outcome 
measures. Only one of the four studies pro-
vided information on reliability of outcome 
measures, and none of the measures was 
standardized. The outcome measure in one 
study, Mwangi and Sweller (1998), had 
only three problems.

288. Booth et al. (2010).
289. Tajika et al. (2007).
290. Mwangi and Sweller (1998).
291. Koedinger and Anderson (1998). While 

high school students are outside the grade 
range for this practice guide, the panel 
believes results from this sample are likely 
to apply to middle school students involved 
in algebraic problem solving.

292. Intermediate arithmetic problems are problems 
with the same mathematical representation as 



( 80 )

Endnotes (continued)Endnotes (continued)

an algebra problem but in which students are 
provided with values for the unknown and are 
asked to solve for the result.

293. The authors did not report enough informa-
tion to enable the WWC to confirm statistical 
significance or calculate effect sizes.

294. Koedinger and McLaughlin (2010).
295. All outcomes, except for Booth et al. (2010), 

involved the procedural knowledge domain.
296. Other important components of this inter-

vention are not listed here. Because of these 
other components, the panel cannot deter-
mine whether one particular intervention 

component or a combination of components 
produced any differences between groups.

297. Two other outcome measures did not meet 
WWC standards because the samples had 
high attrition and did not demonstrate base-
line equivalence.

298. The students were all in Algebra I classrooms.
299. The study also measured procedural knowl-

edge. However, the internal consistency of 
that outcome did not meet WWC reliability 
standards, and results are not reported here.

300. Three experiments made up this study. Only 
the sample for the third experiment met the 
age requirements for this practice guide.

301. The study was conducted the summer after 
the students completed an algebra course.

302. Outcome items were interspersed with 
instructional problems. Specifically, all par-
ticipants first received two practice prob-
lems, then one outcome item, then one 
practice problem, then one outcome item, 
then one practice problem, then one out-
come item.
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