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The Institute of Education Sciences (IES) publishes practice guides in education to bring 
the best available evidence and expertise to bear on current challenges in education. Authors of 
practice guides combine their expertise with the findings of rigorous research, when available, to 
develop specific recommendations for addressing these challenges. The authors rate the strength 
of the research evidence supporting each of their recommendations. See Appendix A for a full 
description of practice guides. 

The goal of this practice guide is to offer educators specific evidence-based recommendations that 
address the challenge of improving students’ understanding of fraction concepts in kindergarten 
through 8th grade. The guide provides practical, clear information on critical topics related to the 
teaching of fractions and is based on the best available evidence as judged by the authors. 

Practice guides published by IES are offered on our website at whatworks.ed.gov/publications/ 
practiceguides. Practice guides published to date are shown in the following table. 
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Structuring Out-of-School Time to Improve 
Academic Achievement (July 2009)  
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Review of Recommendations 

Recommendation 1. 
Build on students’ informal understanding of sharing and proportionality to develop initial fraction concepts. 
• Use equal-sharing activities to introduce the concept of fractions. Use sharing activities that involve 

dividing sets of objects as well as single whole objects. 

• Extend equal-sharing activities to develop students’ understanding of ordering and equivalence 
of fractions. 

• Build on students’ informal understanding to develop more advanced understanding of proportional 
reasoning concepts. Begin with activities that involve similar proportions, and progress to activities 
that involve ordering different proportions. 

Recommendation 2. 
Help students recognize that fractions are numbers and that they expand the number system beyond whole 
numbers. Use number lines as a central representational tool in teaching this and other fraction concepts 
from the early grades onward. 
• Use measurement activities and number lines to help students understand that fractions are numbers, 

with all the properties that numbers share. 

• Provide opportunities for students to locate and compare fractions on number lines. 

• Use number lines to improve students’ understanding of fraction equivalence, fraction density (the con
cept that there are an infinite number of fractions between any two fractions), and negative fractions. 

• Help students understand that fractions can be represented as common fractions, decimals, and per
centages, and develop students’ ability to translate among these forms. 

Recommendation 3. 
Help students understand why procedures for computations with fractions make sense. 
• Use area models, number lines, and other visual representations to improve students’ understanding 

of formal computational procedures. 

• Provide opportunities for students to use estimation to predict or judge the reasonableness of 
answers to problems involving computation with fractions. 

• Address common misconceptions regarding computational procedures with fractions. 

• Present real-world contexts with plausible numbers for problems that involve computing with fractions. 

Recommendation 4. 
Develop students’ conceptual understanding of strategies for solving ratio, rate, and proportion problems 
before exposing them to cross-multiplication as a procedure to use to solve such problems. 
• Develop students’ understanding of proportional relations before teaching computational procedures 

that are conceptually difficult to understand (e.g., cross-multiplication). Build on students’ developing 
strategies for solving ratio, rate, and proportion problems. 

• Encourage students to use visual representations to solve ratio, rate, and proportion problems. 

• Provide opportunities for students to use and discuss alternative strategies for solving ratio, rate, 
and proportion problems. 

Recommendation 5. 
Professional development programs should place a high priority on improving teachers’ understanding 
of fractions and of how to teach them. 
• Build teachers’ depth of understanding of fractions and computational procedures involving fractions. 

• Prepare teachers to use varied pictorial and concrete representations of fractions and fraction operations. 

• Develop teachers’ ability to assess students’ understandings and misunderstandings of fractions. 
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Levels of Evidence for Practice Guides 

Institute of Education Sciences Levels of Evidence for Practice Guides 

This section provides information about the role of evidence in Institute of Education Sciences’ 
(IES) What Works Clearinghouse (WWC) practice guides. It describes how practice guide panels 

determine the level of evidence for each recommendation and explains the criteria for each of the 
three levels of evidence (strong evidence, moderate evidence, and minimal evidence). 

The level of evidence assigned to each recom
mendation in this practice guide represents 
the panel’s judgment of the quality of the 
existing research to support a claim that 
when these practices were implemented in 
past research, positive effects were observed 
on student outcomes. After careful review of 
the studies supporting each recommendation, 
panelists determine the level of evidence for 
each recommendation using the criteria in 
Table 1 and the evidence heuristic depicted 
in Appendix E. The panel first considers the 
relevance of individual studies to the recom
mendation, and then discusses the entire 
evidence base, taking into consideration: 

•	 the number of studies 

•	 the quality of the studies 

•	 whether the studies represent the range 
of participants and settings on which the 
recommendation is focused 

•	 whether findings from the studies can be 
attributed to the recommended practice 

•	 whether findings in the studies are consis
tently positive 

A rating of strong evidence refers to consis
tent evidence that the recommended strate
gies, programs, or practices improve student 
outcomes for a wide population of students. 
In other words, there is strong causal and 
generalizable evidence. 

A rating of moderate evidence refers either 
to evidence from studies that allow strong 

causal conclusions but cannot be generalized 
with assurance to the population on which a 
recommendation is focused (perhaps because 
the findings have not been widely replicated) 
or to evidence from studies that are gener
alizable but have some causal ambiguity. It 
also might be that the studies that exist do 
not specifically examine the outcomes of 
interest in the practice guide although they 
may be related. 

A rating of minimal evidence suggests that 
the panel cannot point to a body of research 
that demonstrates the practice’s positive 
effect on student achievement. In some cases, 
this simply means that the recommended 
practices would be difficult to study in a rigor
ous, experimental fashion;1 in other cases, it 
means that researchers have not yet studied 
this practice, or that there is weak or con
flicting evidence of effectiveness. A minimal 
evidence rating does not indicate that the 
recommendation is any less important than 
other recommendations with a strong evi
dence or moderate evidence rating. 

Following WWC guidelines, improved outcomes 
are indicated by either a positive statistically 
significant effect or a positive substantively 
important effect size.2 The WWC defines 
substantively important, or large, effects on 
outcomes to be those with effect sizes greater 
than 0.25 standard deviations. In this guide, 
the panel discusses substantively important 
findings as ones that contribute to the evidence 
of practices’ effectiveness, even when those 
effects are not statistically significant. 

( 3 ) 



 

 

 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	  
 

 

  
 
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 

 
 

	 	 	 	 	 	 	 	 	 	 	 	
 
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 

Levels of Evidence for Practice Guides continued 

Table 1. Institute of Education Sciences levels of evidence for practice guides 

Strong Evidence 

A rating of strong evidence means high-quality causal research links this practice with positive results in 
schools and classrooms. The research rules out other causes of the positive results, and the schools and class
rooms are similar to those targeted by this guide. Strong evidence is demonstrated when an evidence base has 
the following properties: 

•	 High internal validity: the evidence base consists of high-quality causal designs that meet WWC standards 
with or without reservations.3 

• High external validity: the evidence base consists of a variety of studies with high internal validity that repre
sent the population on which the recommendation is focused.4 

•	 Consistent positive effects on relevant outcomes without contradictory evidence (i.e., no statistically signifi
cant negative effects) in studies with high internal validity. 

•	 Direct relevance to scope (i.e., ecological validity), including relevant context (e.g., classroom vs. laboratory), 
sample (e.g., age and characteristics), and outcomes evaluated. 

•	 Direct test of the recommendation in the studies or the recommendation is a major component of the inter
ventions evaluated in the studies. 

•	 The panel has a high degree of confidence that this practice is effective. 

•	 In the particular case of recommendations on assessments, the evidence base meets The Standards for 
Educational and Psychological Testing (American Educational Research Association, American Psychological 
Association, and National Council on Measurement in Education, 1999). 

Moderate Evidence 

A rating of moderate evidence means high-quality causal research links this practice with positive results in 
schools and classrooms. However, the research may not adequately rule out other causes of the positive results, 
or the schools and classrooms are not similar to those targeted by this guide. Moderate evidence is demonstrated 
when an evidence base has the following properties: 

•	 High internal validity but moderate external validity (i.e., studies that support strong causal conclusions, but 
generalization is uncertain) OR studies with high external validity but moderate internal validity (i.e., studies 
that support the generality of a relation, but the causality is uncertain). 

•	 The research may include studies meeting WWC standards with or without reservations with small sample 
sizes and/or other conditions of implementation or analysis that limit generalizability. 

•	 The research may include studies that support the generality of a relation but do not meet WWC stan 
dards;5 however, they have no major flaws related to internal validity other than lack of demonstrated 
equivalence at pretest for quasi-experimental design studies (QEDs). QEDs without equivalence must 
include a pretest covariate as a statistical control for selection bias. These studies must be accompanied 
by at least one relevant study meeting WWC standards with or without reservations. 

•	 A preponderance of positive effects on relevant outcomes. Contradictory evidence (i.e., statistically signifi 
cant negative effects) must be discussed by the panel and considered with regard to relevance to the scope 
of the guide and intensity of the recommendation as a component of the intervention evaluated. If outcomes 
are out of the scope of the guide, this also must be discussed. 

•	 The panel determined that the research does not rise to the level of strong evidence but is more compelling 
than a minimal level of evidence. 

•	 In the particular case of recommendations on assessments, there must be evidence of reliability that meets 
The Standards for Educational and Psychological Testing, but evidence of validity may be from samples not 
adequately representative of the population on which the recommendation is focused. 

(continued) 
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Levels of Evidence for Practice Guides continued 

Table 1. Institute of Education Sciences levels of evidence for practice guides (continued) 

Minimal Evidence 

A rating of minimal evidence means the panel concluded the recommended practice should be adopted; how
ever, the panel cannot point to a body of causal research that demonstrates the recommendation’s positive 
effect and that rises to the level of moderate or strong evidence. 

In terms of the levels of evidence indicated 
in Table 1, the panel relied on WWC evidence 
standards to assess the quality of evidence 
supporting educational programs and 
practices. WWC evaluates evidence for the 
causal validity of instructional programs 
and practices according to WWC standards. 

Information about these standards is available 
at http://ies.ed.gov/ncee/wwc/pdf/wwc_pro
cedures_v2_standards_handbook.pdf. Eligible 
studies that meet WWC evidence standards 
or meet evidence standards with reservations 
are indicated by bold text in the endnotes 
and references pages. 

( 5 ) 
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Introduction 

Introduction to the Developing Effective Fractions Instruction 
for Kindergarten Through 8th Grade Practice Guide 

This section provides an overview of the importance of developing effective fractions instruc
tion for kindergarten through 8th grade and explains key parameters considered by the panel 

in developing the practice guide. It also summarizes the recommendations for readers and con
cludes with a discussion of the research supporting the practice guide. 

U.S. students’ mathematics skills have fallen 
short for many years, with the ramifications of 
this inadequate knowledge widely recognized. 

The 1983 report A Nation at Risk related 
America’s safety and prosperity to its 
mathematical competence and warned that 
American students’ mathematical knowledge 
was insufficient to meet the challenges of 
the modern world. More than 25 years later, 
U.S. students’ mathematical achievement 
continues to lag far behind that of students in 
East Asia and much of Europe.6 Only a small 
percentage of U.S. students possess the math
ematics knowledge needed to pursue careers 
in science, technology, engineering, or math
ematics (STEM) fields.7 Many high school 
graduates lack the mathematical competence 
for a wide range of well-paying jobs in today’s 
economy.8 Moreover, large gaps in mathemat
ics knowledge exist among students from dif
ferent socioeconomic backgrounds and racial 
and ethnic groups within the United States.9 

These disparities hurt the national economy 
and also limit tens of millions of Americans’ 
occupational and financial opportunities.10 

Poor understanding of fractions is a critical 
aspect of this inadequate mathematics knowl
edge. Knowledge of fractions differs even 
more between students in the United States 
and students in East Asia than does knowl
edge of whole numbers.11 This learning gap is 
especially problematic because understanding 
fractions is essential for algebra and other 
more advanced areas of mathematics.12 

Teachers are aware of students’ difficulty 
in learning about fractions and often are 
frustrated by it. In a recent national poll, 
Algebra I teachers rated their students as 

having “very poor preparation in rational 
numbers and operations involving fractions 
and decimals.”13 The algebra teachers ranked 
poor understanding of fractions as one of the 
two most important weaknesses in students’ 
preparation for their course. 

Many examples illustrate American students’ 
weak understanding of fractions. On the 2004 
National Assessment of Educational Progress 
(NAEP), 50% of 8th-graders could not order 
three fractions from least to greatest.14 The 
problem is not limited to rational numbers 
written in common fraction notation. On the 
2004 NAEP, fewer than 30% of 17-year-olds 
correctly translated 0.029 as 29/1000.15 The 
same difficulty is apparent in one-on-one 
testing of students in controlled experimental 
settings: when asked which of two decimals, 
0.274 and 0.83, is greater, most 5th- and 6th
graders choose 0.274.16 

These examples and others led the authors 
of this guide to conclude the following: 

A high percentage of U.S. students lack 
conceptual understanding of fractions, 
even after studying fractions for several 
years; this, in turn, limits students’ ability 
to solve problems with fractions and to 
learn and apply computational procedures 
involving fractions. 

The lack of conceptual understanding has 
several facets, including 

• Not viewing fractions as numbers at all, but 
rather as meaningless symbols that need to 
be manipulated in arbitrary ways to produce 
answers that satisfy a teacher. 

( 6 ) 



 

	 	 	 	 	
 

       

 
 

	 	 	 	 	 	
      

      
       

 
 

 

 
 

       
 

 
     

 
 

      
      

    
 

 
 

     

 
      

    

      
 

    
 
 

     
     

 
 

 
 

 
  

 

   
 

   

 
 

    
      

 
 

     
 

 
 

     

 

      
  

  
    

  
 

  
 

    
       

 
     

 

Introduction continued 

•	 Focusing on numerators and denominators 
as separate numbers rather than thinking of 
the fraction as a single number. Errors such 
as believing that 3/8 > 3/5 arise from compar
ing the two denominators and ignoring the 
essential relation between each fraction’s 
numerator and its denominator. 

• Confusing properties of fractions with 
those of whole numbers. This is evident 
in many high school students’ claim that 
just as there is no whole number between 
5 and 6, there is no number of any type 
between 5/7 and 6/7.17

This practice guide presents five recommen
dations intended to help educators improve 
students’ understanding of, and problem-
solving success with, fractions. Recommen
dations progress from proposals for how to 
build rudimentary understanding of fractions 
in young children; to ideas for helping older 
children understand the meaning of fractions 
and computations that involve fractions; to 
proposals intended to help students apply 
their understanding of fractions to solve prob
lems involving ratios, rates, and proportions. 
Improving students’ learning about fractions 
will require teachers’ mastery of the subject 
and their ability to help students master 
it; therefore, a recommendation regarding 
teacher education also is included. 

Recommendations in the practice guide were 
developed by a panel of eight researchers and 
practitioners who have expertise in different 
aspects of the topic. Panelists include a math
ematician active in issues related to math
ematics teacher education; three mathematics 
educators, one of whom has been president 
of the National Council of Teachers of Math
ematics; two psychologists whose research 
focuses on how children learn mathemat
ics; and two practitioners who have taught 
mathematics in elementary and middle school 
classrooms and supervised other elementary 
and middle school mathematics teachers. 
Panel members worked collaboratively to 
develop recommendations based on the best 
available research evidence and on their 

combined experience and expertise regarding 
mathematics teaching and learning. 

Scope of the practice guide 

Writing this guide required decisions regard
ing the intended audience, which grade levels 
to examine, which skills and knowledge to 
consider, and which terms to use in describ
ing the research and recommendations. The 
panel consistently chose to make the guide 
as inclusive as possible. 

Audience and grade level. The intended 
audience is elementary and middle school 
teachers, mathematics supervisors, teacher 
leaders, specialists, coaches, principals, par
ents, teacher educators, and others interested 
in improving students’ mathematics learning. 
Grade levels emphasized are kindergarten 
through 8th grade; almost all instruction in 
fractions takes place within this period, and 
this is the population studied in most of the 
available research. The guide focuses not 
only on computation with fractions, but also 
on skills that reflect understanding of frac
tions, such as estimating fractions’ positions 
on number lines and comparing the sizes of 
fractions, because lack of such understanding 
underlies many of the other difficulties stu
dents have with fractions. 

Content. This document uses the term 
fractions rather than rational numbers. The 
term fractions refers to the full range of ways 
of expressing rational numbers, including 
decimals, percentages, and negative fractions. 
The panel makes recommendations on this 
full range of rational numbers because students’ 
understanding of them is critical to their use 
of fractions in context. 

The guide’s inclusiveness is further 
evident in its emphasis on the need for 
students to be able to perform computa
tional operations with fractions; to under
stand these computational operations; 
and to understand, more broadly, what 
fractions represent. 
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Introduction continued 

To help students understand the full range 
of fractions, the panel suggests educators 
effectively convey the following: 

•	 Common fractions, decimals, and percents 
are equivalent ways of expressing the 
same number (42/100 = 0.42 = 42%). 

•	 Whole numbers are a subset of rational 
numbers. 

•	 Any fraction can be expressed in an 
infinite number of equivalent ways 
(3/4 = 6/8 = 9/12 = 0.75 = 75%, and so on). 

Both the strengths students bring to the task 
of learning about fractions and the chal
lenges that often make learning difficult are 
covered in this guide. Children enter school 
with a rudimentary understanding of shar
ing and proportionality, concepts on which 
teachers can build to produce more advanced 
understandings of fractions.18 The scope of 
the guide includes describing these early 
developing concepts and how more advanced 
understanding can be built on them. The 
guide also describes common misconceptions 
about fractions that interfere with students’ 
learning—for example, the misconception 
that multiplying two numbers must result in 
a larger number—and how such misconcep
tions can be overcome. 

Finally, the guide addresses not only the need 
to improve students’ understanding of frac
tions, but also the need to improve teachers’ 
understanding of them. Far too many U.S. 
teachers can apply standard computational 
algorithms to solve problems involving frac
tions but do not know why those algorithms 
work or how to evaluate and explain why 
alternative procedures that their students 
generate are correct or incorrect.19 Similarly, 
many teachers can explain part-whole inter
pretations of fractions but not other essential 
interpretations, such as considering fractions 
as measures of quantities that offer precision 
beyond that offered by whole numbers or 
viewing fractions as quotients. 

U.S. teachers’ understanding of fractions lags 
far behind that of teachers in nations that 
produce better student learning of fractions, 
such as Japan and China.20 Although some 
of the information in this guide is aimed at 
deepening teachers’ understanding of frac
tions, professional development activities that 
improve teachers’ understanding of fractions 
and computational procedures that involve 
fractions also seem essential. 

Summary of the recommendations 

This practice guide includes five recommen
dations for improving students’ learning of 
fractions. The first recommendation is aimed 
at building the foundational knowledge of 
young students, the next three target older 
students as they advance through their 
elementary and middle school years, and the 
final recommendation focuses on increasing 
teachers’ ability to help students understand 
fractions. Although the recommendations 
vary in their particulars, all five reflect 
the perspective that conceptual under
standing of fractions is essential for stu
dents to learn about the topic, to remember 
what they learned, and to apply this knowl
edge to solve problems involving fractions. 
Educators may profitably adopt some of the 
recommendations without adopting all of 
them, but we believe that the greatest benefit 
will come from adopting all of the recommen
dations that are relevant to their classes. 

•	 Recommendation 1 is to build on stu
dents’ informal understanding of sharing 
and proportionality to develop initial 
fraction concepts. Learning is often most 
effective when it builds on existing knowl
edge, and fractions are no exception. By 
the time children begin school, most have 
developed a basic understanding of shar
ing that allows them to divide a region or 
set of objects equally among two or more 
people. These sharing activities can be 
used to illustrate concepts such as halves, 
thirds, and fourths, as well as more gen
eral concepts relevant to fractions, such 

( 8 ) 



 

 
 

        
    

 
  

 
  

  
 

 
 

      
 

 
 
 

 
     

 
    

     

 
 
 

       

 
 

 
       

 

  

     
     

 
 

       
      

        
      

     

 

    
     

 
 

    
 

 
 

 
 

       
     

 
     

 
     

     
 

     
 

   
 
 
 

 
 

      
 

 
 

    

      

 
     

 
 
 

     
 

 

Introduction continued 

as that increasing the number of people 
among whom an object is divided results 
in a smaller fraction of the object for each 
person. Similarly, early understanding 
of proportions can help kindergartners 
compare, for example, how one-third 
of the areas of a square, rectangle, and 
circle differ. 

•	 Recommendation 2 is to ensure that 
students know that fractions are numbers 
that expand the number system beyond 
whole numbers, and to use number lines 
as a key representational tool to convey 
this and other fraction concepts from the 
early grades onward. Although it seems 
obvious to most adults that fractions are 
numbers, many students in middle school 
and beyond cannot identify which of two 
fractions is greater, indicating that they 
have cursory knowledge at best. Number 
lines are particularly advantageous for 
assessing knowledge of fractions and for 
teaching students about them. They pro
vide a common tool for representing the 
sizes of common fractions, decimals, and 
percents; positive and negative fractions; 
fractions that are less than one and greater 
than one; and equivalent and nonequiva
lent fractions. Number lines also are a 
natural way of introducing students to the 
idea of fractions as measures of quantity, 
an important idea that needs to be given 
greater emphasis in many U.S. classrooms. 

•	 Recommendation 3 is to help students 
understand why procedures for computa
tions with fractions make sense. Many 
U.S. students, and even teachers, cannot 
explain why common denominators are 
necessary to add and subtract fractions 
but not to multiply and divide them. Few 
can explain the “invert and multiply rule,” 
or why dividing by a fraction can result in 
a quotient larger than the number being 
divided. Students sometimes learn com
putational procedures by rote, but they 
also often quickly forget or become con
fused by these routines; this is what tends 

to happen with fractions algorithms. For
getting and confusing algorithms occur 
less often when students understand how 
and why computational procedures yield 
correct answers. 

•	 Recommendation 4 involves focusing 
on problems involving ratios, rates, and 
proportions. These applications of fraction 
concepts often prove difficult for students. 
Illustrating how diagrams and other visual 
representations can be used to solve ratio, 
rate, and proportion problems and teach
ing students to use them are important for 
learning algebra. Also useful is providing 
instruction on how to translate state
ments in word problems into mathemati
cal expressions involving ratio, rate, and 
proportion. These topics include ways in 
which students are likely to use fractions 
throughout their lives; it is important 
for them to understand the connection 
between these applied uses of fractions 
and the concepts and procedures involving 
fractions that they learn in the classroom. 

•	 Recommendation 5 urges teacher 
education and professional development 
programs to emphasize how to improve 
students’ understanding of fractions and 
to ensure that teachers have sufficient 
understanding of fractions to achieve this 
goal. Far too many teachers have difficulty 
explaining interpretations of fractions 
other than the part-whole interpreta
tion, which is useful in some contexts 
but not others. Although many teachers 
can describe conventional algorithms for 
solving fractions problems, few can jus
tify them, explain why they yield correct 
answers, or explain why some nonstan
dard procedures that students generate 
yield correct answers despite not looking 
like a conventional algorithm. Greater 
understanding of fractions, knowledge of 
students’ conceptions and misconceptions 
about fractions, and effective practices for 
teaching fractions are critically important 
for improving classroom instruction. 

( 9 ) 
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Introduction continued

Use of research

The recommendations in this practice guide 
are based on numerous types of evidence, 
including national and international assess-
ments of students’ mathematical knowledge, 
a survey of teachers’ views of the greatest 
problems in their students’ preparation for 
learning algebra, mathematicians’ analyses 
of key concepts for understanding fractions, 
descriptive studies of successful and unsuc-
cessful fractions learners, and controlled 
experimental evaluations of interventions 
designed to improve learning of fractions. 

The research base for the guide was identified 
through a comprehensive search for studies 
over the past 20 years that evaluated teaching 
and learning about fractions. This search was 
done for a large number of keywords related 
to fractions teaching and learning that were 
suggested by the panel members; the results 
were supplemented by specific studies known 
to panel members that were not identified by 
the database search, including earlier works. 
The process yielded more than 3,000 citations. 
Of these, 132 met the WWC criteria for review, 
33 met the causal validity standards of the 
WWC, and 20 of the 33 met the causal validity 
standards of the WWC and were relevant to the 
panel’s recommendations.

In some cases, recommendations are based on 
such rigorous research. But when research was 
rare or did not meet WWC standards, the rec-
ommendations reflect what this guide’s panel 
believes are best practices, based on instruc-
tional approaches having been successfully 
implemented in case studies or in curricula that 
have not been rigorously evaluated. The panel 
could not fulfill its wish to base all recommen-
dations on studies that met WWC standards, in 
large part because far less research is available 
on fractions than on development of skills and 
concepts regarding whole numbers. For exam-
ple, the 2nd Handbook of Research on Mathe-
matics Teaching and Learning (National Council 
of Teachers of Mathematics, 2007) includes 
109 citations of research published in 2000 or 
later on whole numbers but only nine citations 
of research on fractions published over the 
same period. High-quality studies testing the 
effectiveness of specific instructional techniques 
with fractions were especially scarce. A greater 
amount of high-quality research on fractions is 
clearly needed, especially studies that compare 
the effectiveness of alternative ways of teaching 
children about fractions. 

Table 2 shows each recommendation and the 
strength of the evidence that supports it as 
determined by the panel. Following the recom-
mendations and suggestions for carrying out 
the recommendations, Appendix D presents 
more information on the research evidence 
that supports each recommendation.



 

  

   
 

  
 
 

 

  

  
 

 

   
  

Introduction continued 

Table 2. Recommendations and corresponding levels of evidence 

Levels of Evidence 

Recommendation 
Minimal 
Evidence 

Moderate 
Evidence 

Strong 
Evidence 

1. Build on students’ informal understanding of sharing and 
proportionality to develop initial fraction concepts. 



2. Help students recognize that fractions are numbers and that 
they expand the number system beyond whole numbers. Use 
number lines as a central representational tool in teaching this 
and other fraction concepts from the early grades onward. 



3. Help students understand why procedures for computations 
with fractions make sense. 



4. Develop students’ conceptual understanding of strategies for 
solving ratio, rate, and proportion problems before exposing 
them to cross-multiplication as a procedure to use to solve 
such problems. 



5. Professional development programs should place a high 
priority on improving teachers’ understanding of fractions 
and of how to teach them. 
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Recommendation 1 

Build on students’ informal understanding of sharing 
and proportionality to develop initial fraction concepts. 
Students come to kindergarten with a rudimentary understanding of basic fraction concepts. 
They can share a set of objects equally among a group of people (i.e., equal sharing)21 and 
identify equivalent proportions of common shapes (i.e., proportional reasoning).22 

By using this early knowledge to introduce fractions, teachers allow students to build on what 
they already know. This facilitates connections between students’ intuitive knowledge and 
formal fraction concepts. The panel recommends using sharing activities to develop students’ 
understanding of ordering and equivalence relations among fractions. 

Sharing activities can introduce children to several of the basic interpretations of fractions 
discussed in the introduction. Sharing can be presented in terms of division—such as by 
partitioning 12 candies into four equally numerous groups. Sharing also can be presented in 
terms of ratios; for example, if three cakes are shared by two children, the ratio of the number 
of cakes to the number of children is 3:2. 

Although fractions are typically introduced by 1st or 2nd grade, both the sharing and the 
proportional reasoning activities described in this recommendation can begin as early as 
preschool or kindergarten. 

Summary of evidence: Minimal Evidence 

This recommendation is based on studies 
showing that students have an early under
standing of sharing and proportionality,23 

and on studies of instruction that use sharing 
scenarios to teach fraction concepts.24 How
ever, none of the studies that used sharing 
scenarios to teach fraction concepts met WWC 
standards. Despite the limited evidence, the 
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Recommendation 1 continued 

panel believes that students’ informal knowl
edge of sharing and proportionality provides 
a foundation for introducing and teaching 
fraction concepts. 

Equal sharing. Children have an early under
standing of how to create equal shares. By 
age 4, children can distribute equal numbers 
of equal-size objects among a small number 
of recipients, and the ability to equally share 
improves with age.25 Sharing a set of discrete 
objects (e.g., 12 grapes shared among three 
children) tends to be easier for young children 
than sharing a single object (e.g., a candy 
bar), but by age 5 or 6, children are reason
ably skilled at both.26 

Case studies show how an early understand
ing of sharing could be used to teach frac
tions to elementary students.27 In two studies, 
teachers posed story problems with sharing 
scenarios to teach fraction concepts such as 
equivalence and ordering, as well as fraction 
computation. The studies reported positive 
effects on fraction knowledge, but they do 
not provide rigorous evidence on the impact 
of instruction based on sharing activities. 

Proportional relations. The panel believes 
that instructional practices can build on 
young children’s rudimentary knowledge of 
proportionality to teach fraction concepts. 
This early understanding of proportionality 
has been demonstrated in different ways. By 
age 6, children can match equivalent propor
tions represented by different geometric 
figures and by everyday objects of different 
shapes.28 One-half is an important landmark 
in comparing proportions; children more 
often succeed on comparisons in which one 
proportion is more than half and the other is 
less than half, than on comparisons in which 
both proportions are more than half or both 
are less than half (e.g., comparing 1/3 to 3/5 
is easier than comparing 2/3 to 4/5).29 In addi
tion, children can complete analogies based 
on proportional relations—for example, half 
circle is to half rectangle as quarter circle is to 
quarter rectangle.30 

Although there is evidence that describes 
young children’s knowledge of proportionality, 
no rigorous studies that met WWC standards 
have examined whether this early-developing 
knowledge can be used to improve teaching 
of fraction concepts. 

How to carry out the recommendation 

1. Use equal-sharing activities to introduce the concept of fractions. Use sharing activi
ties that involve dividing sets of objects as well as single whole objects. 

The panel recommends that teachers offer a 
progression of sharing activities that builds 
on students’ existing strategies for dividing 
objects. Teachers should begin with activities 
that involve equally sharing a set of objects 
among a group of recipients and progress to 
sharing scenarios that require partitioning an 
object or set of objects into fractional parts. 
In addition, early activities should build on 
students’ halving strategy (dividing something 
into two equal sets or parts) before having 
students partition objects among larger num
bers of recipients. Students should be encour
aged to use counters (e.g., beans, tokens), 
create drawings, or rely on other representa
tions to solve these sharing problems; then 

teachers can introduce formal fraction names 
(e.g., one-third, one-fourth, thirds, quarters) 
and have children label their drawings to 
name the shared parts of an object (e.g., 1/3 or 
1/8 of a pizza). For optimal success, children 
should engage in a variety of such labeling 
activities, not just one or two. 

Sharing a set of objects. Teachers should 
initially have students solve problems that 
involve two or more people sharing a set of 
objects (see Figure 1). The problems should 
include sets of objects that can be evenly 
divided among sharers, so there are no 
remaining objects that need to be partitioned 
into fractional pieces. 
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Recommendation 1 continuedRecommendation 1 continued 

In these early sharing problems, teachers 
should describe the number of items and the 
number of recipients sharing those items, 
and students should determine how many 
items each person receives.31 Teachers might 
then pose the same problem with increasing 
numbers of recipients.32 It is important to 
emphasize that these problems require shar
ing a set of objects equally, so that students 
focus on giving each person the same num
ber of objects. 

Partitioning a single object. Next, teach
ers should pose sharing problems that result 
in students dividing one or more objects into 
equal parts. The focus of these problems 
shifts from asking students how many things 
each person should get to asking students 
how much of an object each person should 
get. For example, when one cookie is shared 
between two children, students have to think 

about how much of the cookie each child 
should receive. 

Teachers can begin with problems that 
involve multiple people sharing a single 
object (e.g., four people sharing an apple) and 
progress to problems with multiple people 
sharing a set of objects that must be divided 
into smaller parts to share equally (e.g., three 
people sharing four apples). Problems that 
involve sharing one object result in shares 
that are unit fractions (e.g., 1/3, 1/4, 1/9), whereas 
scenarios with multiple people and objects 
often result in non-unit fractions (e.g., 3/4).33 

This distinction between unit and non-unit 
fractions is important, because when frac
tions are reduced to lowest terms, non-unit 
fractions are composed of unit fractions 
(e.g., 3/4 = 1/4 + 1/4 + 1/4), but the opposite is 
not the case. Sharing situations that result in 
unit fractions provide a useful starting point 

Figure 1. Sharing a set of objects evenly among recipients 

( 14 ) 

Problem 

Three children want to share 12 cookies so that each child receives the same number of cookies. How 
many cookies should each child get? 

Examples of Solution Strategies 

Students can solve this problem by drawing three figures to represent the children and then drawing cook
ies by each figure, giving one cookie to the first child, one to the second, and one to the third, continu
ing until they have distributed 12 cookies to the three children, and then counting the number of cookies 
distributed to each child. Other students may solve the problem by simply dealing the cookies into three 
piles, as if they were dealing cards. 



 

 
 
 
 

  
 

        
   

 
 
 

    

    
 

 
  

 
 

 
 

   
      

 
 

 
 

 
 

 
       

 
 

           

      
 

 

 
 

 

     
  

      
 

Recommendation 1 continuedRecommendation 1 continued 

Figure 2. Partitioning both multiple and single objects 

Problem 

Two children want to share five apples that are the same size so that both have the same amount to eat. 
Draw a picture to show what each child should receive. 

Examples of Solution Strategies 

Students might solve this problem by drawing five 
circles to represent the five apples and two figures 
to represent the two children. Students then might 
draw lines connecting each child to two apples. 
Finally, they might draw a line partitioning the final 
apple into two approximately equal parts and draw 
a line from each part to the two children. Alterna
tively, as in the picture to the right, children might 
draw a large circle representing each child, two 
apples within each circle, and a fifth apple strad
dling the circles representing the two children. In 
yet another possibility, children might divide each 
apple into two parts and then connect five half 
apples to the representation of each figure. 

for introducing fraction names, especially 
because some children think that all fractional 
parts are called one-half.34 

The panel also suggests starting with prob
lems that involve sharing among two, four, 
or eight people (i.e., powers of two).35 This 
allows students to create equal parts by 
using a halving strategy—dividing an object 
in half, dividing the resulting halves in half, 
and so on, until there are enough pieces to 
share (see Figure 2).36 Eventually, students 
should solve sharing problems for which they 

cannot use a halving strategy. Partitioning 
a brownie into thirds, for example, requires 
that students anticipate how to slice the 
brownie so that it results in three equal parts. 
Students may be tempted to use repeated 
halving for all sharing problems, but teachers 
should help students develop other strate
gies for partitioning an object. One approach 
is to have students place wooden sticks on 
concrete shapes, with the sticks representing 
the slices or cuts that a student would make 
to partition the object.37 

2. Extend equal-sharing activities to develop students’ understanding of ordering and 
equivalence of fractions. 

Teachers can extend the types of sharing 
activities described in the previous step to 
develop students’ understanding of ordering 
and identifying equivalent fractions. The over
all approach remains the same: teachers pose 
story problems that involve a group of people 

sharing objects, and students create drawings 
or other representations to solve the prob
lems. However, teachers use scenarios that 
require fraction comparisons or identification 
of equivalent fractions and focus on different 
aspects of students’ solutions. 
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Recommendation 1 continuedRecommendation 1 continued 

Sharing activities can be used to help students 
understand the relative size of fractions. 
Teachers can present sharing scenarios with an 
increasing number of recipients and have stu
dents compare the relative size of each result
ing share. For example, students can compare 
the size of pieces that result when sharing a 
candy bar equally among three, four, five, or 
six children.38 Teachers should encourage stu
dents to notice that as the number of people 
sharing the objects increases, the size of each 
person’s share decreases; they should then link 
this idea to formal fraction names and encour
age students to compare the fractional pieces 
using fraction names (e.g., 1/3 of an object is 
greater than 1/4 of it). 

When using sharing scenarios to discuss 
equivalent fractions, teachers should consider 
two approaches, both of which should be used 
with scenarios in which the number of sharers 
and the number of pieces to be shared have 
one or more common factors (e.g., four pizzas 
shared among eight children): 

•	 Partition objects into larger or smaller 
pieces. One way to understand equivalent 
shares is to discuss alternative ways to parti
tion and receive the same shares.39 Students 
can think about how to solve a sharing sce
nario using different partitions to produce 
equal shares. Such partitioning may require 
trial and error on the part of students to 

identify which groupings result in equal 
shares. Students might combine smaller 
pieces to make bigger ones or partition big
ger ones into smaller pieces. For example, to 
solve the problem of eight children sharing 
four pizzas, students might partition all four 
pizzas into eighths and then give each child 
four pieces of size 1/8. Alternatively, students 
could divide each pizza into fourths and 
give each person 2/4, or divide each pizza 
into halves and distribute 1/2 to each child. 
Students should understand that although 
there are different ways to partition the 
pizza, each partitioning method results in 
equivalent shares. 

•	 Partition the number of sharers and 
the number of items. Another way to help 
students understand equivalence is to parti
tion the number of sharers and objects.40 

For example, if students arrive at 4/8 for the 
problem in the previous paragraph, the 
teacher could ask how the problem would 
change if the group split into two tables and 
at each table four children shared two piz
zas. Students can compare the new solution 
of 2/4 to their original solution of 4/8 to show 
that the two amounts are equivalent (see 
Figure 3). To drive home the point, the eight 
children could then sit at four tables, with 
two children at each table sharing a single 
pizza—and reaching the more familiar 
concept of 1/2. 

Figure 3. Student work for sharing four pizzas among eight children 
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Recommendation 1 continuedRecommendation 1 continued 

Another way to teach equivalent fractions with 
sharing scenarios is to pose a missing-value 
problem in which children determine the num
ber of objects needed to create an equivalent 
share. For example, if six children share eight 
oranges at one table, how many oranges are 
needed at a table of three children to ensure 
each child receives the same amount?41 The 
problem could be extended to tables with 12 
children, 24 children, or 9 children. To solve 
these problems, students might identify how 
much one child receives in the first scenario 
and apply that to the second scenario. Alter
natively, they could use the strategy described 
above and partition the six children and eight 
oranges at the original table into two tables, so 
that the number of children and oranges at the 

first new table equal the number of children 
and oranges at the second new table. 

Here is another example that allows students 
to explore the concept of equal partitioning: 
if 24 children are going out for sandwiches, 
and 16 sandwiches have been ordered, what 
are the different ways the children could sit 
at tables and divide the sandwiches so they 
would all receive the same amount? Options 
might include having one big table of 24 chil
dren and 16 sandwiches, having four tables 
of six children and four sandwiches at each, 
eight tables of three children and two sand
wiches at each, and so on. 

3.	 Build on students’ informal understanding to develop more advanced understanding 
of proportional-reasoning concepts. Begin with activities that involve similar propor
tions, and progress to activities that involve ordering different proportions. 

Early instruction can build on students’ infor
mal understanding to develop basic concepts 
related to proportional reasoning. Teachers 
should initially pose problems that encour
age students to think about the proportional 
relations between pairs of objects, without 
necessarily specifying exact quantities. For 
example, teachers could use the story of 
Goldilocks and the Three Bears to discuss how 
the big bear needs a big chair, the medium-
sized bear needs a medium-sized chair, and 
the small bear needs a small chair.42 

The following list provides examples of dif
ferent relations relevant to early proportional 
reasoning that can be explored with students: 

• Proportional relations. Teachers can dis
cuss stories or scenarios that present basic 
proportional relations that are not quanti
fied. For example, a class could discuss the 
number of students it would take to balance 
a seesaw with one, two, or three adults on 
one end. Creating more and less saturated 
liquid mixtures with lemonade mix or food 

coloring can facilitate discussions compar
ing the strength or concentration of differ
ent mixtures. 

• Covariation. Teachers should discuss 
problems that involve one quantity 
increasing as another quantity increases. 
Examples could include the relation 
between height and clothing size or 
between foot length and shoe size.43 

• Patterns. Simple repeating patterns can 
be useful for discussing the concept of 
ratio. For example, students could com
plete a pattern such as blue star, blue 
star, red square, blue star, blue star, red 
square, blue star, blue star, red square, 
and so on.44 Teachers can then discuss 
how many blue stars there are for every 
red square, have students arrange the 
stars and squares to show what gets 
repeated, have students change the pat
tern to a different ratio (e.g., three blue 
stars to one red square), or have students 
extend the pattern.45 
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Recommendation 1 continuedRecommendation 1 continued 

Potential roadblocks and solutions 

Roadblock 1.1. Students are unable to draw 
equal-size parts. 

Suggested Approach. Let students know 
that it is acceptable to draw parts that are not 
exactly equal, as long as they remember that 
the parts should be considered equal. 

Roadblock 1.2. Students do not share all of 
the items (non-exhaustive sharing) or do not 
create equal shares. 

Suggested Approach. Although children 
have an intuitive understanding of sharing 
situations, they sometimes make mistakes 
in their attempts to solve sharing problems. 
Students may not share all of the items, espe
cially if a sharing scenario requires partition
ing an object. Teachers should help students 
understand that sharing scenarios require 
sharing all of the objects—possibly even 
noting that each child wants to receive as 
much as he or she possibly can, so no objects 
should remain unaccounted for. 

Students also might not create equal shares 
because they do not understand that deal
ing out equal-size objects results in an 
equal amount for each person.46 In this 
case, teachers can discuss how dealing out 
objects ensures that each person receives an 
equal amount and can encourage students 
to verify that they divided the items equally. 

Equal sharing is important because it lays a 
foundation for later understanding of equiv
alent fractions and equivalent magnitude 
differences (e.g., understanding that the dif
ference between 0 and 1/2 is the same as the 
difference between 1 and 11/2 or between 73 
and 731/2). 

Roadblock 1.3. When creating equal shares, 
students do not distinguish between the num
ber of things shared and the quantity shared. 

Suggested Approach. Younger students 
in particular may confuse equal numbers 
of shares with equal amounts shared.47 For 
example, if students are asked to provide 
equal amounts of food from a plate with both 
big and small pieces, a child might give out 
equal numbers of pieces of food rather than 
equal amounts. This misunderstanding may 
stem from limited experience with situations 
in which entities of different sizes are dealt 
out or shared. 

One way to address this misconception is to 
use color cues to help students distinguish 
between the quantity being shared and the 
number of items being shared.48 For example, 
in a scenario in which both of two identical 
toy dogs are said to be hungry, children could 
be asked whether the dogs would have the 
same amount to eat if one dog received five 
large red pieces of pretend food and the other 
dog five small green pieces of pretend food. 

( 18 ) 



 

 

 
 

 
 
 

  

Recommendation 2 

Help students recognize that fractions are numbers 
and that they expand the number system beyond whole 
numbers. Use number lines as a central representational 
tool in teaching this and other fraction concepts from 
the early grades onward. 
Early fractions instruction generally focuses on the idea that fractions represent parts of 
a whole (e.g., one-third as the relation of one part to a whole that has three equal parts). 
Although the part-whole interpretation of fractions is important, too often instruction does 
not convey another simple but critical idea: fractions are numbers with magnitudes (values) 
that can be either ordered or considered equivalent. 

Many common misconceptions—such as that two fractions should be added by adding the 
numerators and then adding the denominators—stem from not understanding that fractions are 
numbers with magnitudes. Not understanding this can even lead to confusion regarding whether 
fractions are numbers. For example, many students believe that four-thirds is not a number, 
advancing explanations such as, “You cannot have four parts of an object that is divided into three 
parts.”49 Further, many students do not understand that fractions provide a unit of measure that 
allows more precise measurement than whole numbers; these students fail to realize that an infinite 
range of numbers exists between successive whole numbers or between any two fractions.50 Reliance 
on part-whole instruction alone also leaves unclear how fractions are related to whole numbers. 

( 19 ) 



  

      
 

 
 

 
 
 

 
    

 
        

      
 

 
 

 
 

 
      

 
 

 

 
 
 

 
 
 

 
       

       
 

 
 

     

 

    

      
 
 

 
 

      
 

 
 

 
    

 

 
     

 
 

 
 

 
 

    
    

 
 

 
 
 

 
     

     
 

 
 

Recommendation 2 continued 

An effective way to develop students’ understanding of fractions as numbers with magnitudes 
is to use number lines. Number lines can clearly illustrate the magnitude of fractions; the 
relation between whole numbers and fractions; and the relations among fractions, decimals, 
and percents. They also provide a starting point for building students’ number sense with 
fractions and provide a way to represent negative fractions visually, which can otherwise be 
a challenging task. All of these types of understanding are crucial for learning algebra and 
other more advanced areas of mathematics. 

Summary of evidence: Moderate Evidence 

Evidence for this recommendation primarily 
comes from studies demonstrating the useful
ness of number lines for developing number 
sense with whole numbers. These studies 
used number line representations to teach 
preschool and early elementary students 
about the magnitudes of whole numbers.51 An 
additional study showed how number lines can 
be used to teach decimals successfully.52 All of 
these studies met WWC evidence standards. 
Moreover, accuracy in locating whole numbers 
on number lines is related to mathematical 
achievement among students in kindergarten 
through 4th grade, and accuracy in locating 
decimals on number lines is related to class
room mathematics grades among 5th- and 
6th-graders.53 The panel believes that given 
the applicability of number lines to fractions as 
well as whole numbers, these findings indicate 
that number lines can improve learning of frac
tions in elementary and middle school. 

Number lines with whole numbers. 
Playing a linear board game with whole 
numbers for about one hour (four 15-minute 
sessions over a two-week period) improved 
understanding of numerical magnitudes by 
preschoolers from low-income backgrounds.54 

The game involved moving a marker one 
or two spaces at a time across a horizontal 
board that had the numbers 1 to 10 listed 
in order from left to right in consecutive 
squares. Two additional studies showed 
the value of other number line procedures 
for improving knowledge of whole number 
magnitudes. Estimating the locations of 10 
numbers on a 0-to-100 number line improved 
1st-graders’ ability to locate whole numbers 
on the number line;55 and showing 1st-grade 

students the addends and sums of addition 
problems on a number line increased the 
likelihood that students correctly answered 
the problems later. 

Number lines with decimals. In another 
study, number lines were used to teach 
decimal concepts to 5th- and 6th-grade 
students.56 The teaching technique involved 
providing students with practice locating 
decimals on a number line divided into tenths 
and with a prompt to notice the tenths digit 
for each number. These students were later 
more accurate in locating decimals on a 
number line than students whose number 
lines were not divided into tenths and did 
not receive prompts. For all students in the 
study, a before-and-after comparison showed 
that conceptual understanding of fractions 
improved after locating decimals on a number 
line. This last finding is suggestive evidence, 
because there is no comparison group of 
students who did not use a number line. 

Another study examined a Dutch curriculum 
that used number lines and measurement con
texts to teach fractions.57 Students in the treat
ment group located and compared fractions 
on a number line and measured objects in the 
classroom using a strip that could be folded to 
measure fractional parts. Although this study 
did not meet WWC evidence standards, the 
authors reported positive effects on middle 
school students’ number sense with frac
tions.58 Two additional studies that were not 
eligible for review found mixed results of using 
a number line to teach fraction concepts. Both 
studies noted challenges that students face 
in understanding fractions on number lines.59 

For example, one study reported that students 
had difficulty finding equivalent fractions on 
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Recommendation 2 continued 

a number line partitioned into smaller units 
(e.g., finding 1/3 on a number line divided into 
sixths).60 

Other evidence that is consistent with the rec
ommendation includes a study showing the 
relation between skill at estimating locations 

of decimals on a number line and math 
grades for 5th- and 6th-grade students,61 

and a mathematician’s analysis indicating 
that learning to represent the full range of 
numbers on number lines is fundamental to 
understanding numbers.62 

How to carry out the recommendation 

1. Use measurement activities and number lines to help students understand that frac
tions are numbers, with all the properties that numbers share. 

When students view fractions as numbers, 
they understand that fractions, like whole 
numbers, can be used to measure quantities. 
Measurement activities provide a natural con
text in this regard.63 Through such activities, 
teachers can develop the idea that fractions 
allow for more precise measurement of quan
tities than do whole numbers. 

Teachers can present situations in which frac
tions are used to solve problems that cannot 
be solved with whole numbers. For example, 
they can ask students how to describe the 
amount of sugar in a cookie recipe that 
needs more than 1 cup but less than 2 cups. 

Teachers can then show students the various 
measurement lines on a measuring cup and 
convey the importance of fractions in describ
ing quantities. Teachers should emphasize 
that fractions provide a more precise unit 
of measure than whole numbers and allow 
students to describe quantities that whole 
numbers cannot represent. Fraction strips 
(also known as fraction strip drawings, strip 
diagrams, bar strip diagrams, and tape dia
grams) are length models that allow students 
to measure objects using fractional parts and 
reinforce the idea that fractions can be used 
to represent quantities (see Example 1). 

Example 1. Measurement activities with fraction strips 

Teachers can use fraction strips as the basis for mea
surement activities to reinforce the concept that frac
tions are numbers that represent quantities.64 

To start, students can take a strip of card stock or 
construction paper that represents the initial unit of 
measure (i.e., a whole) and use that strip to measure 
objects in the classroom (desk, chalkboard, book, etc.). 
When the length of an object is not equal to a whole 
number of strips, teachers can provide students with 
strips that represent fractional amounts of the original 
strip. For example, a student might use three whole 
strips and a half strip to measure a desk. 

Teachers should emphasize that fraction strips repre
sent different units of measure and should have stu
dents measure the same object first using only whole strips and then using a fractional strip. Teachers should 
discuss how the length of the object remains the same but how different units of measure allow for better 
precision in describing it. Students should realize that the size of the subsequently presented fraction strips is 
defined by the size of the original strip (i.e., a half strip is equal to one-half the length of the original strip). 

1/2 1/4

Using fraction strips to measure an object 
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2. Provide opportunities for students to locate and compare fractions on number lines. 

Teachers should provide opportunities for 
students to locate and compare fractions on 
number lines. These activities should include 
fractions in a variety of forms, including 
proper fractions (2/3), improper fractions (5/3), 
mixed numbers (12/3), whole numbers (4/2), 
decimals (0.40), and percents (70%). 

Teachers can initially have students locate 
and compare fractions on number lines with 
the fractions already marked (e.g., a num
ber line with marks indicating tenths). Pre-
segmented number lines avoid the difficulty 
students have in accurately partitioning the 
number line. These number lines also are 
useful for locating and comparing fractions 
whose locations are indicated (e.g., 3/8 and 5/8 
on a number line with eighths marked) and 
fractions whose denominator is a factor of the 
unit fractions shown on the number line (e.g., 
1/4 and 3/4 on a line with eighths marked), as 
well as fractions with other denominators 
(e.g., 1/7, 3/5). For example, students might 
compare the locations of 7/8 and 3/4 on a num
ber line marked with eighths. These activities 
should include opportunities for students to 
locate whole numbers on the number line and 
compare their locations to those of fractions, 
including ones equivalent to whole numbers 
(e.g., locating 1 and 8/8). 

Number lines also can be used to compare 
fractions of varying sizes to whole numbers 
greater than one (locating 10/3 on a number 
line with 0 at the left end, 5 at the right end, 
and 1, 2, 3, and 4 marked in between). Exam
ple 2 provides a strategy that can be used 
to introduce students to the idea of locating 
fractions on a number line. 

Comparing fractions with different denomina
tors on a pre-segmented number line can be 
complicated for young students—for example, 
comparing 3/8 and 1/3 on a number line divided 
into eighths. To help students understand such 
problems, teachers can label number lines with 
one fractional-unit sequence above the number 
line and a different fractional-unit sequence 

Example 2. Introducing fractions on a 
number line 

The following example describes one way to 
introduce the idea of locating fractions on a 
number line, emphasizing that fractions are 
numbers with quantities. 

To illustrate the location of 3/5 on a 0-to-5 
number line, the teacher might first mark and 
label the location of 1 and then divide the 
space between each whole number into five 
equal-size parts. After this, the teacher might 
add the labels 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5 in the 
0–1 part of the number line and highlight the 
location of 3/5.65 Displaying whole numbers as 
fractions (e.g., 5/5) allows teachers to discuss 
what it means to describe whole numbers in 
terms of fractions and to clarify that whole 
numbers are fractions too. 

below the number line. For example, when 
asking students to compare 1/3 and 3/8, teachers 
might label eighths above the number line and 
thirds below it. Such number lines allow stu
dents who are relatively early in the process of 
learning about fractions to locate and compare 
fractions with different denominators and to 
think about the relative size of the fractions.66 

Teachers also should provide students with 
opportunities to locate and compare fractions 
on number lines that are minimally labeled— 
for example, ones with the labels 0, 1/2, 1, 
11/2, and 2. This approach is almost a neces
sity for fractions with large denominators 
(e.g., dividing a number line into 28ths is dif
ficult) and encourages students to think about 
the location of fractions relative to the labeled 
landmarks.67 For example, teachers can have 
students locate 6/7 on a number line marked 
with 0, 1/2, and 1. 

For a whole-class activity, teachers can draw 
a number line on the board and have students 
mark estimates of where different fractions 

( 22 ) 

The following example describes one way to 
introduce the idea of locating fractions on a 
number line, emphasizing that fractions are 
numbers with quantities. 

To illustrate the location of 3/5 on a 0-to-5 
number line, the teacher might first mark and 
label the location of 1 and then divide the 
space between each whole number into five 
equal-size parts. After this, the teacher might 
add the labels 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5 in the 
0–1 part of the number line and highlight the 
location of 3/5.65 Displaying whole numbers as 
fractions (e.g., 5/5) allows teachers to discuss 
what it means to describe whole numbers in 
terms of fractions and to clarify that whole 
numbers are fractions too.
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Recommendation 2 continued 

fall. As the number line fills up, teachers can 
guide a discussion about fractions yet to be 
placed, highlighting the need to preserve the 
correct order. Inserting decimals and percent
ages on that same number line can teach 
additional valuable lessons. 

Finally, teachers should encourage students to 
think about the distance between two fractions: 
For example, students could compare 1/12 and 
1/4 and consider whether 1/12 is closer to 1/4 or 
0. Similarly, 0.3 or 0.45 could be compared to 
locations marked 0, 1/2, and 1, or 0, 0.5, and 1. 

3. Use number lines to improve students’ understanding of fraction equivalence, frac
tion density (the concept that there are an infinite number of fractions between any 
two fractions), and negative fractions. 

In addition to being useful for comparing posi
tive fraction magnitudes, number lines also can 
be valuable for teaching equivalent fractions, 
negative fractions, and fraction density. Number 
lines are, of course, not the only way to teach 
these concepts, but the panel believes they are 
helpful for improving students’ understanding. 

Number lines can be used to illustrate that 
equivalent fractions describe the same magni
tude. For example, asking students to locate 2/5 
and 4/10 on a single number line can help them 
understand the equivalence of these numbers. 
Teachers can mark fifths above the line and 
tenths below it (or vice versa) to help students 
with this task. Although viewing equivalent 
fractions as the same point on a number line 
can be challenging for students,68 the panel 
believes that the ability to do so is critical for 
thorough understanding of fractions. 

A discussion of equivalent fractions should 
build on points made in Step 1 about fractions 
on the number line. For example, teachers can 
divide a 0-to-1 number line into halves and 
quarters and show that 1/2 and 2/4 occupy the 
same, or equivalent, point on the number line 
(see Figure 4). Students can use a ruler to iden
tify equivalent fractions on the stacked number 
lines shown in Figure 4, identifying fractions 
that occupy the same location on each num
ber line. Fraction strips also can be used to 
reinforce the concept of equivalent fractions 
by allowing students to measure the distance 
between two points using different-sized frac
tion strips (see Figure 5). 

Number lines also can be used to help stu
dents understand that an infinite number of 
fractions exist between any two other frac
tions. This is one way in which fractions differ 

Figure 4. Finding equivalent fractions on a number line 

Use of number lines to 
teach equivalence of 
fractions in a Japanese 
curriculum 

Source: Adapted from Shoseki (2010). 
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Recommendation 2 continued 

Figure 5. Using fraction strips to demonstrate equivalent fractions 

0 2 

1/2 1/2 1/2 1/2 

1/2 1/2+ 1/2+ 1/2+ 4/2= 

1/4 1/4 1/4 1/4 8/4+ + +1/4 1/4 1/4 1/4+ + + + = 

8/44/2 = = 2 

1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 

from whole numbers and can be a difficult 
concept for students to grasp.69 Teachers can 
help students understand this concept by 
asking them to make successive partitions on 
the number line, creating smaller and smaller 
unit fractions.70 For example, students can 
divide whole number segments in half to 
create halves, and then divide each half into 
halves to create fourths, then divide each 
fourth into halves to create eighths, and so 
on (this activity also can be done with thirds, 
ninths, twenty-sevenths, etc.). Such divisions 
show students that they always can partition 
a number line using smaller unit fractions.71 

The same can be done with decimals and 
percents—such as by showing that 0.13, 0.15, 
and 0.17 are among the infinite numbers that 
fall between 0.1 and 0.2, and that 2% falls 
between 0% and 10%. 

The panel further recommends that teachers 
use number lines when introducing negative 
fractions. Teaching negative fractions in a part-
whole context can be difficult, because the idea 
of a negative part of a whole is non-intuitive. 
But the number line provides a straightforward 
visual representation of fractions less than zero, 
as well as fractions greater than zero. 

By providing number lines that include marks 
and labels for zero, for several positive frac
tions, and for several negative fractions with 
the same absolute values as the positive frac
tions, teachers can help convey the symmetry 
about zero of positive and negative fractions. 
And by placing positive and negative fractions 
into stories—possibly about locations above 
and below sea level or about money gained 
or lost—teachers can illustrate addition and 
subtraction of both types of fractions. 

4. Help students understand that fractions can be represented as common fractions, deci
mals, and percentages, and develop students’ ability to translate among these forms. 

Students need a broad view of fractions as 
numbers. That includes understanding that 
fractions can be represented as decimals 
and percents as well as common fractions. 
Teachers should clearly convey that common 
fractions, decimals, and percents are just dif
ferent ways of representing the same number. 

Number lines provide a useful tool for helping 
students understand that fractions, decimals, 
and percents are different ways of describ
ing the same number. By using a number line 

with common fractions listed above it and 
decimals or percentages below it, teachers 
can help students locate and compare frac
tions, decimals, and percents on the same 
number line. For example, teachers can pro
vide students with a number line marked with 
0 and 1, and students can be asked to locate 
3/4, 0.75, and 75% on it. In addition, when stu
dents use division to translate a fraction into 
a decimal, they can plot both the fraction and 
the decimal on the same number line. 

( 24 ) 



  

     
       

       

  
 
 
 

    
 

 
 

 
   

 
  

 

 
 

 
 

 
     

 
        

 

 

 
 

 

  
 

       

 
       

 
 

 
 

 
     

       
   

 
 

 

 
       

      
 

  

 
 

 
 

 
 

      
    

 
    

 
      

     
     

 
     

    

 
 

Recommendation 2 continued 

Potential roadblocks and solutions 

Roadblock 2.1. Students try to partition the 
number line into fourths by drawing four hash 
marks rather than three, or they treat the 
whole number line as the unit.72 

Suggested Approach. When using a number 
line with fractions, students must be taught to 
represent fourths as four equal-size segments 
between two whole numbers. Teachers should 
demonstrate that inserting three equally 
spaced hash marks between, say, 0 and 1 
divides the space into four equal segments, 
or fourths. This rule can be generalized so 
that students know that dividing the number 
line into 1/n units requires drawing n – 1 hash 
marks between two whole numbers. 

Roadblock 2.2. When students locate frac
tions on the number line, they treat the numbers 
in the fraction as whole numbers (e.g., placing 
3/4 between 3 and 4). 

Suggested Approach. This mistake reflects 
a common misconception in which students 
apply their whole number knowledge to 
fractions—viewing the numbers that make 
up a fraction as separate whole numbers. 
The misconception can be addressed by 
presenting students with contrasting cases: 
for example, having them locate 3 and 4 on 
a 0-to-4 number line, then identifying 3/4 as a 
fraction between 0 and 1, and finally discuss
ing why each fraction goes where it is placed. 

Roadblock 2.3. Students have difficulty 
understanding that two equivalent fractions 
are the same point on a number line. 

Suggested Approach. Students often have 
trouble internalizing how partitions that locate 
one fraction (e.g., eighths partitions for locat
ing 4/8) also can help locate an equivalent 

fraction (e.g., 1/2). One way to address this lack 
of understanding is to show students one set 
of numerical labels above the number line and 
another set of labels below it. Thus, halves 
could be marked just above the line and 
eighths just below it, and teachers could point 
out the equivalent positions of 1/2 and 4/8, of 
1 and 8/8, of 11/2 and 12/8, and so on. Another 
approach is for students to create a number 
line showing 1/2 and another number line 
showing 4/8 and then compare the two. Teach
ers can line up the two number lines and lead 
a discussion about equivalent fractions. 

Roadblock 2.4. The curriculum materials 
used by my school district focus on part-whole 
representations and do not use the number 
line as a key representational tool for fraction 
concepts and operations. 

Suggested Approach. Although it is impor
tant for students to understand that fractions 
represent parts of a whole, the panel notes 
that this is only one use of fractions and 
therefore recommends the use of number 
lines and measurement contexts to develop 
a comprehensive understanding of fractions. 
Manipulatives that often are used to represent 
part-whole interpretations, such as fraction 
circles and fraction strips, also can be used 
to convey measurement interpretations, but 
considerable care needs to be taken to avoid 
students simply counting parts of the fraction 
strip or circle that correspond to the numera
tor and to the denominator without under
standing how the numerator and denominator 
together indicate a single quantity. Using 
number lines that are unmarked between the 
endpoints can avoid such counting without 
understanding. Some textbooks use number 
lines extensively for teaching fractions; teach
ers should examine those books for ideas 
about how to use number lines to convey the 
idea that fractions are measures of quantity. 
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Recommendation 3 

Help students understand why procedures for 
computations with fractions make sense. 
Students are most proficient at applying computational procedures when they understand 
why those procedures make sense. Although conceptual understanding is foundational for the 
correct use of procedures, students often are taught computational procedures with fractions 
without an adequate explanation of how or why the procedures work. 

Teachers should take the time to provide such explanations and to emphasize how fraction 
computation procedures transform the fractions in meaningful ways. In other words, they 
should focus on both conceptual understanding and procedural fluency and should emphasize 
the connections between them. The panel recommends several practices for developing 
understanding of computational procedures, including use of visual representations and 
estimation to reinforce conceptual understanding. Addressing students’ misconceptions and 
setting problems in real-world contexts also can contribute to improved understanding. 

Summary of evidence: Moderate Evidence 

The panel based this recommendation in 
large part on three well-designed studies that 
demonstrated the effectiveness of teaching 
conceptual understanding when developing 
students’ computational skill with fractions.73 

These studies focused on decimals and were 
relatively small in scale; however, the panel 
believes that their results, together with 
extensive evidence showing that meaningful 

information is remembered much better than 
meaningless information, provide persuasive 
evidence for this recommendation.74 Addi
tional support for the recommendation comes 
from four studies that showed a positive rela
tion between conceptual and computational 
knowledge of fractions.75 

The studies that contributed to the evidence 
base for this recommendation used computer-
based interventions to examine the link 
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  Recommendation 3 continued 

between conceptual knowledge and computa
tional skill with decimals. Sixth-grade students 
completed three lessons on decimal place value 
(i.e., conceptual knowledge) and three lessons 
on addition and subtraction of decimals (i.e., 
procedural knowledge).76 Iterating between 
the two types of lessons improved students’ 
procedural knowledge, compared with teach
ing all of the conceptual lessons before any of 
the procedural ones. In another study, 5th- and 
6th-grade students practiced locating decimals 
on a number line using a computer-based 
game. Dividing the number line into tenths and 
encouraging students to notice the tenths digit 
improved 5th- and 6th-grade students’ ability to 
locate decimals on a number line (compared to 
not providing the prompts).77 

Research also shows a positive relationship 
between students’ conceptual and procedural 
knowledge of fractions. That is, children who 
have above-average conceptual knowledge 
also tend to have above-average knowledge of 
computational procedures. Studies of 4th- and 
5th-graders and of 7th- and 8th-graders indi
cated that conceptual knowledge was positively 
related to computational proficiency after con
trolling for prior math achievement, arithmetic 
fluency, working memory, and reading ability.78 

In addition, conceptual knowledge of decimals 
predicted students’ ability to locate decimals 
on a number line.79 While these studies show a 
correlation between conceptual and procedural 
knowledge, they did not examine the effective
ness of interventions that develop conceptual 
knowledge to improve procedural knowledge. 

The panel also identified evidence that spe
cifically addressed two of the four steps for 
implementing this recommendation. 

Use of representations. Evidence identi
fied by the panel supports the recommended 

practice of using visual representations and 
manipulatives during instruction on fraction 
computation (Step 1). Two well-designed stud
ies found that the use of manipulatives and 
pictorial representations had a positive effect 
on computational skill with fractions.80 One of 
these studies focused on fraction circles (sets 
of circles, in which the first is a whole circle, 
the second is divided in half, the third is 
divided in thirds, etc.).81 The other study had 
students use a variety of manipulatives for 
learning computational procedures with frac
tions, including fraction squares and fraction 
strips.82 A third study examined the Rational 
Number Project curriculum, which empha
sizes the use of manipulatives as one of many 
components.83 The authors of the study 
reported that the curriculum had a positive 
effect on fraction computation abilities. How
ever, manipulatives were only one component 
of this multifaceted curriculum, and the study 
provided insufficient information for the WWC 
to complete a review, so the conclusions that 
can be drawn from the study regarding the 
role of manipulatives are limited. 

Real-world contexts. The panel identified 
evidence related to the use of real-world con
texts for improving skill at executing compu
tational procedures with fractions (Step 4).84 

In one of the studies, personalizing problems 
for 5th- and 6th-grade students improved 
their ability to solve division problems with 
fractions.85 The other study found that pos
ing problems in everyday contexts improved 
11- and 12-year-old students’ ability to order 
and compare decimals.86 Additional studies 
argued for the use of real-world contexts for 
teaching procedures for computing with frac
tions but did not provide rigorous evidence 
that such instruction causes improvement in 
fraction computation.87 
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Recommendation 3 continued 

How to carry out the recommendation 

1. Use area models, number lines, and other visual representations to improve stu
dents’ understanding of formal computational procedures. 

Teachers should use visual representations 
and manipulatives, including number lines 
and area models, that help students gain 
insight into basic concepts underlying com
putational procedures and the reasons why 
these procedures work. For example, when 
teaching addition or subtraction of fractions 
with unlike denominators, teachers should 
use a representation that helps students see 
the need for common denominators. 

There are several ways teachers can use 
representations to illuminate key underlying 
concepts: 

•	 Find a common denominator when 
adding and subtracting fractions. A 
common mistake students make when 
faced with fractions that have unlike 
denominators is to add both numerators 
and denominators.88 Certain representa
tions can provide visual cues to help 
students see the need for common 

denominators. For example, teachers can 
demonstrate that when adding pieces 
corresponding to fractions of objects (e.g., 
adding 1/2 of a circle and 1/3 of a circle), 
converting both 1/2 and 1/3 to sixths pro
vides a common denominator that applies 
to both fractions and allows them to be 
added (Figure 6). Discuss with students 
why multiplying denominators always 
indicates a common denominator that can 
be used to express both original fractions. 

•	 Redefine the unit when multiplying 
fractions. Multiplying two fractions 
requires finding a fraction of a fraction. 
For example, when multiplying 1/4 by 2/3, 
students could start with 2/3 of the original 
(usually unmentioned) unit and find 1/4 of 
this fractional amount. Pictorial or concrete 
representations can help students visual
ize this process to improve their under
standing of the multiplication procedure. 
For example, students can shade in with 

Figure 6. Fraction circles for addition and subtraction 

1/6 

1/6 

1/6 

1/2 1/2 

1/3 

1/6 

1/6 

5/6 

+ 

+ 

= 

= 

1/3 

1/6 

1/61/6 

1/6 

1/6 

Adding 1/2 + 1/3 using fraction circles 

Source: Adapted from Cramer and Wyberg (2009). 
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Recommendation 3 continued 

Figure 7. Redefining the unit when multiplying fractions 

Lori is icing a cake. She knows that 1 cup of icing will cover 2/3 of a cake. How much cake 
can she cover with 1/4 cup of icing? 

vertical lines 2/3 of a square cake drawn on 
paper and then shade in with horizontal 
lines 1/4 of the cake’s shaded area, resulting 
in a product represented by the cross
hatched area (Figure 7).89 This approach 
illustrates how to redefine the unit— 
initially treating the full cake as the whole, 
and then treating the vertically shaded 
portion of the cake as the whole. 

•	 Divide a number into fractional parts. 
Dividing fractions is conceptually similar 
to dividing whole numbers, in that students 
can think about how many times the divi
sor goes into the dividend. For example, 
1/2 ÷ 1/4 can be represented in terms of 
“How many 1/4s are in 1/2?” 

Teachers can use representations such as 
ribbons or a number line to help students 
model the division process for fractions. 
Students using ribbons can cut two rib
bons of equal size and then separate one 
into fourths and one into halves. To show 
the division problem 1/2 ÷ 1/4, students can 

find out how many fourths of a ribbon fit 
onto one-half of a ribbon, when the whole 
ribbon was the same length in both cases 
(see Figure 8).90 Similarly, a teacher can 
draw a number line with both fourths and 
halves labeled to show students that there 
are two 1/4 segments in 1/2. Teachers can 
help students deepen their understand
ing of the division process by presenting 
problems in which the divisor, dividend, 
or both are greater than one, and prob
lems in which the quotient is not an inte
ger, such as 13/4 divided by 1/2. 

Teachers should consider the advantages and 
disadvantages of different representations 
for teaching procedures for computing with 
fractions. A key issue is whether the repre
sentation adequately reflects the computation 
process being taught, allowing students to 
make links between the two. 

Teachers also should think about whether 
a representation can be used with different 
types of fractions—proper fractions (5/8), 
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Recommendation 3 continued 

Figure 8. Using ribbons to model division with fractions 

¼ ¼ ¼ ¼ 

½ ½ 

¼ ¼ 

½ 

Step 1. Divide a ribbon into fourths. 

Step 2. Divide a ribbon of the same length into halves. 

Step 3.  Find out how many fourths of a ribbon can fit into one-half of the ribbon. 

Two fourths fit into one-half of the ribbon. 

So, ½ ÷ ¼ = 2. 

Students use ribbons to solve ½ ÷ ¼ 

mixed numbers (13/8), improper fractions 
(11/8), and negative numbers (–1/2). For exam
ple, area models may readily illustrate addi
tion of fractions with positive numbers but 
do not as easily lend themselves to explaining 
addition of fractions with negative numbers. 
In contrast, number lines can be used to 
explain both. 

Representations that students have used to 
learn other mathematical concepts, especially 

other fraction concepts, may be particularly 
useful. For example, many students learn to 
represent decimals using base-10 blocks or 
100 grids (10 by 10 squares, with each square 
representing 1/100 and the whole square repre
senting 1). Familiarity with this representation 
also might help students understand adding 
and subtracting decimal and common frac
tions. For example, 100 grids can be used to 
illustrate that adding 2.34 + 1.69 is the same 
as adding 234/100 + 169/100. 

2. Provide opportunities for students to use estimation to predict or judge the reason
ableness of answers to problems involving computation with fractions. 

When teaching procedures for computing 
with fractions, teachers should provide 
opportunities for students to estimate the 
solutions to problems. Estimation requires 
students to use reasoning skills and thus 
leads them to focus on the meaning of proce
dures for computing with fractions.91 Teach
ers can ask students to provide an initial 
estimate and to explain their thinking before 

having them compute the answer.92 Students, 
in turn, can use the estimates to judge the 
reasonableness of their answers. 

To improve estimation skills, teachers can 
discuss whether and why students’ solutions 
to specific problems are reasonable; they 
also can ask students to explain the strate
gies they used to arrive at their estimates and 
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Recommendation 3 continued 

compare their initial estimates to the solutions 
they reached by applying a computational 
algorithm. Consider an example: a student 
might estimate that the solution of 1/2 + 1/5 
is more than 1/2 but less than 3/4, since 1/5 is 
smaller than 1/4. If the student then incorrectly 
adds the numerators and denominators to 
produce the sum 2/7, the teacher can note that 
this answer cannot be right because 2/7 is less 
than 1/2.93 From there, the teacher can guide 
the student to identify, understand, and cor
rect the procedural error. 

Estimation is likely to be most useful with prob
lems in which a solution cannot be computed 
quickly or easily. There is no point asking stu
dents to estimate the answer to a problem that 
can be solved quickly and accurately by mental 
computation, such as 7/9 – 5/9. 

Teaching students effective estimation strate
gies (Example 3) can maximize the value of 
estimation for deepening understanding of 
computations involving fractions. 

Example 3. Strategies for estimating with fractions 

Strengthening estimation skills can develop students’ understanding of computational procedures. 

Benchmarks. One way to estimate is through benchmarks—numbers that serve as reference points for esti
mating the value of a fraction.94 The numbers 0, 1/2, and 1 are useful benchmarks because students generally 
feel comfortable with them. Students can consider whether a fraction is closest to 0, 1/2, or 1. For example, 
when adding 7/8 and 3/7, students may reason that 7/8 is close to 1, and 3/7 is close to 1/2, so the answer will 
be close to 11/2. 95 Further, if dividing 5 by 5/6, students might reason that 5/6 is close to 1, and 5 divided by 
1 is 5, so the solution must be a little more than 5.96 

Relative Size of Unit Fractions. A useful approach to estimating is for students to consider the size of 
unit fractions. To do this, students must first understand that the size of a fractional part decreases as the 
denominator increases.97 For example, to estimate the answer to 9/10 + 1/8, beginning students can be encour
aged to reason that 9/10 is almost 1, that 1/8 is close to 1/10, and that therefore the answer will be about 1. More 
advanced students can be encouraged to reason that 9/10 is only 1/10 away from 1, that 1/8 is slightly larger 
than 1/10, and therefore the solution will be slightly more than 1. The principle can and should be general
ized beyond unit fractions once it is understood in that context. Key dimensions for generalization include 
estimating results of operations involving non-unit fractions (e.g., 3/4 ÷ 2/3), improper fractions (7/3 ÷ 3/4), and 
decimals (0.8 ÷ 0.33). 

Placement of Decimal Point. A common error when multiplying decimals, such as 0.8 × 0.9 or 2.3 × 8.7, 
is to misplace the decimal. Encouraging students to estimate the answer first can reduce such confusion. For 
example, realizing that 0.8 and 0.9 are both less than 1 but fairly close to it can help students realize that 
answers such as 0.072 and 7.2 must be incorrect. 

3. Address common misconceptions regarding computational procedures with fractions. 

Misconceptions about fractions often interfere 
with understanding computational procedures. 
The panel believes that it is critical to identify 
students who are operating with such miscon
ceptions, to discuss the misconceptions with 
them, and to make clear to the students why the 
misconceptions lead to incorrect answers and 
why correct procedures lead to correct answers. 

Teachers can present these misconceptions in 
discussions about how and why some stu
dents’ computation procedures yield correct 
answers, whereas others’ do not. The group 
will likely find that many computational errors 
result from students misapplying rules that 
are appropriate with whole numbers or with 
other computational operations with fractions. 
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Recommendation 3 continued 

Some common misconceptions are described 
next, together with recommendations for 
addressing them. 

•	 Believing that fractions’ numerators 
and denominators can be treated as 
separate whole numbers. A common 
mistake that students make is to add or 
subtract the numerators and denomina
tors of two fractions (e.g., 2/4 + 5/4 = 7/8 or 
3/5 – 1/2 = 2/3).98 Students who err in this way 
are misapplying their knowledge of whole 
number addition and subtraction to frac
tion problems and failing to recognize that 
denominators define the size of the frac
tional part and that numerators represent 
the number of this part. The fact that this 
approach is appropriate for multiplication 
of fractions is another source of support 
for the misconception. 

Presenting meaningful problems can be 
useful for overcoming this misconception. 
For example, a teacher might present the 
problem, “If you have 3/4 of an orange and 
give 1/3 of it to a friend, what fraction of the 
original orange do you have left?” Subtract
ing the numerators and denominators 
separately would result in an answer of 2/1 
or 2. Students should immediately recog
nize the impossibility of starting with 3/4 of 
an orange, giving some of it away, and end
ing up with 2 oranges. Such examples can 
motivate students to think deeply about 
why treating numerators and denominators 
as separate whole numbers is inappropriate 
and can lead them to be more receptive to 
discussions of appropriate procedures. 

•	 Failing to find a common denominator 
when adding or subtracting fractions 
with unlike denominators. Students 
often fail to convert fractions to equivalent 
forms with a common denominator before 
adding or subtracting them, and instead 
just insert the larger denominator in the 
fractions in the problem as the denomina
tor in the answer (e.g., 4/5 + 4/10 = 8/10).99 

This error occurs when students do not 
understand that different denominators 
reflect different-sized unit fractions and that 

adding and subtracting fractions requires 
a common unit fraction (i.e., denominator). 
The same underlying misconception can 
lead students to make the closely related 
error of changing the denominator of a 
fraction without making the corresponding 
change to the numerator—for example, by 
converting the problem 2/3 + 2/6 into 2/6 + 2/6. 
Visual representations that show equivalent 
fractions—such as a number line or fraction 
strip—again can illustrate the need for both 
common denominators and appropriate 
changes in numerators. 

•	 Believing that only whole numbers 
need to be manipulated in computa
tions with fractions greater than one. 
When adding or subtracting mixed numbers, 
students may ignore the fractional parts and 
work only with the whole numbers (e.g., 
53/5 – 21/7 = 3).100 These students are either 
ignoring the part of the problem they do not 
understand, misunderstanding the meaning 
of mixed numbers, or assuming that such 
problems simply have no solution.101 

A related misconception is thinking that 
whole numbers have the same denomina
tor as a fraction in the problem.102 This 
misconception might lead students to 
translate the problem 4 – 3/8 into 4/8 – 3/8 
and find an answer of 1/8. When presented 
with a mixed number, students with such 
a misconception might add the whole 
number to the numerator, as in 31/3 × 6/7 = 
(3/3 + 1/3) × 6/7 = 4/3 × 6/7 = 24/21. Helping 
students understand the relation between 
mixed numbers and improper fractions, 
and how to translate each into the other, 
is crucial for working with fractions. 

•	 Treating the denominator the same 
in fraction addition and multiplica
tion problems. Students often leave 
the denominator unchanged on fraction 
multiplication problems that have equal 
denominators (e.g., 2/3 × 1/3 = 2/3).103 This 
may occur because students usually 
encounter more fraction addition problems 
than fraction multiplication problems; this 
might lead them to generalize incorrectly 
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Recommendation 3 continued 

to multiplication the correct procedure for 
dealing with equal denominators on addi
tion problems. Teachers can address this 
misconception by explaining the conceptual 
basis of fraction multiplication using unit 
fractions (e.g., 1/2 × 1/2 = half of a half = 1/4). 
In particular, teachers can show that the 
problem 1/2 × 1/2 is actually asking what 
1/2 of 1/2 is, which implies that the product 
must be smaller than either fraction being 
multiplied. 

•	 Failing to understand the invert-and
multiply procedure for solving frac
tion division problems. Students often 
misapply the invert-and-multiply proce
dure for dividing by a fraction because 
they lack conceptual understanding of 
the procedure. One common error is not 
inverting either fraction; for example, a 
student may solve the problem 2/3 ÷ 4/5 by 
multiplying the fractions without inverting 
4/5 (e.g., writing that 2/3 ÷ 4/5 = 8/15).104 Other 
common misapplications of the invert-
and-multiply rule are inverting the wrong 
fraction (e.g., 2/3 ÷ 4/5 = 3/2 × 4/5) or invert
ing both fractions (2/3 ÷ 4/5 = 3/2 × 5/4). Such 
errors generally reflect a lack of concep
tual understanding of why the invert-and
multiply procedure produces the correct 

quotient. The invert-and-multiply proce
dure translates a multi-step calculation into 
a more efficient procedure. 

The panel suggests that teachers help 
students understand the multi-step calcu
lation that is the basis for the invert-and
multiply procedure. Teachers can begin 
by noting that multiplying any number 
by its reciprocal produces a product of 1, 
and that dividing any number by 1 leaves 
the number unchanged. Then teachers 
can show students that multiplying both 
fractions by the reciprocal of the divisor is 
equivalent to using the invert-and-multiply 
procedure. For the problem 2/3 ÷ 4/5 = (note 
that we refer to 2/3 as the dividend and 4/5 
as the divisor): 

•	 multiplying both the dividend (2/3) and 
divisor (4/5) by the reciprocal of the 
divisor yields (2/3 × 5/4) ÷ (4/5 × 5/4). 

•	 multiplying the original divisor (4/5) 
by its reciprocal (5/4) produces a divisor 
of 1, which results in 2/3 × 5/4 ÷ 1, which 
yields 2/3 × 5/4. 

•	 thus, the invert and multiply procedure, 
multiplying 2/3 × 5/4, provides the solution. 

4. Present real-world contexts with plausible numbers for problems that involve com
puting with fractions. 

Presenting problems with plausible numbers 
set in real-world contexts can awaken stu
dents’ intuitive problem-solving abilities for 
computing with fractions.105 The contexts 
should provide meaning to the fraction quan
tities involved in a problem and the computa
tional procedure used to solve it. Real-world 
measuring contexts, such as rulers, ribbons, 
and measuring tapes, can be useful, as can 
food—both discrete items (e.g., cartons of 
eggs, boxes of chocolates) and continuous 
ones (e.g., pizzas, candy bars).106 Students 
themselves can be a helpful source of ideas 
for relevant contexts, allowing teachers to 
tailor problems around details that are famil
iar and meaningful to the students.107 School 

events, such as field trips or class parties, 
track and field days, and ongoing activities 
in other subjects, also can serve as engaging 
contexts for problems. 

Teachers can help students make connec
tions between a real-world problem and 
the fraction notation used to represent it. In 
some cases, students may solve a problem 
framed in an everyday context but be unable 
to solve the same problem using formal 
notation.108 For instance, they might know 
that two halves equal a whole but answer 
the written problem 1/2 + 1/2 with 2/4. Teach
ers should help students see the connection 
between the story problem and the fraction 
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Recommendation 3 continued 

notation and encourage them to apply their 
intuitive knowledge in both situations. While 
trying to make connections, teachers can 

direct students back to the real-world story 
problem if their students need to ease into 
understanding the formal notation.109 

Potential roadblocks and solutions 

Roadblock 3.1. Students make computational 
errors (e.g., adding fractions without finding 
a common denominator) when using certain 
pictorial and concrete object representations 
to solve problems that involve computation 
with fractions. 

Suggested Approach. Teachers should care
fully choose representations that map straight
forwardly to the fraction computation being 
taught. For example, when teaching fraction 
addition, a representation should demonstrate 
the need for adding similar units and thus lead 
students to find a common denominator. Use 
of some representations can actually reinforce 
misconceptions. In one study, the use of dot 
paper for adding fractions led students to 
more often use the incorrect strategy of add
ing numerators without finding a common 
denominator.110 Representations that hold 

units constant, such as a measuring tape with 
marked units, can help students see the need 
for common unit fractions. 

Roadblock 3.2. When encouraged to esti
mate a solution, students still focus on solving 
the problem via a computational algorithm 
rather than estimating it. 

Suggested Approach. Estimation should 
be presented as a tool for anticipating the 
size and assessing the reasonableness of an 
answer. Teachers should focus on the reason
ing needed to estimate a solution and should 
emphasize that estimation is a preliminary 
step to solving a problem, not a shortcut to 
obtaining an exact answer. Teachers who 
pose problems that cannot be solved quickly 
with mental computation (e.g., problems such 
as 5/9 + 3/7 rather than 5/8 + 3/8) will likely avoid 
this roadblock. 
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Recommendation 4 

Develop students’ 
conceptual understanding 
of strategies for 
solving ratio, rate, and 
proportion problems 
before exposing them 
to cross-multiplication 
as a procedure to use 
to solve such problems. 
Proportional reasoning is a critical skill 
for students to develop in preparation for 
more advanced topics in mathematics.111 

When students “think proportionally,” 
they understand the multiplicative 
relation between two quantities.112 For 
example, understanding the multiplicative 
relation in the equation Y = 2X means 
understanding that Y is twice as large 
as X (and not that X is twice as large as 
Y, which is what many students think). 
Contexts that require understanding 
of multiplicative relations include problems that involve ratios (i.e., the relation between 
two quantities, such as the ratio of boys to girls in a classroom), rates (i.e., the relation 
between two quantities measured in different units, such as distance per unit of time), and 
proportions (i.e., two equivalent ratios). Proportional reasoning often is needed in everyday 
contexts, such as adjusting recipes to the number of diners or buying material for home 
improvement projects; thus proportional reasoning problems provide opportunities to 
illustrate the value of learning about fractions. 

The panel recommends that teachers develop students’ proportional reasoning prior to teaching 
the cross-multiplication algorithm, using a progression of problems that builds on their informal 
reasoning strategies. Visual representations are particularly useful for teaching these concepts 
and for helping students solve problems. After teaching the cross-multiplication algorithm, 
teachers should return to the informal reasoning strategies, demonstrate that they and the 
algorithm lead to the same answers on problems for which the informal reasoning strategies 
are applicable, discuss why they do so, and also discuss problems that can be solved by the 
cross-multiplication algorithm that cannot easily be solved by the informal strategies. 

A caution for teachers: Evidence from many types of problem-solving studies, including ones 
involving ratio, rate, and proportion, indicates that students often learn a strategy to solve a 
problem in one context but cannot apply the same strategy in other contexts.113 Stated another 
way, students often do not recognize that problems with different cover stories are the same 
problem mathematically.114 To address this issue, teachers should point to connections among 
problems with different cover stories and illustrate how the same strategies can solve them. 
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  Recommendation 4 continued 

Summary of evidence: Minimal Evidence 

Evidence for the recommendation comes 
from consensus documents that emphasize 
the importance of proportional reasoning 
for mathematics learning, as well as the 
panel’s expert opinion.115 Additionally, the 
panel separately reviewed evidence relevant 
to particular action steps within the recom
mendation. These action steps are supported 
by case studies demonstrating the variety of 
strategies students use to solve ratio, rate, 
and proportion problems; a rigorous study 
of manipulatives; and two well-designed 
studies that taught strategies for solving 
word problems. 

Building on developing strategies. Three 
small case studies provided evidence that 
students use a variety of strategies to solve 
proportional reasoning problems (Step 1).116 

Some students initially applied a buildup 
strategy (e.g., to solve 2:3 = x:12, they added 
2:3 four times until they reached 8:12, and 
then said x = 8), whereas others applied a 
strategy that focused on the multiplicative 
relation between two ratios (e.g., to solve 
2:3 = x:12, they identified the relation 
between the denominators [3 × 4 = 12] and 
applied this relation to determine the miss
ing numerator [2 × 4 = 8], then said x = 8). 
However, these studies did not examine 
whether basing instruction on these strategies 
improved students’ proportional reasoning. 
The panel believes that students’ proportional 
reasoning can be strengthened through 
presenting a progression of problems that 
encourages use of these strategies and that 
provides a basis for realizing that the cross-
multiplication procedure can solve some, but 
not all, types of problems more efficiently 
than other strategies. 

Using representations. The evidence sup
porting the use of manipulatives and picto
rial representations to teach proportionality 

concepts is limited (Step 2). However, one 
study that met WWC standards found that the 
use of a manipulative improved 4th-graders’ 
ability to visualize and compare two ratios, 
which improved their ability to solve mixture 
problems, compared to students who had no 
exposure to these problems or the manipula
tive.117 In another study that met WWC stan
dards, students improved their ability to solve 
missing value proportion problems by repre
senting information from these problems in a 
data table that highlighted the multiplicative 
relationships between quantities.118 A third 
well-designed study found a positive impact 
on student learning of collaboratively con
structing pictorial representations relative to 
using teacher-generated representations.119 

These studies indicate that manipulatives 
and pictorial representations can be effective 
teaching tools; however, the principles that 
determine when they are and are not helpful 
remain poorly understood. 

Teaching problem-solving strategies. 
The panel also identified limited evidence 
supporting the recommendation to teach 
strategies for solving word problems involv
ing ratios and proportions (Step 3). The 
interventions examined in these studies 
taught middle school students a four-step 
strategy for solving ratio and proportion 
word problems.120 This strategy developed 
students’ understanding of common problem 
structures, directed students to use a dia
gram to identify key information needed to 
solve a problem, and encouraged students 
to compare different solution strategies. One 
of these studies focused on students with 
learning disabilities, while the other sampled 
students with a diverse mix of ability lev
els.121 Both studies found a positive effect on 
the accuracy of students’ solutions to ratio 
and proportion problems. 
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Recommendation 4 continued 

How to carry out the recommendation 

1. 	Develop students’ understanding of proportional relations before teaching computa
tional procedures that are conceptually difficult to understand (e.g., cross-multiplication). 
Build on students’ developing strategies for solving ratio, rate, and proportion problems. 

Opportunities for students to solve ratio, rate, 
and proportion problems should be provided 
prior to teaching the cross-multiplication 
algorithm.122 Teachers can use a progression 
of problems that builds on students’ develop
ing strategies for proportional reasoning.123 In 
particular, teachers can initially pose problems 
that allow solutions via the buildup and unit 
ratio strategies and progress to problems that 
are easier to solve through cross multiplication. 
Encouraging students to apply their own strate
gies, discussing with students varied strate
gies’ strengths and weaknesses, and helping 
students understand why a problem’s solution 
is correct are advisable.124 If students do not 
generate these strategies on their own, teach
ers should introduce the strategies as ways of 
solving ratio, rate, and proportion problems. 

Teachers can initially pose story problems 
that allow students to use a buildup strategy, 
in which they repeatedly add the numbers 
within one ratio to solve the problem (see 
Example 4).125 Problems that facilitate the use 
of the buildup strategy should have an inte
gral relation between the component num
bers in the two ratios—a relation in which the 
numbers in one ratio can be generated by 
repeatedly adding numbers in the other ratio, 
allowing students to build up to the unknown 
number. For example, the ratios 2:3 and 10:15 
have an integral relation, because repeatedly 
adding 2s and 3s to the first ratio leads to 
10:15. Thus, initial problems should involve 
ratios for which students can easily apply 
a buildup strategy, such as, “John is baking 
bread for some friends. He uses 2 cups of 
flour for every 3 friends. If he wants to make 
bread for 15 friends, how many cups of flour 
should he use?” 

Next, teachers can present similar problems, 
but with larger numbers, that demonstrate 

to students how time-consuming it can be 
to add up repeatedly to the unknown value. 
Students will see the advantage of multiply
ing and dividing rather than depending upon 
repeated addition. For example, in the baking 
bread problem, John could be baking bread 
for all 54 students in the 5th grade. 

Teachers can then present problems that 
cannot be solved immediately either through 
repeated addition or through multiplying or 
dividing a given number by a single inte
ger (see Example 4). These are problems 
that involve ratios without an integral rela
tion, such as x/6 = 3/9. Such problems can 
be solved by the unit ratio strategy, which 
involves reducing the known ratio (3/9) to a 
form with a numerator of 1 and then deter
mining the multiplicative relation between 
the new unit ratio and the ratio with the 
unknown element (x/6). The multiplicative 
relation between the denominators in the 
unit ratio and the unknown ratio can then 
be used to solve for the missing element. 
For example, x/6 = 3/9 could be solved by 
expressing 3/9 as 1/3, identifying 2/2 as the 
number that could be used to multiply 1/3 
and obtain a denominator of 6 without 
changing the value of 1/3, multiplying 1/3 by 
2/2 to obtain 2/6, and answering “x = 2.”126 

The same type of reasoning can be used to 
solve problems for which the answer is not a 
whole number; for example, “Susan is making 
dinner for 6 people and wants to use a recipe 
that serves 8 people. The recipe for 8 calls 
for 2 cups of cream. How much cream will 
she need to serve 6?” This context presents 
the problem as 2:8 as x:6. Students could 
solve this problem by reasoning that since 
2 cups of cream serve 8 people, 1 cup of 
cream would serve 4 people, and 11/2 cups 
of cream would serve 6. 
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Recommendation 4 continued 

Problems such as those in the last paragraph 
can be used to help students recognize the 
advantages of a strategy that can solve 
problems regardless of the particular num
bers. Cross-multiplication can be introduced 
as such an approach. Problems that do not 
involve integral relations and cannot easily 
be reduced to unit fractions will help students 
see the advantages of cross-multiplication, 
which is essentially a procedure to create 
equivalent ratios. Its use can be illustrated 
with problems such as those presented in 
the previous paragraph that were solved with 
a unit strategy. For example, students could 
be encouraged to solve the last problem 

with the cross-multiplication strategy: writing 
xthe equation 2/8 = /6 and cross-multiplying to 

find the missing value. After students arrive 
at the same answer of 11/2, teachers can lead 
students in a discussion of why the unit ratio 
and cross-multiplication procedures yield 
the same answer (see Example 5). Students 
should practice both with problems that are 
solved easily through informal reasoning and 
mental mathematics and with problems that 
are solved easily using cross-multiplication 
but not through the buildup or unit ratio 
strategies. Teachers can encourage students 
to discuss how to anticipate which approach 
will be easiest. 

Example 4. Problems encouraging specific strategies 

Ratio, rate, and proportion problems can be solved using many strategies, with some problems encouraging 
use of particular strategies. Illustrated below are three commonly used strategies and types of problems on 
which each strategy is particularly advantageous. 

Buildup Strategy 

Sample problem. If Steve can purchase 3 baseball cards for $2, how many baseball cards can he purchase 
with $10? 

Solution approach. Students can build up to the unknown quantity by starting with 3 cards for $2, and repeat
edly adding 3 more cards and $2, thus obtaining 6 cards for $4, 9 cards for $6, 12 cards for $8, and finally 15 
cards for $10. 

Unit Ratio Strategy 

Sample problem. Yukari bought 6 balloons for $24. How much will it cost to buy 5 balloons? 

Solution approach. Students might figure out that if 6 balloons costs $24, then 1 balloon costs $4. This strat
egy can later be generalized to one in which eliminating all common factors from the numerator and denomina
tor of the known fraction does not result in a unit fraction (e.g., a problem such as 6/15 = x/10, in which reducing 
6/15 results in 2/5). 

Cross-Multiplication 

Sample problem. Luis usually walks the 1.5 miles to his school in 25 minutes. However, today one of the 
streets on his usual path is being repaired, so he needs to take a 1.7-mile route. If he walks at his usual speed, 
how much time will it take him to get to his school? 

Solution approach. This problem can be solved in two stages. First, because Luis is walking at his “usual 
speed,” students know that 1.5/25 = 1.7/x. Then, the equation may be most easily solved using cross-multiplication. 
Multiplying 25 and 1.7 and dividing the product by 1.5 yields the answer of 281/3 minutes, or 28 minutes and 20 
seconds. It would take Luis 28 minutes and 20 seconds to reach school using the route he took today. 
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Recommendation 4 continued 

Example 5. Why cross-multiplication works 

Teachers can explain why the cross-multiplication procedure works by starting with two equal fractions, 
such as 4/6 = 6/9. The goal is to show that when two equal fractions are converted into fractions with the 
same denominator, their numerators also are equivalent. The following steps help demonstrate why the 
procedure works. 

Step 1. Start with two equal fractions, for example: 4/6 = 6/9. 
Step 2. Find a common denominator using each of the two denominators. 

a. First, multiply 4/6 by 9/9, which is the same as multiplying 4/6 by 1. 

b. Next, multiply 6/9 by 6/6, which is the same as multiplying 6/9 by 1. 

Step 3. Calculate the result: (4 × 9) 
= 

(6 × 6) 
(6 × 9) (9 × 6) 

Step 4. Check that the denominators are equal. If two equal fractions have the 
same denominator, then the numerators of the two equal fractions must 
be equal as well, so 4 × 9 = 6 × 6. 

Note that in this problem, 4 × 9 = 6 × 6 is an instance of (a × d = b × c). 

As a result, students can see that the original proportion, 4/6 = 6/9, can be solved using cross-multiplication, 
4 × 9 = 6 × 6, as a procedure to create equivalent ratios efficiently. 

2. Encourage students to use visual representations to solve ratio, rate, and 
proportion problems. 

The panel recommends that teachers encour
age the use of visual representations for 
ratio, rate, and proportion problems. Teach
ers should carefully select representations 
that are likely to elicit insight into a particular 
aspect of ratio, rate, and proportion concepts. 
For example, a ratio table can be used to rep
resent the relations in a proportion problem 
(see Figure 9). To identify the amount of flour 
needed for 32 people when a recipe calls 
for 1 cup of flour to serve 8, students can 
use a ratio table to repeatedly add 1 cup of 
flour per 8 people to find the correct amount 
for 32 people (i.e., they can use the buildup 
strategy). Alternatively, students can use the 
ratio table to see that multiplying the ratio 
by 4/4 (i.e., 4 times the recipe) provides the 
amount of flour needed for 32 people. This 
visual representation provides a specific refer
ent that teachers can point to as they discuss 
with students why multiplication leads to the 
same solution as the buildup strategy. 

Figure 9. Ratio table for a proportion 
problem 

Cups 
of Flour 

1 2 3 4 

Number 
of People 
Served 

8 16 24 32 

In addition to using the ratio table as a tool 
for solving problems, teachers can use it to 
explore different aspects of proportional 
relations, such as the multiplicative relations 
within and between ratios. In the ratio table in 
Figure 10, the number of cups of flour needed 
is always 2.5 times the number of people; 
thus, the ratio between them is always 2.5:1. 

As discussed in Recommendation 3, teachers 
should not always provide representations to 
students; they sometimes should encourage 
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Recommendation 4 continued 

them to create their own representations—in 
this case, representations of ratios, rates, and 
proportions.127 Prior to formal instruction in 
ratios, students tend to use tabular or other 
systematic forms of record keeping,128 which 
can help them understand the functional 
relation between rows or columns or the 
numbers in a ratio.129 Teachers should help 
students extend these and other represen
tations to a broad range of ratio, rate, and 
proportion problems. 

Figure 10. Ratio table for exploring 
proportional relations 

Cups 
of Flour 

5 7.5 10 12.5 

Number 
of People 
Served 

2 3 4 5 

3. Provide opportunities for students to use and discuss alternative strategies for 
solving ratio, rate, and proportion problems. 

The goal is to develop students’ ability to 
identify problems with a common underlying 
structure and to solve problems that are set 
in a variety of contexts.130 Instruction might 
focus on the meaningful features of different 
problem types, including ratio and propor
tion problems, so that students can transfer 
their learning to new situations. For example, 
students might first learn to solve recipe 
problems, such as, “A recipe calls for 3 eggs 
to make 20 cupcakes. If you want to make 80 
cupcakes, how many eggs do you need?” Hav
ing learned to solve such problems, students 
might then be asked to solve similar problems 
with different contexts, such as: “Building 3 
dog-houses requires 42 boards; how many 
boards are needed to build 9 doghouses?”131 

Teachers also should help students identify 
key information needed to solve a problem. 
Once students can identify the key informa
tion in a problem, they can be taught to use 
diagrams to represent that information.132 

Such diagrams should not simply represent 
the story problem in diagram form; they also 
should identify the information needed to 
solve the problem and the relation between 
different quantities in the problem. Teachers 
should encourage students to use different 
diagrams and strategies to arrive at solutions 
and should provide opportunities for students 
to compare and discuss their diagrams and 
strategies.133 

The panel suggests using real-life contexts 
based on students’ experiences. A few exam
ples are provided here:134 

•	 Unit price. Teachers can pose problems 
based on the unit price of an object, such 
as comparing the value of two items (e.g., 
a 16-ounce can of soda for $0.89 and a 
12-ounce can of soda for $0.62) and deter
mining how much a certain amount of an 
item costs given the cost per unit and the 
number of units purchased. The context 
of unit-price problems can be buying or 
selling produce at a grocery store, cans 
of paint at a hardware store, or any other 
purchasing situation. 

•	 Scaling. Students can solve problems 
related to the enlargement or reduction of 
a photo, drawing, or geometric shape (e.g., 
double the width and double the length of 
a photo to create a new photo whose area 
is four times that of the original). Another 
example of scaling is using a map legend 
to find the actual distance between two 
cities, based on their distance on the map. 

•	 Recipes. Recipes and cooking provide 
useful settings for ratio and proportion 
problems, for example, “If a recipe calls 
for 1 egg and 3 cups of milk, and the 
cook wants to make as much as possible 
using all 8 eggs she has, how much milk is 
needed, assuming that the ratio of eggs to 
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Recommendation 4 continued 

milk in the original recipe is maintained?” 
Students also can revise a recipe to make 
more or less of the final amount, in situa
tions that call for changing the number of 
servings or amounts of ingredients using 
equivalent ratios. 

•	 Mixture. Problems related to the mixture 
of two or more liquids provide another 
context for posing ratio and proportion 
problems. Students can compare the 
concentration of a mixture (e.g., compare 
the relative amount of one liquid to the 
amount of another liquid in a mixture) or 
determine how to maintain the original 
ratio between liquids in a mixture if the 
amount of one of the liquids changes. 

•	 Time/speed/distance. Students can 
be told the time, speed, and distance 
that one car traveled and the values of 
any two of these variables for a second 
car and then be asked for the value of 
the third variable for the second car. For 
example, they could be told that car A 
traveled for 2 hours at a rate of 45 miles 
per hour, so it traveled 90 miles. Then 
they could be told that car B traveled 
at the same speed but traveled only 60 
miles and be asked to determine the 
amount of time that car B traveled. 

Potential roadblocks and solutions 

Roadblock 4.1. Many students misapply the 
cross-multiplication strategy. 

Suggested Approach. Carefully presenting 
several examples of the type shown in Exam
ple 5 can help students understand the logic 
behind the cross-multiplication procedure and 
why the ratios within the problem need to be 
in the correct form for the procedure to work. 
Making sure that students understand the 
logic of each step in the demonstration takes 
time, but it can prevent many future errors 
and misunderstandings. 

Roadblock 4.2. Some students rely nearly 
exclusively on the cross-multiplication strategy 
for solving ratio, rate, and proportion prob
lems, failing to recognize that there often are 
more efficient ways to solve these problems. 

Suggested Approach. Teachers should 
provide students opportunities to use a variety 
of strategies for solving ratio, rate, and propor
tion problems and initially present problems 
that are easiest to solve with strategies other 
than cross-multiplication. For example, teach
ers can present problems in which the relation 

within the given ratio is integral (e.g., 5/15) and 
the relation between the corresponding num
bers across the two ratios is not (e.g., 5/15 = 6/x). 
These types of problems may encourage stu
dents to use prior knowledge of multiplicative 
relations between numerator and denominator 
within the ratio where both are known. Requir
ing students to solve problems mentally (with
out pencil and paper) also can increase the use 
of strategies other than cross-multiplication 
and build number sense with fractions. 

Roadblock 4.3. Students do not generalize 
strategies across different ratio, rate, and 
proportion contexts. 

Suggested Approach. In addition to provid
ing students with problems across a variety of 
contexts and teaching a variety of rate, ratio, and 
proportion problem-solving strategies, teachers 
should strive to link new problems with previ
ously solved ones. Teachers can regularly have 
students judge when the same solution strategy 
could be used for different types of problems. For 
example, teachers can demonstrate how informa
tion in two types of problems, such as recipes 
and mixture problems, can be organized in the 
same way and then compare solution procedures 
for the two types of problems side by side. 
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Recommendation 5 

Professional development programs should place 
a high priority on improving teachers’ understanding 
of fractions and of how to teach them. 
Teachers play a critical role in helping students understand fraction concepts. Teaching 
for understanding requires that teachers themselves have a thorough understanding of 
fraction concepts and operations—including deep knowledge of why computation procedures 
work. Appropriate use of representations for teaching fractions, a key aspect of the panel’s 
recommendations, requires that teachers understand a range of representations and how to 
use them to illustrate particular points. 

An awareness of common misconceptions and of inappropriate strategies students use to solve 
fractions problems also is crucial for effective instruction in this area. The panel believes that 
preservice teacher education and professional development programs must develop teachers’ 
abilities in each of these areas, especially given considerable evidence that many U.S. teachers 
lack deep understanding of fraction concepts.135 

Summary of evidence: Minimal Evidence 

Despite the limited evidence related to this 
recommendation, the panel believes teach
ers must develop their knowledge of frac
tions and of how to teach them. Researchers 
have consistently found that teachers 
lack a deep conceptual understanding of 

fractions,136 and that teachers’ mathematical 
content knowledge is positively correlated 
with students’ mathematics achievement.137 

Taken together, these findings suggest a 
great need for professional development in 
fraction concepts. Regardless, the evidence 
rating assigned by the panel recognizes the 
limited amount of rigorous evidence on the 
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Recommendation 5 continued 

effects of professional development activi
ties related to fractions. 

In one well-designed study, teachers who 
received training on fraction concepts, on 
students’ understanding of fractions, on stu
dents’ motivation for learning math, and on 
how to assess students’ knowledge of frac
tions improved students’ conceptual under
standing of fractions and their ability to 
compute with fractions.138 However, another 
well-designed study found no impact on 
student achievement in fractions, decimals, 
percentages, and proportions, despite offer
ing 7th-grade teachers up to 68 hours of 
professional development on rational num
bers through a summer institute and one-day 
seminars.139 Two other studies that met WWC 
standards provided training on how students 
develop knowledge and skills related to 
specific math concepts. One of these stud
ies focused on whole number addition and 
subtraction and found improvements in 

students’ whole number computation and 
solutions to word problems. The second 
study provided teacher training on students’ 
algebraic reasoning and reported a positive 
impact on student learning. 

Research indicates that many elementary 
school teachers have limited knowledge of 
fraction concepts and procedures.140 Inter
views with U.S. elementary school teachers 
showed that a high percentage of them were 
unable to explain computational procedures 
for fractions.141 Another study found that 
some elementary school teachers had diffi
culty ordering fractions, adding fractions, and 
solving ratio problems.142 Many of the teach
ers who solved problems correctly could not 
explain their own problem-solving process. 
The panel views this limited knowledge of 
fractions as problematic, given evidence that 
teachers’ mathematical content knowledge is 
related to students’ learning.143 

How to carry out the recommendation 

1. Build teachers’ depth of understanding of fractions and computational procedures 
involving fractions. 

To provide effective fractions instruction, 
teachers need a deep understanding of frac
tion concepts and operations. In particular, 
teachers need to understand the reasoning 
behind computations that involve fractions so 
they can clearly and coherently explain to stu
dents why the procedures work, not just the 
sequence of steps to take. Without a concep
tual understanding of fraction computation, 
teachers are not likely to help students make 
sense of fraction operations.144 Therefore, 
teacher preparation and professional develop
ment activities must support a deeper level of 
understanding of fractions.145 

Teachers should have opportunities to gain 
better understanding of fractions algorithms 
by solving problems and exploring the 
meaning of algorithms.146 One approach 
is to pose problems that provoke deep 

discussions of the algorithms, possibly 
using advanced versions of examples from 
teachers’ lessons.147 For example, teachers 
might solve a problem in which they have 
to equally distribute fractional parts of cake 
among a number of people (e.g., 3 cakes dis
tributed among 8 people), whereas students 
might be asked to distribute a whole number 
of cookies (e.g., 18 cookies among 6 people). 
Particularly useful are problems or activities 
that lead teachers to question why an algo
rithm works or to examine what they do and 
do not understand about an algorithm.148 

Although teachers can address these prob
lems on their own or in small groups, mak
ing time for discussion is crucial. 

Having teachers estimate answers to fractions 
problems and discuss the reasoning that 
led to the estimates also can be useful. All 
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Recommendation 5 continued 

activities should eventually link back to the 
classroom, with opportunities for teachers to 
discuss how they would respond to students’ 
questions about why estimation is valuable 
and the logic that separates effective and less 
effective estimation procedures. 

Professional development should not focus 
exclusively on fraction topics covered at the 
teacher’s grade level. Teachers must under
stand fraction concepts covered in the entire 
elementary and middle school curricula and 
should know how these concepts fit within 

the broader math curriculum. Awareness of 
fraction concepts taught in earlier grades 
ensures that teachers can build on what stu
dents already know; it also can help teachers 
identify and address common misconceptions 
that students might have developed. Under
standing fraction concepts and other more 
advanced mathematics that will be covered 
in later grades helps teachers set goals and 
think about how their teaching can provide 
foundations for ideas that students will 
encounter in the future. 

2. Prepare teachers to use varied pictorial and concrete representations of fractions and 
fraction operations. 

To use concrete and pictorial representations 
effectively, teachers must understand how 
these representations link to fraction concepts 
and how they can be used to improve student 
learning. Teacher education and professional 
development activities should prepare teach
ers to use such representations for teaching 
fractions and should help teachers under
stand how the representations relate to the 
concepts being taught. 

Teachers might learn, for example, that 
diagrams of sharing scenarios can help high
light the link between fractions and division 
(i.e., the quotient interpretation of fractions) 
by allowing students to represent fractions 
with equal shares (e.g., 2 large brownies 
shared among 5 children). Number lines can 
focus students on measurement interpreta
tions of fractions, with fractions represent
ing a distance between two numbers. Area 

models— particularly rectangular ones, but 
models using other shapes as well—can be 
used to depict part-whole representations 
of fractions. 

Development activities should provide oppor
tunities for teachers to integrate representa
tions into fractions lessons.149 In addition, 
teachers need to understand difficulties that 
might arise when they use a pictorial or 
concrete representation to teach fractions. For 
example, students may view the entire num
ber line, rather than the distance between two 
numbers, as the unit when locating fractions 
(e.g., they might interpret the task of locat
ing 3/4 on a 0-to-5 number line as locating the 
point 75% of the way across the number line). 
Professional development activities need to 
help teachers anticipate misconceptions and 
learning problems that are likely to arise, and 
identify ways of addressing them. 

3. Develop teachers’ ability to assess students’ understandings and misunderstandings 
of fractions. 

Professional development activities with 
teachers should emphasize how students 
develop an understanding of fractions and 
the obstacles students face in learning about 
them.150 Information from research on the 
development of fraction learning should be 
provided in these discussions.151 

One method that is useful for meeting this 
goal is to provide teachers with opportuni
ties to analyze and critique student thinking 
about fractions. This can be done by exam
ining students’ written work or watching 
video clips of students solving problems 
that are designed to provide insight into 
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Recommendation 5 continued 

students’ thinking.152 For example, teachers 
can be asked to analyze sources of students’ 
difficulty on problems such as, “Paige had 
3 boxes of cereal. Each box was 2/3 full. If 
the cereal in the 3 boxes were poured into 
empty boxes, how many boxes would it fill? 
Use rectangular drawings or a number line 
to display your reasoning.” Teachers can be 
asked to video-record students’ performance 
on such problems before a professional 
development session; then teachers can bring 
students’ work or video clips to the session 
and use them as a basis for discussion. 

Teachers should know the types of mistakes 
students most often make when working 
with fractions and also should understand the 
underlying misconceptions that cause them. 
Analyzing students’ work is a useful way to 
identify problem areas and to gain insight 
into students’ thought processes. To be most 
effective, teachers must know how to design 
problems that diagnose the source of errors. 
For example, teachers might structure a 
decimal-ordering problem to assess whether 
students understand place value (e.g., order
ing the following decimals from smallest to 
largest: 0.2, 0.12, 0.056). 

Preservice and in-service activities should 
help teachers understand research on chil
dren’s knowledge of fractions; the research 
presented should be chosen to inform teach
ers’ assessment activities and instruction. For 
example, research has shown that students 
often have difficulty with fraction names and 
with understanding the value of fractions.153 

Whether students in a given classroom are 
having such difficulty can be assessed by 
asking them to state fractions that label the 
locations of hatch marks on a number line 
with endpoints of 0 and 1. Such an assess
ment might indicate that students refer to a 
variety of locations as 1/2, or that they view 
fractions with larger denominators as larger 
than fractions with smaller denominators 
(e.g., they might think that 1/8 > 1/3). Such 
a pattern might lead to an engaging and 
productive discussion of how the system 
for naming fractions works and why that 
naming procedure makes sense. More gener
ally, development activities should provide 
opportunities for teachers to practice writing 
or selecting problems that accurately assess 
students’ understanding and to use assess
ment results to design useful lessons. 

Potential roadblocks and solutions 

Roadblock 5.1. Administrators or profes
sional development personnel might argue 
that the topic of fractions is just one of many 
that elementary and middle school teachers 
must be prepared to teach and that their dis
trict, program, or school cannot devote more 
time or resources to it. 

Suggested Approach. The panel recog
nizes that time and resources for providing 
professional development are limited. How
ever, a convincing argument can be made 
for devoting some time and resources to this 
topic: (1) fractions are a critical foundation 
for more advanced mathematics, (2) many 
teachers lack sufficient understanding of 
fraction to teach the topic effectively, and 

(3) U.S. students lag further behind those 
in other countries in solving problems with 
fractions than in solving problems with 
whole numbers.154 The panel believes the 
need is critical for elementary and middle 
school teachers to receive professional devel
opment related to their content knowledge 
of fractions and to the teaching of fractions, 
including decimals, percentages, ratios, 
rates, and proportions. The panel suggests 
that school and district leaders consider 
fractions a high priority for professional 
development. 

Roadblock 5.2. Some teachers have difficulty 
with whole number topics, such as multiplica
tion and division, that are related to the teach
ing of fractions. 
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Recommendation 5 continued 

Suggested Approach. A deep understand
ing of whole number multiplication and 
division, including why and how common 
computational algorithms work, is essen
tial for teaching fractions effectively. When 
selecting or designing professional develop
ment activities related to fractions, education 
leaders should consider whether reviewing 
these key whole number topics is a neces
sary prerequisite for teachers in the particu
lar school or district. 

Roadblock 5.3. Some teachers do not think 
additional professional development involving 
fractions is necessary. 

Suggested Approach. Although most teach
ers are able to compute with fractions, many 
do not have a strong conceptual background 
regarding fractions or an understanding of 
the logic underlying computational algo
rithms used for solving fraction problems. By 
first determining if teachers know why and 
how common computational algorithms (e.g., 
invert and multiply) work and why certain 
steps within algorithms are necessary (e.g., 
establishing common denominators for addi
tion and subtraction), education leaders can 
decide whether professional development 
involving fractions is an important need in 
their schools or districts. 
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Glossary
 

C 
Common fraction – A fraction written in the form a /b, where both a and b are integers and b does not 
equal zero (e.g., 3/4, 6/5, – (1/8)).
 
Covariation – A measure of how much two quantities change together. For example, the extent to which
 
one quantity increases as another quantity increases.
 

D 
Denominator – For any fraction a /b, the denominator is the number below the hash line. The denominator 
represents the divisor of a division problem, or the number of parts into which a whole amount is divided 
(e.g., for the fraction 2/3, the denominator 3 refers to a whole divided into three parts). 

E 
Equal sharing – The activity of completely distributing an object or set of objects equally among a group 
of people.
 

Equivalent fractions – Fractions that represent the same numerical value; equal fractions. For 

example, 2/4 and 4/8 are both equal to 1/2; therefore 2/4, 4/8, and 1/2 are equivalent fractions.
 

F 
Fraction density – The concept that between any two fractions there is another fraction. For example, 
the fraction 1/4 is between 0 and 1/2; the fraction 1/8 is between 0 and 1/4; and the fraction 1/16 is between 
0 and 1/8. One consequence of this fact is that between any two fractions there are an infinite number 
of fractions. 

I 
Improper fraction – A fraction with a numerator that is greater than or equal to the denominator. Examples 
of improper fractions include 5/5, 9/8, and 14/9. 

M 
Mixed number – A fraction written as a whole number and a fraction less than one. Examples of mixed 
numbers include 12/3, 43/8, and –25/6.
 
Multiplicative relation – A relation between two quantities in which one quantity can be multiplied by a
 
factor to obtain a second quantity.
 

N 
Numerator – For any common fraction a /b, the numerator is the number above the hash line. The numerator 
represents the dividend of a division problem or the number of fractional parts represented by a fraction 
(e.g., for the fraction 2/3, the numerator 2 represents the number of thirds). 
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Glossary continued 

P 
Percent – Any number expressed as a fraction or ratio of 100 (i.e., with a denominator of 100). For example, 
75% is equivalent to 0.75 or 75/100.
 
Proportion – An expression of two equivalent ratios or fractions. A proportion is an equation written in
 
the form a /b = c /d, thus indicating that the two ratios are equivalent.
 

Proportional reasoning – The literature consists of several different definitions of proportional reasoning.
 
On a basic level, the term means understanding and working with the underlying relations in proportions.155
 

Others describe proportional reasoning as the ability to compare one relative amount to another,156 or the
 
ability to understand multiplicative relations or reason about multiplicative situations.157
 

Q 
Quotient – The solution to a division problem. For example, 3 is the quotient for the following division 
problem: 12 ÷ 4 = 3. 

R 
Rational number – Any number that can be expressed in the form a /b where a and b are both integers
 
and b does not equal zero. Rational numbers can take many different forms, including common fractions,
 
ratios, decimals, and percents.
 

Rate – The relation between two quantities measured in different units. For example, distance per unit of
 
time.
 

Ratio – The relation between two quantities. For example, the ratio 2:3 might represent the relation
ship of the number of boys to girls in a classroom, or two boys for every three girls in the class.
 

U 
Unit fraction – A fraction with a numerator of one (e.g., 1/3, 1/11). 
Unit ratio – A ratio with a denominator of one (e.g., 5:1, 9:1). 

W 
Whole numbers – The set of numbers starting with zero and increasing by one (i.e., 0, 1, 2, 3…). 

( 48 ) 



  

 

 
 

 
 

           
 

 
 

 
 

 
  

 

    

 
      

 
 

 
 
 

       
 

      
        

 

 
 

      
 

     
 

 
 

 
 

 
      

 

 

 

 
     

 
 

 
 

       

 
 

 
 

 
 

 
 

 

 
 

 
      

 
      

Appendix A 

Postscript from the Institute of Education Sciences 

What is a practice guide? 
The Institute of Education Sciences (IES) publishes practice guides to share rigorous evidence and 
expert guidance on addressing education-related challenges not solved with a single program, 
policy, or practice. Each practice guide’s panel of experts develops recommendations for a coherent 
approach to a multifaceted problem. Each recommendation is explicitly connected to supporting 
evidence. Using standards for rigorous research, the supporting evidence is rated to reflect how 
well the research demonstrates that the recommended practices are effective. Strong evidence 
means positive findings are demonstrated in multiple well-designed, well-executed studies, leaving 
little or no doubt that the positive effects are caused by the recommended practice. Moderate evi
dence means that well-designed studies show positive impacts, but some questions remain about 
whether the findings can be generalized or whether the studies definitively show that the practice 
is effective. Minimal evidence means data may suggest a relationship between the recommended 
practice and positive outcomes, but research has not demonstrated that the practice is the cause 
of positive outcomes. (See Table 1 for more details on levels of evidence.) 

How are practice guides developed? 

To produce a practice guide, IES first selects 
a topic. Topic selection is informed by 
inquires and requests to the What Works 
Clearinghouse Help Desk, formal surveys of 
practitioners, and a limited literature search of 
the topic’s research base. Next, IES recruits a 
panel chair who has a national reputation and 
expertise in the topic. The chair, working with 
IES, then selects panelists to co-author the 
guide. Panelists are selected based on their 
expertise in the topic area and the belief that 
they can work together to develop relevant, 
evidence-based recommendations. IES rec
ommends that the panel include at least one 
practitioner with relevant experience. 

The panel receives a general template for 
developing a practice guide, as well as 
examples of published practice guides. Panel
ists identify the most important research 
with respect to their recommendations and 
augment this literature with a search of 
recent publications to ensure that supporting 
evidence is current. The search is designed 
to find all studies assessing the effectiveness 
of a particular program or practice. These 
studies are then reviewed against the What 
Works Clearinghouse (WWC) standards by 
certified reviewers who rate each effective
ness study. WWC staff assist the panelists in 

compiling and summarizing the research and 
in producing the practice guide. 

IES practice guides are then subjected to 
rigorous external peer review. This review 
is done independently of the IES staff that 
supported the development of the guide. A 
critical task of the peer reviewers of a practice 
guide is to determine whether the evidence 
cited in support of particular recommenda
tions is up-to-date and that studies of similar 
or better quality that point in a different direc
tion have not been overlooked. Peer reviewers 
also evaluate whether the level of evidence 
category assigned to each recommendation is 
appropriate. After the review, a practice guide 
is revised to meet any concerns of the review
ers and to gain the approval of the standards 
and review staff at IES. 

A final note about IES practice guides 

In policy and other arenas, expert panels 
typically try to build a consensus, forging 
statements that all its members endorse. 
But practice guides do more than find com
mon ground; they create a list of actionable 
recommendations. When research clearly 
shows which practices are effective, the 
panelists use this evidence to guide their 
recommendations. However, in some cases, 
research does not provide a clear indication 
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Appendix A continued 

of what works, and panelists’ interpretation 
of the existing (but incomplete) evidence 
plays an important role in guiding the recom
mendations. As a result, it is possible that 
two teams of recognized experts working 
independently to produce a practice guide 
on the same topic would come to very differ
ent conclusions. Those who use the guides 
should recognize that the recommendations 
represent, in effect, the advice of consultants. 
However, the advice might be better than 

what a school or district could obtain on its 
own. Practice guide authors are nationally 
recognized experts who collectively endorse 
the recommendations, justify their choices 
with supporting evidence, and face rigorous 
independent peer review of their conclusions. 
Schools and districts would likely not find 
such a comprehensive approach when seek
ing the advice of individual consultants. 

Institute of Education Sciences 

(( 5500 )) 



  

    

     
     

     
 

 
 

       
 

  
  

 
 

    
 

 

 
 

 
     

 
 

 

 
     

        
 

  
  

 

    
 

 

   
      

 
 

 
 
 
 

 
 
 

   
    

      
      

    
 

 

 
 
 

 
 

 
 
 
 

    
 

 
 
 

 
 
 

 

   
 

 

 
 

 Appendix B 

About the Authors 

Panel 
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How Children Discover New Strategies, How 
Children Develop, and Children’s Thinking. 
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Appendix B continued 
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Partnerships, NebraskaMATH and the Math in 
the Middle Institute Partnership. He was chair 
of the Conference Board of the Mathematical 
Sciences committee that produced The Math
ematical Education of Teachers and co-chair 
of the National Research Council committee 
that produced the report Educating Teachers 
of Science, Mathematics, and Technology: New 
Practices for the New Millennium. Dr. Lewis 
was also co-principal investigator for Math 
Matters, a National Science Foundation grant 
to revise the mathematics education of future 
elementary school teachers at UNL. 

Yukari Okamoto, Ph.D., is a professor in 
the department of education at the University 
of California–Santa Barbara. Her work focuses 
on cognitive development, the teaching and 
learning of mathematics and science, and 
cross-cultural studies. She is particularly 
interested in children’s acquisition of math
ematical, scientific, and spatial concepts and 
participated in the video studies of mathemat
ics and science teaching as part of the Third 
International Mathematics and Science Study 
(TIMSS). Dr. Okamoto’s recent publications 
include Fourth-Graders’ Linking of Rational 
Number Representation: A Mixed Method 
Approach and Comparing U.S. and Japanese 
Elementary School Teachers’ Facility for Link
ing Rational Number Representations. 

Laurie Thompson, M.A., has 10 years 
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and math resource teacher. Her experience 
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guide addressing access to higher education 
and to research perspectives synthesizing 
expert recommendations to states and school 
districts for use of funds from the American 
Recovery and Reinvestment Act. She also has 
experience with measures of teacher effec
tiveness in mathematics. 

Andrew Gothro is a research analyst at Math
ematica Policy Research. He has experience 
providing research support and conducting 
quantitative data analysis on topics ranging 
from child development to antipoverty pro
grams. Mr. Gothro supported the panel on this 
project by identifying and organizing relevant 

research, synthesizing findings from reviewed 
studies, and crafting language for an audience 
of education practitioners. 

Sarah Prenovitz is a research assistant/ 
programmer at Mathematica Policy Research. 
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and conducting data analysis for studies of 
teacher incentive programs and professional 
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(( 5353 )) 



  

 

 

 

 
 

   
 

  

Appendix C 

Disclosure of Potential Conflicts of Interest 

Practice guide panels are composed of individuals who are nationally recognized experts on the 
topics about which they are making recommendations. IES expects the experts to be involved pro
fessionally in a variety of matters that relate to their work as a panel. Panel members are asked to 
disclose these professional activities and institute deliberative processes that encourage critical exam
ination of their views as they relate to the content of the practice guide. The potential influence of 
the panel members’ professional activities is further muted by the requirement that they ground their 
recommendations in evidence that is documented in the practice guide. In addition, before all practice 
guides are published, they undergo an independent external peer review focusing on whether the 
evidence related to the recommendations in the guide has been presented appropriately. 

The professional activities reported by each panel member that appear to be most closely associ
ated with the panel recommendations are noted below. 

Jim Lewis receives royalties as an author of Math Vantage, a mathematics curriculum for middle 
school students. This program is not mentioned in the guide. 
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Appendix D

Rationale for Evidence Ratingsa

The panel conducted an initial search for research from 1989 to 2009 on practices for improving stu-
dents’ learning of fractions. The search focused on studies of interventions for teaching fractions to 
students in kindergarten through 8th grade that did not exclusively focus on students with diagnosed 
learning disabilities; studies examined students in both the United States and other countries. 

Panelists identified more than 3,000 studies through this initial search, including 125 with causal 
designs reviewed according to What Works Clearinghouse (WWC) standards. Twenty-six of the studies  
met evidence standards with or without reservations. Given the limited research on practices for 
improving students’ fraction knowledge, the panel expanded its search beyond fractions to identify 
studies relevant for number lines (Recommendation 2) and professional development (Recommenda-
tion 5). This led panel members to an additional seven studies that met standards with or without  
reservations. Of the 33 total studies that met the causal validity standards of the WWC and were 
broadly related to the topic, 20 studies were relevant to the panel’s specific recommendations. The 
panel also examined studies that did not have designs eligible for a WWC review but were relevant  
to the recommendations, including correlational studies, case studies, and teaching experiments. 

Recommendation 1.  
Build on students’ informal understand-
ing of sharing and proportionality to 
develop initial fraction concepts. 

Level of evidence: Minimal Evidence

The panel assigned a rating of minimal evi-
dence to this recommendation. The recom-
mendation is based on seven studies showing 
that students have an early understanding of 
sharing and proportionality158 and two stud-
ies of instruction that used sharing scenarios 
to teach fraction concepts.159 However, none 
of the studies in this latter group met WWC 
standards. Despite this limited evidence, the 
panel believes that students’ informal knowl-
edge of sharing and proportionality provides 
a foundation for teaching fraction concepts.

The panel separately examined the research 
on sharing activities and proportional rela-
tions for this recommendation.

Sharing activities. Children have the ability 
to create equal shares at an early age. Children 
as young as age 5 can complete basic sharing 
tasks that involve evenly distributing a set of 
12 or 24 objects among two to four recipi-
ents.160 In one study, most 5-year-old children 
could do this even when using different-size 

units (i.e., equally distributing single, double, 
and triple blocks). The ability to create equal 
shares improves with age, with 6-year-old 
children performing better than 4- and 5-year-
olds.161 Sharing continuous objects is more 
difficult for young children than sharing a set 
of objects: children in one study had more dif-
ficulty sharing a rope among three recipients 
than sharing a set of crackers.162  

Children’s understanding of how to share does 
not necessarily extend to underlying fraction 
concepts. Many students do not understand 
that sharing the same set of objects with 
more people results in smaller shares for each 
person.163 One study that potentially met 
standards showed an improved understanding 
of this concept among kindergarten students 
who were given results from sharing scenarios 
with different numbers of sharers (i.e., differ-
ent denominators).164 This study demonstrated 
the potential for using sharing activities as 
the basis for teaching early fraction concepts. 
However, a review of the study could not 
be completed because insufficient informa-
tion was provided on the number of schools 
assigned to each condition.

Two case studies showed how an early 
understanding of sharing could be used to 
teach fractions to elementary students.165  

a Eligible studies that meet WWC evidence standards or meet evidence standards with reservations are indicated by bold text in the 
endnotes and references pages.



  

       
 

 

 
 

 
 

 
 

 
 

 

      
     

  
     

 
 

 
      
 

  

 
 

  
 

 
 

 
  

  
     

 
 

 
       

 
 

   
 

 

 
 

        
         

         
 

  
 

       
 

        
 

 
 

      
 

     
 

 
 

        
 

     
 

 
 

      
    

   
 

 
 

 
 
 

  

      
   

Appendix D continued 

In both studies, a teacher posed various story 
problems based on sharing scenarios to 
teach fraction concepts such as equivalence 
and ordering, as well as fraction computa
tion. For example, students solved problems 
about people sharing varying amounts of 
food or the use of seating arrangements 
to share a set of objects in different ways. 
The instruction in both studies included 
story problems based on realistic situations, 
opportunities for students to use their own 
drawings and strategies to obtain solutions, 
and whole-class discussions. 

One of these studies examined a Dutch cur
riculum for 4th-grade students but did not 
meet standards because only one classroom 
was assigned to the treatment.166 The other 
study presented a five-week instructional unit 
to 17 1st-grade students but lacked a control 
group, so it did not have a reviewable design. 
However, both studies reported positive 
results with using sharing scenarios to teach 
fraction concepts.167 

Proportional relations. Young children have 
an early understanding of proportional rela
tions. Three studies presented proportions 
with geometric figures or everyday objects 
and had students identify or create a match
ing proportion.168 For example, in one study, 
the experimenter pretended to eat a portion 
of a pizza and had children pretend to eat the 
same proportion from a box of chocolates.169 

In another study, students matched propor
tions represented by boxes filled with blue and 
white bricks.170 By age 6, children matched 
equivalent proportions in all of these studies. 

One-half plays an important role in children’s 
early proportional reasoning abilities. Children 
performed better when choosing between 
options that crossed the half point (i.e., one 
figure was more than one-half filled, and 
the other was less than one-half filled) than 
between two proportions that were both 
more than or less than one-half filled.171 Chil
dren tended to have more difficulty matching 
proportions represented by discrete objects 
than by continuous objects.172 

Children’s early understanding of proportional 
relations also is reflected in their ability to solve 
basic analogies. Analogies are similar to propor
tions in that students must identify a relation in 
the first set of items and then apply this relation 
to a second set of items. One study found that 
children ages 6 and 7 performed above chance 
on analogies based on simple patterns or pro
portional equivalence.173 For example, students 
could complete the analogy, “Half circle is to 
half rectangle as quarter circle is to quarter 
rectangle.” One study found that children could 
map the relative sizes of items within a three-
item set to the relative sizes of items within 
another set of three objects.174 For example, 
when the experimenter selected the largest of 
three different-size cups, children could pick the 
corresponding cup from their set of three cups. 

The panel did not identify studies meeting 
standards that examined the effect of using 
this early knowledge to teach fraction con
cepts. However, one study that potentially 
met standards examined a way to improve 
students’ ability to match equivalent propor
tions.175 The author provided 6- to 8-year-old 
children with feedback and explanations 
about how to use the half boundary to identify 
equivalent proportions. This strategy focused 
children on the part-part relation between 
shaded and unshaded areas used to represent 
proportions; the author reported positive 
effects on children’s ability to identify which of 
two glasses was more full—and, therefore, on 
whether students could differentiate between 
absolute and relative amounts of water. 

Recommendation 2. 
Help students recognize that fractions 
are numbers and that they expand 
the number system beyond whole 
numbers. Use number lines as a central 
representational tool in teaching this 
and other fraction concepts from the 
early grades onward. 

Level of evidence: Moderate Evidence 

The panel rates this recommendation as being 
supported by moderate evidence, based on 
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Appendix D continued 

three studies that met WWC standards and 
used number lines to teach students about the 
magnitudes of whole numbers;176 one study 
that met WWC standards and showed that 
instruction with number lines improved stu
dents’ understanding of decimal fractions;177 

and four studies that showed strong correla
tions between number line estimates with 
whole numbers and performance on arith
metic and mathematical achievement tests.178 

Another study demonstrated that a property 
of number line estimates that has been 
documented extensively with whole numbers 
also is present with fractions (specifically, 
logarithmic to linear transitions in patterns). 
This suggests that representations of numeri
cal magnitudes influence understanding of 
fractions as well as of whole numbers.179 The 
panel believes that given the clear applicability 
of number lines to fractions as well as whole 
numbers, these findings indicate that number 
lines can improve fraction learning for elemen
tary and middle school students. 

The evidence to support this recommenda
tion includes studies that examined the use of 
number lines and other linear representations 
to teach whole number and fraction concepts. 

Number lines for whole number concepts. 
(see Table D.1.) Three studies that met stan
dards found that briefly playing a linear board 
game with numbers improved preschool 
students’ understanding of whole number 
magnitude.180 In the studies, students from 
low-income backgrounds played a numeric 
board game 20 to 30 times over the course 
of four to five sessions lasting 15 to 20 minutes 
each. The game involved moving a marker 
one or two spaces at a time across a horizontal 
board that had the numbers 1 to 10 listed in 
order from left to right in consecutive squares. 
Students used a spinner to determine whether 
to make one or two moves and then said 
out loud the number they had spun and the 
numbers on the squares as they moved. The 
experimenter played the game with each 
child and helped each correctly name num
bers. Control students in two of the studies 
played the same game but with colors rather 

than numbers,181 and control students in the 
other study completed counting and number-
identification tasks.182 

The linear board game, which the panel views 
as a proxy for number lines, had a positive 
effect on students’ ability to compare the 
size of whole numbers. Authors of the three 
studies reported significant effect sizes of 
0.75, 0.99, and 1.17 on accuracy in compar
ing whole numbers (from 0 to 10).183 The 
linear board game also improved participating 
students’ ability to locate whole numbers on a 
number line accurately. These studies measure 
the accuracy of students’ number line esti
mates using a measure called percent abso
lute error, which is the difference between 
a student’s estimate and the actual number 
divided by the scale of the number line. Two 
of the studies found effect sizes for percent 
absolute error of 0.63 (author reported) and 
0.86 (WWC calculated).184 One of the studies 
also reported that playing the game signifi
cantly improved students’ ability to learn the 
answers to addition problems on which they 
received feedback.185 

Research supporting the use of number lines 
with whole numbers includes two additional 
studies that met WWC standards. One of the 
studies had students place 10 evenly spaced 
numbers on a number line before locating 
numbers on a 0-to-100 number line.186 The 
authors report that this approach led to a 
substantively important but not significant 
increase in the accuracy of students’ number 
line estimates, whereas students in the control 
group, who located one number at a time, did 
not improve.187 (The WWC defines substan
tively important, or large, effects on outcomes 
to be those with effect sizes greater than 0.25 
standard deviations.188) 

The second supporting study used a number 
line to improve 1st-grade students’ perfor
mance on addition problems for which they 
had been trained.189 Treatment group students 
viewed the addends and sums of four addi
tion problems on a number line; control group 
students received feedback on the problems 
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Appendix D continued 

Table D.1. Studies of interventions that used number lines to improve understanding 
of whole number magnitude that met WWC standards (with or without reservations) 

Citation Grade Level Analysis Sample Size Intervention Comparison 

Siegler and Ramani Preschool 36 students Students play a linear Students play a linear 
(2008) board game with board game with colors. 

numbers. 

Ramani and Siegler Preschool 112 students Students play a linear Students play a linear 
(2008) board game with board game with colors. 

numbers. 

Siegler and Ramani Preschool 88 students Students play a linear Students participate in 
(2009) board game with counting and number

numbers.190 identification tasks. 

Siegler and Booth 1st and 2nd191 55 students Students place 10 evenly Students use number 
(2004) spaced numbers on a lines without locating 

number line. evenly spaced numbers 
first. 

Booth and Siegler 
(2008) 

1st 52 students Students receive a 
number line showing 
addends and sums 

Students solve trained 
addition problems with
out a number line. 

for trained addition 
problems.192 

but did not use a number line. The authors 
reported that treatment group students were 
more likely than control group students to 
answer the same addition problems correctly 
later. In addition, the study noted that the 
number line experience led to improved qual
ity of errors on the addition problems (errors 
that were closer to the correct answer). 

The panel also identified evidence showing a 
relation between students’ accuracy in locat
ing whole numbers on a number line and 
general math achievement.193 These studies 
show a positive significant relation between 
the linearity of number line estimates and 
general math achievement for students in 
kindergarten through 4th grade, with correla
tions ranging from 0.39 to 0.69. The accuracy 
of number line estimates (i.e., how close a 
number is to its actual position) was positively 
related to general math achievement, with 
one study finding a significant relation rang
ing from 0.37 to 0.66);194 an additional study 
found positive but non-significant relations for 
1st- and 2nd-graders in one experiment and 
significant positive relations for 2nd- and 4th
graders in another experiment.195 

Number lines for teaching fraction con
cepts. One study that met WWC standards 

examined the use of number lines for com
paring the magnitude of decimals.196 Sixty-
one students in 5th and 6th grades played 
a computer game in which they located a 
decimal’s position on a 0-to-1 number line. 
Students in the treatment and control groups 
completed 15 problems during sessions last
ing about 40 minutes. The study involved 
three treatment groups that received inter
ventions designed to help students correctly 
represent the problem: the first treatment 
group received a prompt for students to 
notice the tenths digit of each decimal, the 
second group used a number line with the 
tenths place marked, and the third group 
received both the prompts and marked tenths 
on the number line. Students in the control 
group also solved computer-based number 
line problems, but without the assistance of 
these interventions. 

Since students in both the treatment and con
trol groups used number lines, the study does 
not provide causal evidence for whether using 
number lines improves students’ understand
ing of decimals. However, the results indicate 
that focusing on certain aspects of the num
ber line—specifically, noticing and marking 
the tenths place—led to significant improve
ments in students’ ability to locate decimals 
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Appendix D continued 

on a number line. The combination of plac
ing tenths markings on the number lines 
and prompting students to notice and think 
about them (treatment group 3) significantly 
improved students’ ability to locate decimal 
fractions on a number line relative to when 
neither was present (effect size of 0.57). When 
students only received the tenths markings 
(treatment group 1) or only heard the prompts 
(treatment group 2), the interventions did not 
have a significant effect. The panel believes 
this outcome indicates that the combination of 
the prompts and markings, together with use 
of the number line, leads to increased under
standing of decimals’ magnitude. 

A comparison of students’ conceptual under
standing of decimals before and after the 
intervention provides additional evidence on 
the usefulness of number lines. Playing the 
computer-based number line game led to 
improvements in treatment and control stu
dents’ conceptual understanding of decimals, 
including their ability to compare relative 
magnitudes of fractions, identify equivalent 
fractions, and understand place value. This 
is suggestive evidence, because there is no 
comparison group of students who did not 
use a number line. 

Another study examined the use of number 
lines in fractions instruction but did not 
meet standards.197 The study compared two 
Dutch curricula over the course of a school 
year. One curriculum focused on the use of 
number lines and measurement contexts to 
teach fractions; the other curriculum used 
circles and part-whole representations of 
fractions. Students in the treatment group 
measured objects using different-size bars 
and compared fractions on a number line. 
The authors reported positive effects on 9
to 10-year-olds’ understanding of fractions. 
However, the study did not meet standards, 
because only one classroom of students was 
assigned to the treatment. Another problem 
in interpreting the study was that the experi
mental group encouraged student interaction, 
whereas the control group students primarily 

worked alone. As a result, distinguishing the 
effect of these instructional approaches from 
the effect of the curriculum was not possible. 

Two additional studies that were not eligible 
for review found mixed results of using a 
number line to teach fraction concepts.198 

One study examined using a number line to 
teach fraction addition to a class of 6th-grade 
students. Based on classroom observations 
and interviews with the teacher and two 
students, the authors found that students had 
difficulty viewing partitions on a number line 
as fixed units, as well as difficulty associating 
equivalent fractions with a single point on 
the number line. Minor differences in how the 
teacher presented the number line affected 
whether students viewed the partitions as 
fixed units. 

The second study described three small 
case studies of fraction instruction that used 
number lines for representing and ordering 
fractions.199 In this study, 4th- and 5th-grade 
students had trouble locating fractions on a 
number line when fractions were in reduced 
form and the number line was organized by a 
smaller unit fraction (e.g., they had difficulty 
locating 1/3 on a number line divided into 
sixths). However, the authors also reported 
that number line instruction improved stu
dents’ ability to work with fractions. 

Additional evidence. Other types of evi
dence also supported the importance of 
developing students’ ability to understand 
fractions on a number line. Students’ ability 
to locate decimals on a number line is related 
to general math achievement. A study of 
5th- and 6th-grade German students found 
a significant positive correlation between 
students’ skill in estimating the location of 
decimals on a number line and their self-
reported mathematics grades in school.200 In 
addition, a mathematician’s analysis indicated 
that learning to represent the full range of 
numbers on number lines is fundamental to 
understanding numbers.201 
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Appendix D continued 

Recommendation 3.
 
Help students understand why 

procedures for computations with
 
fractions make sense.
 

Level of evidence: Moderate Evidence 

The panel rated this recommendation as 
being supported by moderate evidence, based 
on studies specifically related to conceptual 
and procedural knowledge of fractions. This 
evidence rating is based on three randomized 
controlled trials that met WWC standards and 
demonstrated the effectiveness of teaching 
conceptual understanding when developing 
students’ computational skill with decimals.202 

Interventions that iterated between instruc
tion on conceptual knowledge and procedural 
knowledge had a positive effect on decimal 
computation.203 Although the studies focused 
on decimals and were relatively small-scale, 
the panel believes that the three, together 
with the extensive evidence that meaning
ful information is remembered much better 
than meaningless information,204 provide 
persuasive evidence for the recommendation. 
Additional support for the recommendation 
comes from four correlational studies of 4th-, 
5th- and 6th-grade students that showed 
significant relations between conceptual and 
procedural knowledge of fractions.205 Consen
sus documents, such as Adding It Up and the 
National Mathematics Advisory Panel report, 
also suggest the importance of combining 
instruction on conceptual understanding with 
procedural fluency.206 

Panel members focused their review on 
studies that specifically examined interven
tions to develop students’ understanding 
of fraction computation. Three randomized 
controlled trials that met WWC standards 
support the recommendation.207 Two of the 
studies used computer-based interventions to 
compare different ways of ordering concep
tual and procedural instruction for 6th-grade 
students.208 The studies’ treatment groups 
alternated between conceptual lessons on 
decimal place value and procedural lessons 
on addition and subtraction of decimals; the 

control groups completed all of the concep
tual lessons before receiving any of the pro
cedural lessons. The intervention consisted 
of six lessons, during which students solved 
word problems while receiving feedback from 
the computer program as needed. Both of the 
relatively small-scale studies found positive 
effects of iterating between conceptual and 
procedural lessons. One randomly assigned 
26 students and found a large, significant 
effect on computational proficiency with 
decimals (effect size = 2.38); the other study 
randomly assigned four classrooms and 
found a substantively important, but not 
significant, effect (effect size = 0.63). 

The third study examined an intervention 
designed to improve students’ conceptual 
understanding of how to locate decimals on 
a number line.209 In it, 5th- and 6th-grade 
students practiced locating fractions on a num
ber line using a computer-based game called 
Catch the Monster. Students in the treatment 
groups received either a prompt to notice 
the tenths digit or a number line divided into 
tenths—two interventions that the panel 
views as building students’ conceptual knowl
edge. Control students did not receive the 
prompts and used a 0-to-1 number line with
out the tenths marked. Both treatments had a 
significant, positive effect on students’ ability 
to locate decimals on a number line without 
the prompts or the tenths marked. Receiving 
both the prompts and the number line with 
the tenths marked had a greater impact than 
receiving the two interventions separately. 

The panel’s recommendation also is sup
ported by correlational evidence that shows a 
significant relation between students’ concep
tual and procedural knowledge of fractions. 
Hecht et al. (2003) administered a variety of 
assessments to 105 5th-graders, and Hecht 
(1998) assessed 103 7th- and 8th-graders to 
examine how conceptual understanding and 
procedural skill are related. Hecht and Vagi 
(in press) included a sample of 181 4th- and 
5th-graders to measure the relation between 
conceptual and procedural knowledge. 
The studies measured both conceptual and 
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Appendix D continued 

Table D.2. Studies of interventions that developed conceptual understanding 
of fraction computation that met WWC standards (with or without reservations) 

Citation 
Grade 
Level 

Analysis 
Sample Size Intervention Comparison Outcome Effect Size210 

Rittle-Johnson 
and 

6th 4 classrooms Students complete 
six computer-based 

Students complete 
six computer-based 

Computational 
proficiency 

0.63, ns 

Koedinger 
(2002) 

lessons on computa
tion with decimals, 
alternating between 

lessons on computa
tion with decimals, 
completing all of the 

with decimals 

conceptual and proce
dural lessons. 

conceptual lessons 
before the procedural 
lessons. 

Rittle-Johnson 
and 

6th 26 students Students complete 
six computer-based 

Students complete 
six computer-based 

Decimal 
arithmetic 

2.83, sig 

Koedinger 
(2009) 

lessons on computa
tion with decimals, 
alternating between 

lessons on computa
tion with decimals, 
completing all of the 

conceptual and proce
dural lessons. 

conceptual lessons 
before the procedural 
lessons. 

Rittle-Johnson, 
Siegler, and 
Alibali (2001) 

5th and 
6th 

61 students When locating deci
mals on a number 
line, students receive 
a prompt to notice 
the tenths digit and 
use a 0-to-1 number 

When locating decimals 
on a number line, 
students used a 
0-to-1 number line 
without the tenths 
marked. 

Locating 
decimals on 
a number line 

0.57, sig 

line with the tenths 
marked. 

ns = not significant 
sig = statistically significant 

procedural knowledge of fractions and frac
tion computation. All three studies found that 
after controlling for other factors, conceptual 
knowledge of fractions significantly predicted 
students’ ability to succeed at fraction com
putation and estimation. While these studies 
show a correlation between conceptual and 
procedural knowledge, they do not establish 
whether interventions to develop conceptual 
knowledge improve procedural knowledge. 

In another experiment, Rittle-Johnson, 
Siegler, and Alibali (2001)211 found that 5th
grade students’ understanding of decimals 
(i.e., relative magnitude and equivalence) 
was significantly related to their ability to 
locate decimals on a number line.212 Con
trolling for initial procedural knowledge, 
conceptual knowledge was found to account 
for 20% of performance variance on a test of 
procedural knowledge. 

Manipulatives and representations. The 
panel identified evidence that supports the first 
action step, which recommends using manipu
latives and visual representations to teach frac
tion computation. Two randomized controlled 
trials, both unpublished dissertations, that met 
WWC standards found that using manipulatives 
had a positive effect on fraction computa
tion.213 Nishida (2008)214 conducted a relatively 
small-scale study on the use of fraction circles 
to teach numerator-denominator relations and 
other fraction concepts. The study found that 
having students use fraction circles, rather than 
observing teachers’ use of them, significantly 
improved students’ understanding of fraction 
concepts relevant to computation (effect size = 
0.73). The use of manipulative fraction circles 
also had a substantively important, but not 
statistically significant, effect on fraction under
standing, compared with the use of pictures of 
fractions circles. 
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Appendix D continued 

The second study found that using a variety 
of manipulatives to supplement a 3rd-grade 
fractions curriculum improved students’ 
understanding of fractions and fraction com
putation.215 The study’s unit included lessons 
on fraction magnitude, equivalence, addition, 
and subtraction. Teachers in the study used 
many of the same materials, but teachers in 
the treatment group also employed various 
manipulatives and models, including frac
tion squares, fraction games, fraction strips, 
pizzas, fraction spinners, cubes, grid cards, 
paper strips, virtual manipulatives, cutouts, 
and shapes. The use of these manipulatives 
had a substantively important, but not statis
tically significant, effect on a textbook assess
ment of fraction knowledge and computation 
(effect size = 0.60). 

A randomized controlled trial that poten
tially meets standards examined the use of 
manipulatives and real-world contexts for 
teaching fractions.216 The study examined 
a curriculum developed by the Rational 
Number Project (RNP) that employs a multi-
pronged approach incorporating manipula
tives, real-world contexts, and estimation 
and focuses on building students’ quantita
tive sense of fractions. Teachers of 5th- and 
6th-grade students were randomly assigned 
to use either the RNP curriculum or one 
of two commercial curricula that included 
minimal use of manipulatives (Addison-Wesley 
Mathematics or Mathematics Plus). The RNP 
curriculum had a significant positive effect on 
fraction computation and estimation (effect 
size = 0.27 and 0.65, respectively). However, 
the study provided insufficient information 
to assess sample attrition, and amount of 
use of manipulatives was only one of many 
differences between the curricula, making it 
difficult to distinguish which aspects of the 
intervention led to the positive outcomes. 

Real-world contexts and intuitive under
standing. Use of real-world concepts also 
can improve fraction computation profi
ciency (Step 4). A randomized controlled trial 
that met WWC standards indicated that using 
information from students to personalize 

lessons on fraction division significantly 
improved their ability to solve fraction 
division word problems.217 Students in the 
treatment condition received instruction via 
computer-assisted lessons based on contexts 
suggested by the students; control students 
were taught using abstract lessons with
out such contexts. The treatment targeted 
5th- and 6th-grade students during a single-
lesson unit on fraction division. 

A quasi-experimental design study that 
potentially meets standards evaluated the 
impact of practicing fraction computation 
with problems set in everyday contexts.218 

Over the course of three days, students in the 
treatment group solved contextualized prob
lems involving computation with decimals. 
Problems included references to soft-drink 
bottles, monetary exchanges, and measure
ment. The control group solved similar prob
lems but without any contextual references. 
Based on the author’s calculations, instruction 
using contextualized problems significantly 
improved the students’ ability to order and 
compare decimals. The study had a small 
sample of 16 11- and 12-year-olds from New 
Zealand; it potentially met standards because 
insufficient information existed to demon
strate that the treatment and control groups 
were equivalent at baseline. 

Recommendation 4. 
Develop students’ conceptual 
understanding of strategies for solving 
ratio, rate, and proportion problems 
before exposing them to cross-
multiplication as a procedure to use 
to solve such problems. 

Level of evidence: Minimal Evidence 

The panel assigned a rating of minimal 
evidence to this recommendation. Evidence 
for the overall recommendation comes from 
consensus documents that emphasize the 
importance of proportional reasoning for 
mathematics learning.219 The panel sepa
rately reviewed evidence for the three action 
steps that comprise this recommendation. 
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Appendix D continued 

These action steps are supported by case 
studies demonstrating the variety of strate
gies students use to solve ratio, rate, and 
proportion problems; a study of manipula
tives that met WWC standards; and two stud
ies that met standards and taught strategies 
for solving word problems. 

Building on early-developing strategies 
for solving proportionality problems. 
Evidence for the first action step is based 
on case studies that examine students’ strate
gies for solving proportionality problems. 
No studies both met standards and exam
ined the effect of using students’ developing 
strategies to improve their understanding of 
proportionality. However, the panel believes 
that the findings of these case studies provide 
a basis for using a progression of problems 
that builds on these strategies to develop 
students’ proportional reasoning. 

A literature review of early proportional 
reasoning found that students initially tend 
to rely on strategies that build up additively 
from one ratio to another.220 Students who 
use this approach may not understand the 
multiplicative relations between ratios.221 

To illustrate this point, a case study of 21 
4th- and 5th-grade students described four 
developmental levels for solving proportion
ality problems.222 One important difference 
among these levels was whether the develop
mental levels only involved building up from 
smaller to larger ratios or whether they also 
included the knowledge that ratios, like frac
tions, can be reduced. 

Carpenter et al. (1999) and Lamon (1994) 
suggested that treating ratios as single units 
is an important developmental step for 
proportional reasoning. In Cramer, Post, and 
Currier (1993), 8th-grade students were more 
likely than 7th-grade students to solve pro
portionality problems by treating the ratio as 
a unit and by finding an equivalent fraction. 
Both studies confirm that students have more 
difficulty with proportionality problems that 
involve non-integer relations.223 

Using visual representations and manipu
latives. Visual representations and concrete 
manipulatives can increase students’ proficiency 
in solving rate, ratio, and proportion problems. 
In a randomized controlled trial that met stan
dards, Fujimura (2001) evaluated the impact of 
providing students with concrete manipulatives 
to solve mixture problems. Japanese students 
in 4th grade received a manipulative to assist 
them in solving a proportion problem involv
ing the mixture of two liquids. Students used 
the manipulative to visually represent the unit 
rate, or the amount of orange concentrate for 
each unit of water. Completing a problem using 
the manipulative improved students’ ability to 
later solve the same type of mixture problems 
without the manipulative. Students in the treat
ment group performed significantly better than 
students with no exposure to mixture problems 
during the intervention (effect size = 0.74). 
The treatment had a substantively important, 
but not statistically significant, effect relative 
to a control group in which students received 
a worksheet to calculate the unit rate to solve 
mixture problems (effect size = 0.34). 

An instructional strategy that taught students 
to use a data table for representing informa
tion in a missing value proportion problem 
had a significant positive effect on the stu
dents’ ability to solve these problems. In a 
study that met WWC standards, 7th-graders 
were taught a problem-solving strategy in 
which they identified the problem type, rep
resented the problem in a table, determined 
the multiplicative relation between the known 
quantities, and then applied that relation to 
calculate the unknown quantity.224 Research
ers randomly assigned five classrooms 
to receive instruction in either the above 
strategy or a substitute approach in which 
students learned to recognize the problem 
structure, solve the problem by substitut
ing integers for any complex numbers, and 
then resolve the problem with the complex 
numbers. After 10 lessons, students in the 
treatment group performed better than those 
in the control group on missing value propor
tion problems. 
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Appendix D continued 

In another randomized controlled trial that met 
standards, Terwel et al. (2009) investigated the 
effectiveness of instructing 5th-grade students 
to solve percentage problems by constructing 
representations collaboratively instead of using 
teacher-made representations and graphs. This 
intervention had a substantively important, 
but not statistically significant, impact on stu
dent performance on a researcher-constructed 
posttest of problem solving with percentages 
(effect size = 0.41). 

Strategies for solving word problems. 
The literature on teaching strategies for 
word problems includes many studies out
side the scope of this guide—studies that 
focus on students in 9th grade or above, 
low-performing students, and students with 
learning disabilities or on topics other than 
ratio, rate, or proportion.225 In its review of 
available research, the National Mathematics 
Advisory Panel used these studies to sup
port the teaching of explicit strategies for 
solving word problems with low-performing 
students and students with learning dis
abilities.226 However, for this action step, the 
panel sought evidence specifically related to 
students without diagnosed learning disabili
ties up to 8th grade and to ratio, rate, and 
proportion word problems. 

Two randomized controlled trials that met 
standards examined a four-step strategy 
for teaching students to solve ratio and 
proportion word problems.227 The strategy 
involved a schema-based approach in which 
students identify the problem type, repre
sent critical information from the problem 
in a diagram, translate information into a 
mathematical equation, and solve the prob
lem. Key aspects of the approach, which was 
designed to address concerns about the limi
tations of direct instruction, include teaching 
students to identify underlying problem 
structures, such as through schematic dia
grams, and comparing and contrasting dif
ferent solution strategies and problem types. 
One of the studies focused on students with 
learning disabilities (i.e., 16 of the 19 stu
dents had a diagnosed learning disability),228 

and the other included students with a more 
diverse ability range.229 Xin, Jitendra, and 
Deatline-Buckman (2005) found a significant 
positive effect (albeit with students with 
learning problems) of an approach that 
taught students to identify the problem type 
and represent the problem using a diagram. 
Students in the comparison group also 
learned strategies for solving word problems 
but focused more on drawing pictures to 
represent the problems. Jitendra et al. (2009) 
found a substantively important, but not 
statistically significant, effect of teaching the 
four-step strategy on researcher-developed 
tests of ratio and proportion word problems, 
relative to teaching word problems with 
a district-adopted mathematics textbook 
(effect size = 0.33 and 0.38, immediate and 
delayed posttests, respectively).230 

A third randomized controlled trial, Moore 
and Carnine (1989), also examined an explicit 
strategy for teaching students to solve ratio 
and proportion word problems. This study 
met standards but is outside the review 
protocol because it included students in 9th 
through 11th grades and focused on special 
education and low-performing students. 
The panel views the study as providing 
supplemental evidence to support the recom
mendation. The WWC did not have sufficient 
information to calculate effect sizes, but the 
study’s authors report that teaching students 
explicit rules and problem-solving strategies 
significantly improved their proficiency in 
solving ratio word problems relative to stu
dents taught using a basal curriculum. 

Recommendation 5. 
Professional development programs 
should place a high priority on 
improving teachers’ understanding 
of fractions and of how to teach them. 

Level of evidence: Minimal Evidence 

The panel assigned a minimal evidence rating 
to this recommendation because of limited 
rigorous evidence on the effects of fractions-
related professional development activities. 
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Appendix D continued 

To evaluate this recommendation, the panel 
sought evidence that professional development 
that focuses specifically on fractions improves 
student outcomes.231 Two studies that focused 
on developing teachers' knowledge of fractions 
met standards. The professional development 
in the first study addressed the first two action 
steps for the recommendation and found posi
tive effects on student learning; the second 
study addressed all three action steps but did 
not find a significant effect on students' under
standing of fractions.232 Two other studies met 
standards and provided evidence for the recom
mendation’s third step—developing teachers’ 
understanding of students’ mathematical think-
ing—but focused on whole number addition 
and algebraic reasoning rather than on frac
tions.233 A handful of other studies potentially 
met standards but did not examine fractions 
or did not provide professional development 
directly relevant to the recommendation.234 

Despite the limited evidence on the effects of 
professional development activities on teach
ers’ understanding of fraction concepts and 
skills, the panel believes the need to develop 
teachers’ knowledge of fractions and of how 
to teach them is critical. Teachers’ mathemati
cal content knowledge is positively correlated 
with students’ mathematics achievement,235 

and researchers have consistently found that 
teachers in the United States lack a deep con
ceptual understanding of fractions.236 Taken 
together, these findings suggest that provid
ing professional development on fraction 
concepts is important. 

Professional development related to 
fractions. One random assignment study 
met standards and examined a professional 
development program called Integrated 
Mathematics Assessment (IMA). This pro
gram addressed teachers’ understanding 
of (1) fraction concepts, (2) how students 
learn fractions, (3) students’ motivation for 
math achievement, and (4) assessment.237 

Teachers learned about fraction concepts 
through activities and exercises that were 
more complex versions of those for students. 

To understand students’ thinking, teachers 
examined student work and videotapes of 
students solving problems and explored 
students’ difficulties in learning fractions. The 
IMA training consisted of a five-day summer 
institute and 13 follow-up sessions for upper 
elementary teachers. Teachers assigned to 
the IMA professional development program 
achieved a significant improvement in their 
students’ conceptual understanding of frac
tions, compared with teachers in the teacher 
support group, who met nine times to reflect 
on their instructional practices. The IMA 
training had a substantively important, but 
not statistically significant, effect on students’ 
ability to compute with fractions. 

A more recent study of professional develop
ment related to fractions also met WWC stan
dards but did not find a significant effect on 
students’ learning of fraction concepts.238 The 
study examined two professional development 
programs for 7th-grade teachers in 12 districts 
across the country. Teachers in the treatment 
schools were eligible for about 68 hours of 
training through a three-day summer institute 
and five 1-day seminars paired with two-day 
in-school coaching visits. The professional 
development focused on conceptual and pro
cedural skill in rational number topics, as well 
as mathematics knowledge for teaching. This 
included identifying the key aspects of math
ematical understanding, recognizing common 
errors made by students, and selecting rep
resentations for teaching fractions. Activities 
included solving math problems and receiving 
feedback on their solutions, discussing com
mon student misconceptions, and planning les
sons. Teachers in the control schools received 
the existing professional development pro
vided by the district. However, the professional 
development did not have a significant impact 
on students’ understanding of fractions, deci
mals, percentages, or proportions. 

Professional development related to 
other mathematics topics. Finding little 
evidence related specifically to fractions, the 
panel expanded its review to include profes
sional development that focused on other 
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Appendix D continued 

math topics. Two additional studies met 
standards and implemented training relevant 
to the third action step of the recommenda
tion—developing teachers’ understanding of 
students’ mathematical thinking.239 

One study examined a four-week summer 
workshop (20 hours) aimed at developing 
teachers’ knowledge of how children learn 
whole number addition and subtraction 
concepts.240 Teachers participating in the pro
gram, called Cognitively Guided Instruction 
(CGI), learned about children’s solution strate
gies and how to classify problem types, dis
cussed how to incorporate information from 
the CGI workshop into the classroom, and 
planned instruction accordingly. Compared 
with a control group of teachers who received 
four hours of workshops on problem solving 
and the use of nonroutine problems, the CGI 
program had a substantively important, but 
not statistically significant, effect on computa
tion problems and addition and subtraction 
word problems. The differing amounts of 
time that teachers spent in the two conditions 
also limited interpretation of the findings. 

The second study, a randomized controlled 
trial study conducted in a large, urban 
district with 1st- through 5th-grade teachers, 
also examined a professional development 
program focused on developing teachers’ 
understanding of students’ mathematical 
thinking.241 Emphasizing understanding of 
the equal sign and using number relations 
to simplify calculations, the training in this 
study was designed to improve teachers’ 
ability to incorporate algebraic reasoning 
into elementary mathematics. Teachers 
learned to make sense of students’ strategies 
for solving problems, to link students’ think
ing to key mathematical ideas, and to lead 
mathematical conversations with students. 
The program included an initial meeting and 
eight monthly after-school work-group meet
ings (a total of about 16.5 hours), as well as 
a trainer who spent a half-day a week at each 
school to provide additional support. Results 
from the study showed that this profes
sional development significantly improved 

students’ understanding of the equal sign 
and students’ use of relational-thinking strat
egies for solving computations but not for 
solving equations (i.e., with letters represent
ing unknown quantities). 

Additional evidence. There is further 
evidence that students’ achievement is 
positively related to teachers’ mathematics 
knowledge for teaching—for example, their 
skill at explaining math concepts, under
standing student strategies, and providing 
representations. A study of 699 1st- and 
3rd-grade math teachers found a positive 
relation between teachers’ math knowledge 
for teaching and students’ learning gains 
in math after controlling for student and 
teacher characteristics.242 Although this 
study did not specifically focus on fractions, 
it demonstrated the importance of teachers’ 
math content knowledge for teaching. 

Professional development with fractions is 
needed because many U.S. teachers lack a 
deep conceptual understanding of fractions.243 

A study comparing Chinese and American 
teachers found that only 9 of the 21 U.S. 
teachers who tried to calculate 13/4 ÷ 1/2 did 
so correctly, whereas all 72 Chinese teachers 
correctly completed the problem.244 U.S. 
teachers could not represent or explain 
division with fractions, and many confused 
the algorithm for dividing fractions with the 
algorithms for adding, subtracting, and multi
plying fractions. 

Other studies have reported similar findings. 
A study of 218 elementary school teachers 
in Minnesota and Illinois found that many 
teachers could not solve computation prob
lems involving fractions and that most of 
those who correctly solved problems could 
not provide a correct explanation of their 
solutions.245 For example, almost half of the 
teachers in the Minnesota study incorrectly 
solved a subtraction problem involving frac
tions (1/3 – 3/7). Further, a study of 46 preser
vice middle school teachers at a university 
in Texas found that most teachers knew the 
procedure for dividing with fractions but did 
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Appendix D continued 

not understand why the procedure worked 
and could not judge whether an alternative 
procedure for solving a division problem with 
fractions was correct.246 

These studies clearly indicate that teach
ers’ understanding of fractions needs to be 

upgraded. However, the recommendation 
regarding professional development is largely 
based on the panel’s expertise, because of 
the limited evidence regarding the effects of 
professional development activities focused 
on fractions. 
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Appendix E 

Evidence Heuristic 

This appendix contains a heuristic for categorizing the evidence base for practice guide recommenda
tions as strong evidence, moderate evidence, or minimal evidence. This heuristic is intended to serve 
as a framework to ensure that the levels of evidence are consistently applied across practice guides 
while at the same time clarifying the levels for panelists and educators. The core document to accom
pany this heuristic is the “Institute of Education Sciences levels of evidence for practice guides” (Table 1 
in this practice guide). 

Table E.1. Evidence heuristic 

Criteria for a Strong Evidence Base 
This criterion is necessary 
for a strong level of evidence. 

High internal validity (high-quality causal designs). Studies must meet WWC standards with 
or without reservations.247 

High external validity (requires a quantity of studies with high-quality causal designs). Studies 
must meet WWC standards with or without reservations.248 

Effects on relevant outcomes—consistent positive effects without contradictory evidence 
(i.e., no statistically significant negative effects) in studies with high internal validity.249 

Direct relevance to scope (i.e., ecological validity)—relevant context (e.g., classroom vs. laboratory), 
sample (e.g., age and characteristics), and outcomes evaluated. 



Direct test of the recommendation in the studies, or the recommendation is a major component 
of the intervention tested in the studies. 



For assessments, meets The Standards for Educational and Psychological Testing. 
Panel has a high degree of confidence that this practice is effective. 

Criteria for a Moderate Evidence Base 
This criterion is necessary for 
a moderate level of evidence. 

High internal validity but moderate external validity (i.e., studies that support strong causal conclu
sions, but generalization is uncertain) OR studies with high external validity but moderate internal 
validity (i.e., studies that support the generality of a relation, but the causality is uncertain). 

•	 The research may include studies generally meeting WWC standards and supporting the effec
tiveness of a program, practice, or approach with small sample sizes and/or other conditions 
of implementation or analysis that limit generalizability. 

•	 The research may include studies that support the generality of a relation but do not meet WWC 
standards; 250 however, they have no major flaws related to internal validity other than lack of 
demonstrated equivalence at pretest for quasi-experimental design studies (QEDs). QEDs with
out equivalence must include a pretest covariate as a statistical control for selection bias. These 
studies must be accompanied by at least one relevant study meeting WWC standards. 



Effects on relevant outcomes—a preponderance of evidence of positive effects. Contradictory 
evidence (i.e., statistically significant negative effects) must be discussed by the panel and con
sidered with regard to relevance to the scope of the guide and intensity of the recommendation 
as a component of the intervention evaluated. 



Relevance to scope (i.e., ecological validity) may vary, including relevant context (e.g., classroom 
vs. laboratory), sample (e.g., age and characteristics), and outcomes evaluated. 

Intensity of the recommendation as a component of the interventions evaluated in the studies 
may vary. 

For assessments, evidence of reliability that meets The Standards for Educational and Psychological 
Testing but with evidence of validity from samples not adequately representative of the population 
on which the recommendation is focused. 



The panel is not conclusive about whether the research has effectively controlled for other 
explanations or whether the practice would be effective in most or all contexts. 

The panel determines that the research does not rise to the level of strong evidence but is more 
compelling than a minimal level of evidence. 



(continued) 
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Criteria for a Minimal Evidence Base 
This criterion is necessary for  
a minimal level of evidence. 

Expert opinion based on defensible interpretations of theory (or theories). In some cases, this  
simply means that the recommended practices would be difficult to study in a rigorous, experi
mental fashion; in other cases, it means that researchers have not yet studied this practice. 

Expert opinion based on reasonable extrapolations from research: 

•	 	The 	research 	may 	include 	evidence 	from 	studies 	that 	do 	not 	meet t
strong evidence (e.g., case studies, qualitative research). 

•	 	The 	research 	may 	be 	out 	of 	the 	scope 	of 	the 	practice guide. 

•	 	The 	research 	may 	include 	studies 	for 	which 	the 	intensity 	of 	the reco
nent of the interventions evaluated in the studies is low. 

	he crit

mme

	eria for

ndation

	 moder

	 	as 	a co

	ate or	 

mpo

There may be weak or contradictory evidence.  

In the panel’s opinion, the recommendation must be addressed as part of the practice guide; how
ever, the panel cannot point to a body of research that rises to the level of moderate or strong. 



Appendix E continued 

Table E.1. Evidence heuristic (continued) 
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Endnotesa 

1.	 For more information, see the WWC Fre
quently Asked Questions page for practice 
guides, http://ies.ed.gov/ncee/wwc/refer
ences/idocviewer/doc.aspx?docid=15. 

2.	 See the WWC guidelines at http://ies.ed.gov/ 
ncee/wwc/pdf/wwc_procedures_v2_stan
dards_handbook.pdf. 

3.	 This includes randomized control trials 
(RCTs), quasi-experimental designs (QEDs), 
regression discontinuity designs (RDDs), and 
single-case designs (SCDs) evaluated with 
WWC standards. 

4.	 If the only evidence meeting standards (with 
or without reservations) is SCDs, the guide
lines set by the SCD standards panel will 
apply. For external validity, the requirements 
are a minimum of five SCD research papers 
examining the intervention that meet evi
dence standards or meet evidence standards 
with reservations, the studies must be con
ducted by at least three different research 
teams at three different geographical loca
tions, and the combined number of experi
ments across studies totals at least 20. 

5.	 In certain circumstances (e.g., a comparison 
group cannot be formed), the panel may 
base a moderate rating on multiple correla
tional designs with strong statistical controls 
for selection bias that demonstrate consis
tent positive effects without contradictory 
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endnotes and references pages. For more information about these studies, please see Appendix D. 
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design to compare two math curricula, only 
the professional development portion of this 
study, which used a random assignment 
design, is relevant for Recommendation 5. 

238.	 Garet et al. (2010). 
239.	 Carpenter et al. (1989); Jacobs et al. 

(2007). 
240.	 Carpenter et al. (1989). 
241.	 Jacobs et al. (2007). 
242.	 Hill, Rowan, and Ball (2005). 
243.	 Li and Kulm (2008); Ma (1999); Post et al. 

(1988). 
244.	 Ma (1999). 
245.	 Post et al. (1988). 
246.	 Li and Kulm (2008). 
247.	 This includes randomized control tri

als (RCTs), quasi-experimental designs 
(QEDs), regression discontinuity designs 
(RDDs), and single-case designs (SCDs) 
evaluated with WWC standards. 

248.	 If the only evidence meeting standards 
(with or without reservations) is SCDs, 
the guidelines set by the SCD standards 
panel will apply. For external validity, the 
requirements are a minimum of five SCD 
research papers examining the interven
tion that meet evidence standards or 
meet evidence standards with reserva
tions, the studies must be conducted by 
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at least three different research teams at and floor, the assessment’s item gradients, 
three different geographical locations, 
and the combined number of experiments 
across studies totals at least 20. 

whether the assessment was overaligned 
with the intervention, and the appropriate
ness of the assessment for the sample to 

249. When evaluating whether effects are con- which it was applied. 
sistent or contradictory, consider the psy
chometric properties of the assessments. 
For example, effects are less likely to be 

250. In certain circumstances (e.g., a comparison 
group cannot be formed), the panel may base 
a moderate rating on multiple correlational 

detected if an assessment is unreliable. 
Psychometric properties to consider include 
reliability, the presence of limited or con-

designs with strong statistical controls for 
selection bias that demonstrate consistent pos
itive effects without contradictory evidence. 

strained variance, the assessment’s ceiling 
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