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Key findings 

The classification and regression tree (CART) model is 

an emerging tool in the development of early warning 

systems for identifying students at risk of poor 

performance in reading. This study finds that CART 

results are consistent with those of logistic regression 

on all measures of classification accuracy while using 

fewer or the same number of variables and making 

fewer model assumptions. 
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Summary 

Early warning systems provide opportunities for student interventions or differentiated 
instruction that may prevent an anticipated negative outcome such as failing a state sum­
mative assessment. Negative outcomes often interrupt a student’s education progress. For 
example, a student who fails a summative assessment on reading could be retained in the 
current grade, or a student with poor academic performance could drop out of school. To 
identify students likely to experience a negative outcome, two prominent statistical meth­
odologies are available: logistic regression and classification and regression tree (CART) 
models. The CART model is an emerging tool in the field of education, and limited 
research exists on its comparability with the more widely used logistic regression when 
using multivariate assessments of reading to screen for reading difficulties. 

Regional Educational Laboratory (REL) Southeast recently released a technical report 
summarizing the results of a comparison between logistic regression and CART models 
in identifying at-risk readers in Florida (Koon, Petscher, & Foorman, 2014). The techni­
cal report emphasized testing the classification accuracy of a new screening assessment in 
Florida using the two statistical approaches. In that report the two statistical approaches 
were introduced to help readers understand how logistic regression and CART models are 
constructed. This report poses the same research question but focuses on the details of 
each method. The additional details are meant to help analysts interested in developing 
early warning systems use the CART model. Highlights of the model complexities and 
evaluation criteria will also help state education leaders understand the need for expert 
assistance when developing both logistic regression and CART models to determine which 
students are at risk. 

Using data from a sample of Florida public school students in grades 1 and 2 in the 2012/13 
school year, the study found that the CART model performed comparably with logistic 
regression on all measures of classification accuracy while using fewer or the same number 
of variables and making fewer model assumptions. In addition, evidence from the health 
care field suggests that CART models may be easier for some practitioners to understand 
and implement quickly than logistic regression. Their use in early warning systems could be 
studied to determine whether school staff find them easier to use than logistic regression. 
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Why this study? 

Research has shown that students unable to read by the end of grade 3 are likely to falter 
in the later grades and ultimately drop out of high school. Hernandez (2011) found that 
grade 3 students who do not read proficiently are four times more likely not to graduate 
from high school on time than grade 3 students who read proficiently.1 Because of the 
general consensus among education researchers that students must be ready to “read to 
learn” by grade 4, state legislatures around the country have enacted laws requiring that 
students demonstrate an acceptable level of reading comprehension on the state assess­
ment of reading in grade 3 or face possible retention. School districts must also monitor 
and report the progress of their students in reading before entering grade 3 so that students 
who need interventions can be identified. 

These laws have led to the need for early warning systems that can identify students who 
may be at risk for reading difficulties in grade 3 (Good III, Simmons, & Kame’enui, 2001; 
Shapiro, Solari, & Petscher, 2008). Given the importance of these decisions for students, 
these systems must have high rates of classification accuracy. Because reading is a multi­
dimensional skill, systems based on multiple tests or measures are recommended to improve 
accuracy over single tests or measures (Fletcher et al., 2002; Francis et al., 2005). Therefore, 
early warning systems in reading are best built using multivariate assessments of reading 
skills. 

The term “early warning system” is often associated with the identification of students 
at risk for dropping out of high school (Bruce, Bridgeland, Fox, & Balfanz, 2011; Carl, 
Richardson, Cheng, Kim & Meyer, 2013; Davis, Herzog, & Legters, 2013; Johnson & Sem­
melroth, 2010; Neild, Balfanz, & Herzog, 2007), but early warning systems may be viewed 
more broadly to include sets of assessments used to classify students at risk or not at risk 
for a particular benchmark (for example, dropping out of school, not passing a state math 
achievement test, or having a learning disability). Education research focusing on early 
warning systems for younger students tends to use alternative nomenclature such as classi­
fication accuracy, diagnostic accuracy, screening accuracy, and diagnostic systems. 

While the language of early identification systems varies, the methodology used to identify 
at-risk individuals is often the same. Most studies focused on early identification employ 
logistic regression (Beach & O’Connor, in press; Catts, Fey, Zhang, & Tomblin, 2001; Piasta, 
Petscher, & Justice, 2012). Few studies have used classification and regression tree analysis 
(CART) (Compton, Fuchs, Fuchs, & Bryant, 2006; Fuchs, Compton, Fuchs, Bryant, & 
Davis, 2008; Fuchs, Fuchs, & Hamlett, 2007), a potentially useful method for classifying 
individuals that is often used in the health care field. Because the CART model allows for a 
simpler presentation of how students are classified as at risk or not at risk, it was of interest 
to evaluate this technique against logistic regression to understand the extent to which 
both methods converged on similar classification rules and levels of diagnostic accuracy. 

Two models for developing early warning systems 

Parametric and nonparametric statistical methods can be used to develop early warning 
systems based on a set of predictor variables (multivariate assessments). Unlike non­
parametric methods, parametric methods make assumptions about the underlying data. 
Common parametric methods include multivariate analyses (logistic regression), path 

Most studies 
focused on early 
identification 
employ logistic 
regression; few 
studies have used 
classification 
and regression 
tree analysis 
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analysis/structural equation models, and hierarchical linear models. Because early warning 
systems are often created to predict a dichotomous outcome (such as passing or failing a 
test), logistic regression is frequently used to develop classification rules. Logistic regression 
estimates the direct effects of a set of predictors on the outcome. 

Logistic regression models. Logistic regression models with multiple predictors are most 
often specified in a stepwise or hierarchical fashion, in which the contribution of each 
predictor in explaining the variation in the outcome can be evaluated. Predictors that do 
not statistically contribute or improve the model fit are typically not retained in the model. 
Once an optimal solution is reached, the model produces a mean log-odds for the likeli­
hood of achieving one of the two categories for the selected outcome (for example, to pass 
or fail a test) conditional on one or more predictor variables in the model. 

Catts et al. (2001), one of the first empirical works that allowed practitioners to fully use 
a multivariate assessment to estimate a student’s likelihood of having reading difficulties, 
applied a stepwise logistic regression analysis to identify risk factors in kindergarten stu­
dents. Language, early literacy, and nonverbal cognitive measures were used as predictors 
of reading difficulties in grade 2. Five measures (letter identification, sentence imitation, 
phonological awareness, rapid naming, and mother’s education) were found to uniquely 
predict grade 2 reading outcomes. With the estimated logistic regression formula, practi­
tioners can estimate a student’s probability of having reading difficulties in grade 2. 

Classification and regression tree model. Unlike logistic regression, the CART model is 
a nonparametric approach. Nonparametric approaches make fewer assumptions about the 
underlying populations from which the data are obtained, are relatively less sensitive to 
outlying observations, and are often easier for practitioners to understand. Specifically, the 
CART model does not make distributional assumptions, does not require any functional 
form for the predictors, and does not assume additivity of the predictors, which allows the 
identification of complex interactions (Gordon, 2013). 

The estimation process of the CART model is similar to logistic regression: students are 
classified as “at risk” or “not at risk” on a future outcome according to their observed per­
formance on one or more assessments within a testing battery. Unlike logistic regression, 
the CART model classifies students as at risk or not at risk based on a set of if-then state­
ments, rather than using beta coefficient weights to estimate log-odds or predicted prob­
abilities. The CART model results are presented in a useful and easy-to-interpret “tree” 
format (Breiman, Friedman, Olshen, & Stone, 1984; Berk, 2008; Lewis, 2000). 

CART models are used mainly in medical applications (diagnosis and prognosis of 
illnesses) because of the method’s suitability in generating clinical decision rules (Lewis, 
2000). For example, Jarvis et al. (2013) used a CART model to develop and validate an 
early warning system for hospital mortality in emergency medical admissions that was 
easier and faster than the complex existing system, which used logistic regression based on 
seven laboratory tests. Using the CART model, Jarvis et al. developed a simple paper-based 
system that emergency staff could use to make quick decisions to identify patients at risk of 
in-hospital mortality. 

Similarly, Takahashi et  al. (2006) overcame challenging clinical prediction rules estab­
lished through logistic regression with a simple decision-tree model of in-hospital mortality 

Unlike logistic 
regression, the 
CART model is a 
nonparametric 
approach, which 
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the underlying 
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risk stratification for intensive-care patients. Twenty-nine predictors, representing data 
available at the time of initial patient evaluation, were used in the model. The final CART 
model retained 3 of the 29 predictors in stratifying patients into four levels of risk. The 
CART model was found to have slightly higher classification accuracy than the logistic 
regression model and was selected for practical use by clinicians. 

In a nursing research study, a CART model illustrated associations between variables 
that provided insight into previously unknown patterns in the data (Kuhn, Page, Ward, 
& Worrall-Carter, in press). The study team predicted that CART models would play an 
important role in future nursing research designed to improve patient care. 

Both models working together. Parametric and nonparametric models can work togeth­
er, contributing different advantages. Kuhnert, Do, and McClure (2000) studied the use 
of three models—CART, multivariate adaptive regression splines (MARS), and logistic 
regression—in the context of motor vehicle injuries. A key finding was that nonparamet­
ric methods (CART and MARS) can serve both as primary modeling tools and as explor­
atory tools before using parametric methods like logistic regression. Combining parametric 
and nonparametric methods allows the analyst to build on the strengths of each approach. 
For example, the study team found that the CART and MARS models produced variable 
importance rankings that may be used in the stepwise specifications of logistic regression. 
The MARS model was able to identify interactions between predictors as well as a group 
of outliers, both of which have important implications in logistic regression. The CART 
model was able to identify informative primary splits, which could be used in logistic 
regression to separate samples into distinct groups. Both the CART and MARS methods 
contributed to identifying important variables and understanding their contribution to 
the modeling of the outcome variable. Although the CART model did not outperform the 
MARS model in identifying interactions in this study, most splitting criteria in a CART 
model represent interaction effects (Berk, 2008). 

Use of the CART model in education 

While the CART model is more frequently found in medical literature, it has begun to 
emerge in education research. Compton et al. (2006) compared a CART model with logistic 
regression in the identification of early warning signs of at-risk readers in grade 1 to examine 
ways to improve the accuracy of predicting which children should enter secondary interven­
tion because of elevated risk for developing reading difficulties. The diagnostic accuracy was 
significantly better for the CART model than for the logistic regression prediction model. 
The improvement in diagnostic accuracy may be in part due to the complexity of the result­
ing decision trees, a factor that often decreases the interpretability of the CART results. 
Like other statistical methods, the principle of parsimony is applicable to CART models. 
This principle suggests that the simplest model that fits the data is often the best model. 
In a CART model this principle is applied by “pruning” the classification tree using model 
specifications, so that the resulting tree is not overfit to the data. A limitation of this study 
is that the study team did not seek the most parsimonious CART model in its comparison. 

Although Compton et al. (2006) introduced the CART methodology in identifying at-risk 
readers, it is still an emerging tool in education. To show its limited use in education, it is 
instructive to look at dropout prevention, which has a long history of research designed to 
identify early warning signs of negative student outcomes. 

While the CART 
model is more 
frequently found in 
medical literature, 
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In a review of peer-reviewed studies published over 25 years (1983–2007), Rumberger and 
Lim (2008) found that the majority of the 389 analyses were conducted using logistic 
regression, with other methods including path analysis and multilevel modeling. None of 
the reviewed studies used CART models. A study of four states with early warning systems 
of students at risk for dropping out found that all four relied on systems based on logistic 
regression models (Ryan, 2011). 

Recently, Knowles (2014) studied the use of 28 separate algorithms, including CART 
models, in developing a dropout early warning system in Wisconsin. The state wanted to 
identify early warning systems that were both accurate and easy to communicate to support 
decisions that improve student outcomes. Results from a generalized linear model analysis 
were taken as the baseline. Algorithms were compared using the area-under-the-curve 
metric. Most of the algorithms, including CART models and generalized linear models, 
resulted in an area under the curve of between .83 and .87, showing comparable accuracy 
in making classification decisions. While the generalized linear model was chosen for use 
in Wisconsin, partly because of its familiarity to most quantitative researchers, the inclu­
sion of CART models extends the literature on dropout-prevention early warning systems. 

What the study examined 

This study used data from a sample of students in grades 1 and 2 in Florida public schools 
during the 2012/13 school year to answer this research question: How do CART models 
compare with logistic regression models in predicting poor performance on the reading 
comprehension subtest of the Stanford Achievement Test? 

Model comparisons are based on several traditional indexes of classification accuracy, 
including sensitivity, specificity, negative predictive power, and positive predictive power. 
Classification accuracy in each grade was based on the accuracy of Florida Assessments 
for Instruction in Reading–Florida Standards (FAIR-FS) tests in predicting end-of-year 
reading scores on the Stanford Achievement Test Series, Tenth Edition (SAT-10). Mea­
sures of classification accuracy are described in appendix A. 

Logistic regression is accurate, but results can be complex to interpret 

Logistic regression is an extension of simple or multiple regression, in which a dichotomous­
ly scored dependent variable is regressed on one or more selected independent variables. 
This technique is widely used to predict log-odds of success on the dependent variables. 
It is also used to study the rates of true and false positives and negatives as they relate to 
the classification of individuals as at risk or not at risk for achieving success. When pre­
senting scores from only one or two tests, logistic regression contingency tables are easy to 
interpret (box 1). But with more tests and score ranges, contingency tables become more 
complex and difficult to explain, not lending themselves to simple snapshots. 

The CART model thus might offer advantages over logistic regression in statistical par­
simony (fewer predictors in the classification model) and ease of communication of the 
classification rules. But does it classify students as accurately? 

This study used 
data from a sample 
of students in 
grades 1 and 2 
in Florida public 
schools during 
2012/13 to 
examine how CART 
models compare 
with logistic 
regression models 
in predicting 
poor performance 
on the reading 
comprehension 
subtest of 
the Stanford 
Achievement Test 
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Box 1. Logistic regression model 

The logistic regression approach relies on empirically estimated coefficients, Euler’s constant 

(the base of the natural log [e] equal to 2.718), and the transformation of log-odds to a predic­

tive probability. Results are a by-product of the following type of equation: 

ln 
p 

= β0 + β1X1 + β2X2. 
1–p

The beta coefficients (β0, β1, β2) can be used to estimate predicted log-odds, which can 

be converted to a predicted probability of success on the outcome. Logistic regression results 

can be used to generate more straightforward contingency tables, such as shown in the table. 

Similar to what is seen in figure 1 in the main text, students with test 1 scores below 244 and 

test 2 scores below 350 are identified as at risk (shaded cells in table below), while other stu­

dents are identified as not at risk. 

Logistic regression contingency table example 

Test 2 

Test 1 

242 243 244 245 246 

348 0.15 0.15 0.30 0.60 0.80 

349 0.15 0.15 0.30 0.60 0.80 

350 0.30 0.30 0.30 0.60 0.80 

351 0.60 0.60 0.60 0.60 0.80 

352 0.80 0.80 0.80 0.80 0.80 

Source: Author’s illustration. 

Classification and regression tree model: How to develop a classification tree with high negative 
predictive power and a simple structure 

A CART model approach to early warning systems in education could maintain numer­
ous benefits from both statistical and practical vantage points. Although several published 
studies have evaluated CART with other methods of early warning, the body of work 
in this area is limited. Subsequently, a goal of this study is to add to the literature and 
compare the diagnostic accuracy of CART and logistic regression so that others may see 
the merit of each application. 

This study used the Florida data to develop a specific CART model for each grade that 
would capture all or most students at risk and have a simple reporting structure. Prior to 
discussing the Florida data, this section explains the basic process of fitting and pruning a 
CART model that achieves parsimony. Because CART models are known for overfitting 
the data, it is important to understand how to prune the classification tree so that it can be 
expected to be robust (Lawrence & Wright, 2001). In this context, a robust CART model 
has practical implications—for example, students who need help will not be screened 
out, teachers can understand the decision rules—and meets technical requirements—for 
example, negative predictive power is at least 0.85 while maintaining acceptable sensitivity 
(proportion of true positives) and specificity (proportion of true negatives). 

The classification tree. The CART model classifies individuals into mutually exclusive 
subgroups of a population using a nonparametric approach that results in a classification 
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tree (Breiman et al., 1984). The CART model searches for the optimal split on the predic­
tor variables and splits the sample into binary subsamples called nodes. In a visual repre­
sentation of the model, when the split between the samples occurs, the nodes form either 
a rectangular box or a circle (figure 1). Boxes, referred to as terminal nodes, do not split 
further, but circles, referred to as nonterminal nodes, split again when there is a difference 
between students on the predictor variables or when a stopping rule has been reached. 

The subgroup splits in the CART model are determined by the software program (such 
as the Recursive Partitioning and Regression Trees [rpart} package) to improve the overall 
classification accuracy. The CART model uses an exhaustive subgroup comparison to 
identify the best predictors and predictor levels that most efficiently split the sample into 
the most homogeneous subgroups of individuals who are identified as at risk or not at risk 
based on their observed scores. A variable may appear in the CART model many times 
because the search for the single variable that will result in the best subsequent split to the 
data includes all variables at each split (Therneau & Atkinson, 2013). 

In this study the CART model yields a classification flowchart that clearly shows how a 
student is identified as at risk or not at risk for reading comprehension difficulties. For 
example, suppose that we have 100 students with data on four hypothetical screening 
assessments that all have score ranges of 100–1,000. In addition, there is an outcome 
assessment with a pass/fail indicator. The results of a CART model using these data are 
shown in figure 1. 

Rules for identifying students at risk. There are five rules for identifying students as at 
risk and five rules for identifying students as not at risk for failing the outcome assessment. 
The rules are derived using the criterion specified in each nonterminal node followed with 
a “yes” or “no” answer. All “yes” answers split to the left, and all “no” answers split to the 
right, which is accomplished by changing the signs in the nonterminal nodes (“<” or “≥”) 
if necessary. For example, if splitting to the left, students who score less than 244 on test 1 
and less than 350 on test 2 are identified as at risk according to 1 of the 10 rules. Splitting 
to the right, students who score at least 244 on test 1 and at least 257 on test 3 are identi­
fied as not at risk. 

Information on the classification accuracy of the tree is also shown in figure 1. Under each 
terminal node the number of students correctly identified out of the total number in that 
node is provided, as well as the percentage of the 100 students placed in that terminal 
node. So, for instance, 34 students with test 1 scores less than 244 and test 2 scores less 
than 350 are correctly identified as at risk, since all students meeting this rule failed the 
outcome assessment (34/34). Thirty-four percent of the 100 students tested are found in 
this terminal node. 

Model 1: Accurate but complex. All 100 students are correctly classified by the model 1 
decision tree. The classification accuracy results for model 1 are summarized in table 1, which 
shows that all measures of classification accuracy are maximized. In addition, the R-squared 
for this tree is 1.0, indicating a perfect fit of the model to the sample data. However, these 
results should be considered exploratory, as the complexity of the classification rules may 
not generalize well to other samples because it is a saturated model. On inspection, some of 
the decision rules are nonsensical and are most likely a result of overfitting the model to the 
data. For example, students with higher test scores are classified as at risk by several rules. 

In this study the 
CART model yields 
a classification 
flowchart that 
clearly shows 
how a student 
is identified as 
at risk or not at 
risk for reading 
comprehension 
difficulties 
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Figure 1. CART example model 1 
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CART is classification and regression tree. 

Source: Authors’ illustration. 

Table 1. Sample classification table for CART model 1 

Screening assessment 

Outcome assessment 

Fail Pass 

At risk 40 0 

Not at risk 0 60 

CART is classification and regression tree. 

Source: Authors’ illustration. 

Generalizing the model to other samples can be accomplished using two methods: v-fold 
cross-validation within the analysis and testing the decision rules using a separate valida­
tion sample. The v-fold cross-validation method is used for estimating error rates without 
test data and thus is preferred when the dataset is small and the use of a validation sample 
is not possible (Salford Systems, n.d.). This method partitions the sample into a specified 
number of subsamples (“v”) and estimates error rates for a tree with the maximum number 
of splits, the greatest complexity, and subtrees with fewer splits. If a separate validation 

7 



 
 

 

sample is feasible, the decision-tree rules can be applied to the validation sample, and clas­
sification accuracy can be assessed. For this example it is assumed that model 1 is overfit to 
the small sample of students in the dataset and should be revised. 

Pruning the classification tree. Therneau and Atkinson (2013) outline various parame­
ters that control the fit of the model to the data and, therefore, the complexity of the tree. 
For this study the following parameters are pertinent: minimum split, minimum complexi­
ty parameter, and loss matrix (box 2). 

The minimum split and complexity parameters were set to zero in model 1, and the default 
loss matrix was not changed. These specifications resulted in the maximum number 
of splits, with the tree splitting until there were no differences among students on the 
outcome assessment in each terminal node. All students in the at-risk terminal nodes 
failed the outcome assessment, and all students in the not-at-risk terminal nodes passed 
the outcome assessment. 

Model 2: Easy to read but with false negatives. The specifications were changed in 
model 2 to attempt to fit a more parsimonious model (figure 2). Guided by Compton et al. 
(2006), a minimum split size of three students was specified given a sample size of 100. 
Increasing the minimum split size from 0 to 3 in this example will decrease the number of 
splits. In addition, for illustration purposes, the number of splits was limited by specifying a 
minimum complexity parameter of .02. 

Decision trees with a limited number of splits, such as the one in figure 2, are easier to 
interpret than those with many splits. Model 2 has only two rules for identifying students 
as not at risk and only one rule for identifying students as at risk. While this model is less 
complex, changes in classification accuracy and model fit must be evaluated. In this case 
there is a reduction in complexity without sacrificing too much relevant information. 

Box 2. Classification and regression tree model parameters 

Minimum split. This parameter specifies the minimum number of cases that must exist in 

a node for a split to be attempted. Increases in the minimum split generally decrease the 

number of splits. 

Minimum complexity parameter. This parameter specifies the minimum decrease in the overall 

lack of fit that must result from an additional split. Fit is measured by the model’s relative 

error, which is equivalent to 1 – R-squared (Steinberg, 2013), as well as the relative error found 

in the cross-validation samples (the cross-validation relative error) by the number of splits. A 

recommended minimum standard is the value of the complexity parameter that results in a 

cross-validation relative error less than one standard error above the minimum cross-validation 

relative error (Therneau, Atkinson, & Ripley, 2013). Tables and plots of the cross-validation 

results can be consulted to determine an appropriate complexity parameter value. The use of 

this model-based statistic as a splitting criterion changes the model to an “essentially” non­

parametric approach (Harrell, 2001). 

Loss matrix. A loss matrix is used to weight classification errors differently. To increase the 

negative predictive power, the specification would be to view false negatives as more costly. 

The default specification is to weight all classification errors equally. 

Decision trees with 
a limited number 
of splits are 
easier to interpret 
than those with 
many splits 
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Figure 2. CART example model 2 

Test 1 
<244 

Test 2 
<350 

Not at risk 
57/62 
62% 

NoYes 

Not at risk 
3/4 
4% 

At risk 
34/34 
34% 

NoYes 

CART is classification and regression tree. 

Source: Authors’ illustration. 

Classification accuracy decreases when comparing the classifications of model 1 to model 2 
(figures 1 and 2). In model 2, four students (4 percent of the total) have test 3 scores less 
than 244 and test 1 scores equal to or greater than 350, putting them in the not-at-risk 
category. However, only three students out of the four are correctly identified (passed the 
outcome assessment), with the remaining student representing a false negative (predicted 
to pass but failed). Similarly, 62 students (62  percent of the total) have scores equal to 
or greater than 244 on test 1 and are classified in the not-at-risk category. Five of the 62 
students are incorrectly identified and therefore represent additional false negatives. The 
six false negatives are shown in table 2. In addition to a decrease in classification accuracy, 
there also is a reduction in the R-squared for model 2 from 1.0 to 0.85. 

Model 3: Still easy to read with some false positives. To minimize false negatives while 
maintaining high overall classification accuracy, a revision can be made to the model 2 
specifications to add a loss matrix (see box 2), in which false negatives are weighted as two 
times as costly as false positives. The decision of how much weight to apply is based on the 
inherent costs associated with misclassification (Lewis, 2000). 

The revised tree is presented in figure 3. The addition of a loss matrix resulted in two 
additional splits and a change in the tests used to make the splits. These changes resulted 
in an R-squared of 0.92. 

Table 2. Sample classification table for CART model 2 

Screening assessment 

Outcome assessment 

Fail Pass 

At risk 34 0 

Not at risk 6 60 

CART is classification and regression tree. 

Source: Authors’ illustration. 
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Figure 3. CART example model 3 
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<244 

 
 

  

 

 

Test 3 
 

  

 

 

Test 1 
 

  

 
 


  

 
 
 

 
 
 

CART is classification and regression tree. 

Source: Authors’ illustration. 

The updated contingency table for model 3 (table 3) shows that the misclassification errors 
are now false positives (five students are classified in the risk category by the classification 
rules, but did not fail the outcome test). While there is a decrease in the overall classifica­
tion accuracy, as well as the R-squared, model 3 is preferred over models 1 and 2 because of 
its simple structure (versus model 1) and high negative predictive power (versus model 2). 

An interaction effect, in which there are two different cutpoints for each assessment used 
in the tree, is also shown in figure 3. The CART model allows the predictors to interact 
with each other, such that different combinations of cutpoints may be used to differentially 

Table 3. Sample classification table for CART model 3 

Screening assessment 

Outcome assessment 

Fail Pass 

At risk 40 5 

Not at risk 0 55 

CART is classification and regression tree. 

Source: Authors’ illustration. 
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classify a student’s level of risk. Though logistic regression allows the estimation of an 
interaction coefficient among independent variables, the estimation is often difficult to 
interpret (Lemon, Roy, Clark, Friedmann, & Rakowski, 2003; Steadman et al., 2000). 

Another useful piece of information provided by the CART model using rpart software is 
a determination of a variable’s importance on a scale of 1 to 100. Variable importance is 
based on the number of times a variable is used in making splits and its splitting efficiency. 
Both primary splits (the black circles) and surrogate splits are considered.2 Tests 1 and 3 
were determined to have the greatest importance, followed by tests 4 and 2. While test 1 
was determined to be the most important with a value of 40, the remaining tests were all 
around 20, with test 3 at 21, test 4 at 20, and test 2 at 19. 

How the study was conducted 

The “developmental ability” scores from each FAIR-FS test were used in a series of logistic 
regression and CART models to predict end-of-year performance on the SAT-10. Tradition­
al indexes of classification accuracy were used to assess differences in the results between 
the approaches. Information on the data and measures can be found in appendix B. 

Before conducting the analyses, the grade-based correlations among the FAIR-FS test 
scores from the individual literacy components were examined for multicollinearity in 
each of the imputed files. None of the Pearson correlations was higher than 0.80, eliminat­
ing concerns of redundancy in the subsequent logistic regression analyses. After this step, 
the SAT-10 scores were dummy-coded to represent proficiency level. Percentile scores on 
the SAT-10 were dichotomized so that scores at or above the 40th percentile were coded 
as 1 for “not at risk” and scores below the 40th percentile were coded as 0 for “at risk.” A 
report by the American Institutes for Research (2007) demonstrated that the 40th percen­
tile represents a reasonable grade-based target for proficiency in grades K–2. 

The final datasets for each grade were then split into a calibration dataset, consisting of 
a random sample of 80 percent of the students in each grade, and a validation dataset, 
consisting of the remaining 20 percent. An 80/20 split is a common division in statisti­
cal learning and data mining when conducting cross-validation (Salford Systems, n.d.). 
Both the CART and logistic regression models were based on the same datasets, with 
the models built on the calibration dataset and tested on the validation dataset. The two 
methods were evaluated using traditional measures of diagnostic accuracy, including sensi­
tivity (proportion of true positives), specificity (proportion of true negatives), positive and 
negative predictive power, and overall correct classification. Logistic regression analyses 
were run using SPSS Statistics 21, and CART analyses were run using rpart (R 2.15.3 
package). 

Logistic regression 

The logistic regression models in this study were developed in a hierarchical manner. 
Based on the correlations between the individual FAIR-FS tests and the dichotomized 
SAT-10 variable, the FAIR-FS test scores were entered into the logistic regression ordered 
by correlational magnitude. FAIR-FS tests, which added at least 2 percent unique variance 
above the test already in the model, as measured by the Nagelkerke pseudo R-squared, were 
retained for the final classification model from the logistic regression. Cohen (1992) has 

The “developmental 
ability” scores 
from each FAIR-FS 
test were used in 
a series of logistic 
regression and 
CART models to 
predict end-of­
year performance 
on the SAT-10 

11 



 

 

 

 

 

shown that an R-squared between 2 percent and 14 percent represents a small, practical­
ly important contribution to explained variance. This same standard was applied to the 
increase in Nagelkerke pseudo R-squared, which is estimated by maximum likelihood in 
logistic regression and can be interpreted in the same way as the R-squared estimated in an 
ordinary least squares regression. 

Classification and regression tree 

CART models assessed the individual performance of each FAIR-FS test, at every avail­
able cutpoint, in classifying students into at-risk and not-at-risk categories. To ensure a par­
simonious model, several specifications were used to limit the number of splits, including a 
minimal split size of three students. In addition, the number of splits was limited by speci­
fying a minimum reduction in the cross-validation relative error (that is, a minimum com­
plexity parameter), identified after running a base model with no minimum specified. Each 
grade-based model included tenfold cross-validation (v =  10) for evaluating the quality 
of the prediction tree and determining the appropriate minimum complexity parameter 
(Breiman et  al., 1984). The value selected for the minimum complexity parameter was 
the value resulting in the fewest number of splits with a cross-validation relative error less 
than one standard error above the minimum cross-validation relative error. Plots of the 
cross-validation relative error against minimum complexity parameter values were consult­
ed for this decision. 

In using the CART model, the intention was to build and prune trees based on maxi­
mizing the negative predictive power of .85. To accomplish this, revisions to the model 
in grade 2 included the specification of a loss matrix. The same process was used in the 
explanation of the CART examples presented above. 

What the study found 

CART results were consistent with those from logistic regression on all measures of clas­
sification accuracy (table 4) while using fewer or the same number of variables. All final 
models in this study yielded negative predictive power of or exceeding .85—that is, false 
negative rates ranged from 4  percent to 8  percent, with minimal differences between 
methods within each grade. Sensitivity fell below the recommended standard, except for 
the grade 1 CART model. However, as discussed earlier, this study emphasized maximiz­
ing negative predictive power. Specificity was at or near .90. Positive predictive power was 
much lower for all models, also reflecting the emphasis on negative predictive power. 

In grade 1 the CART results were better than or equal to the logistic regression results 
on all indexes of classification accuracy. Both methods resulted in models that retained 
three of the four available tests, but each model used a different combination of three: the 
CART model retained word reading, vocabulary pairs, and following directions, and the 
logistic regression model retained word reading, vocabulary pairs, and word building. In 
grade 2 the logistic regression and CART results were comparable, after the addition of a 
loss matrix in which the false negatives were treated as two times the cost of false positives 
to the CART model specifications (model 2). Although the logistic regression results were 
better, CART model 2 may be more parsimonious, with only three predictors retained 
instead of the four in the logistic regression model. 

CART results 
were consistent 
with those from 
logistic regression 
on all measures 
of classification 
accuracy while 
using fewer or 
the same number 
of variables 
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Table 4. Summary of results by model 

Model Sensitivity Specificity 

Positive 
predictive 

power 

Negative 
predictive 

power 

Overall 
proportion 

correct 

Grade 1 

Classification and 
regression tree .92 .90 .79 .96 .90 

Logistic regression .87 .90 .78 .94 .89 

Grade 2 

Classification and 
regression tree model 1 .70 .89 .74 .87 .83 

Classification and 
regression tree model 2 .82 .86 .73 .92 .85 

Logistic regression .84 .88 .76 .92 .87 

Note: Sample size is 206. 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

Grade 1 logistic regression results 

Model building. Based on the correlations between the individual FAIR-FS tests and per­
formance on the SAT-10, the FAIR-FS test scores were entered into the logistic regres­
sion ordered by correlational magnitude as follows: word reading (r = .64), word building 
(r = .53), vocabulary pairs (r = .52), and following directions (r = .41). All correlations are 
significant at the 0.01 level. The results based on the calibration dataset are provided in 
table 5. 

Because of the minimal increase in the explained variance based on the Nagelkerke 
pseudo R-squared (1.7 percent), the “following directions” test was deleted from the model. 
The final model coefficients are provided in table 6, with a Nagelkerke pseudo R-squared 
of 72 percent. 

Table 5. Grade 1 logistic regression model evaluation 

Block Variable 

Hosmer and 
Lemeshow 
test p value 

Nagelkerke 
pseudo 

R squared 

Change in 
Nagelkerke 

pseudo 
R squared 

Overall 
percentage 

correct 

Constant na na na 70.1 

Word reading .49 .66 na 

Word building .67 .68 .023 

Vocabulary pairs .91 .72 .039 

Following directions .72 .74 .017 

na is not applicable.
 

Note: Sample size is 780.
 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details.
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Table 6. Grade 1 logistic regression final model 

Variable 
Coefficient 

(β) 
Standard 

error 
Wald 

statistic 
Degrees 

of freedom 
Significance 

level Exp(β) 

95 percent 
confidence interval 

for Exp(β) 

Lower Upper 

Word reading 0.03 0.00 102.51 1 .00 1.03 1.03 1.04 

Word building 0.01 0.00 11.00 1 .00 1.01 1.00 1.01 

Vocabulary pairs 0.01 0.00 36.30 1 .00 1.01 1.01 1.01 

Constant –21.75 1.82 142.87 1 .00 0.00 na na 

na is not applicable.
 

Note: Sample size is 780.
 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details.
 

Model testing. The coefficients from the final model were used in the prediction equation 

Logit = –21.749 + 0.032*(word reading score) + 0.006*(word building score) + 
0.009*(vocabulary pairs score), 

to calculate predicted SAT-10 logit scores for each case in the validation dataset, which 
were then transformed to probabilities. Probabilities equal to or greater than .5 were 
recoded as 1 (scoring at or above the 40th percentile on the SAT-10),3 and all other values 
were coded as 0. The results were used to generate a classification table for use in calculat­
ing indices of classification accuracy (see table C1 in appendix C). 

Grade 1 classification and regression tree results 

Model building. All four FAIR-FS tests were specified in a base model using the calibra­
tion dataset. Ten cross-validations were specified along with a minimum of three cases 
required to add another split. A complexity parameter and a loss matrix were not specified, 
so that the number of splits would not be limited and both types of classification errors 
would be treated the same. Based on the cross-validation results from the base model, 
the classification tree was pruned by specifying a complexity parameter of 0.02 (figure 4). 
Selecting a complexity parameter of 0.02 results in a cross-validation relative error below 
the recommended standard of one standard error above the minimum cross-validation rel­
ative error, indicated by the dotted line. Additional cutpoints could be selected, but they 
would result in a larger number of splits. 

The pruned tree with the final classification rules is shown in figure 5. The model R-squared 
is 0.64. Word reading was the variable found to have the greatest importance with a value 
of 62, followed by vocabulary pairs at 16, word building at 15, and following directions 
at 7. Based on the CART results, students would be identified as at risk under either of the 
following conditions (figure 5): the student achieved a word reading score below 452, or the 
student achieved a vocabulary pairs score below 465, a word reading score of 452–502, and 
a following directions score below 434. 

Model testing. The classification rules were applied to the validation dataset to predict 
group membership as well as probabilities associated with membership in each group. 
Using these results, a classification table was generated (see table C2 in appendix C). 
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Figure 4. Grade 1 classification and regression tree complexity parameter values 
by cross-validation relative error 

 

 

 

 

 
        

            

 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

 





 






 







 


Figure 5. Grade 1 CART decision rules 
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CART is classification and regression tree. 

Source: Authors’ illustration. 
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Grade 2 logistic regression results 

Model building. Based on the correlations between the individual FAIR-FS tests and per­
formance on the SAT-10, the FAIR-FS test scores were entered into the logistic regression 
ordered by correlational magnitude as follows: word reading (r = .62), spelling (r = .60), 
vocabulary pairs (r = .48), and following directions (r = .40). All correlations are significant 
at the 0.01 level. The results based on the calibration dataset are provided in table 7. 

All FAIR-FS tests were found to contribute to explaining a significant and practical­
ly important percentage of variance and were kept in the final model (table 8). About 
70 percent of the variance in the logit of SAT-10 scores was explained by the FAIR-FS 
tests, as indicated by the Nagelkerke pseudo R-squared of .70. 

Model testing. The model coefficients from the final model were used in a prediction 
equation to calculate predicted SAT-10 logit scores for each case in the validation dataset 
and the classification table for calculating indices of classification accuracy (see table C3 in 
appendix C). 

Table 7. Grade 2 logistic regression model evaluation 

Block Variable 

Hosmer and 
Lemeshow 
test p value 

Nagelkerke 
pseudo 

R squared 

Change in 
Nagelkerke 

pseudo 
R squared 

Overall 
percentage 

correct 

Constant na na na 66.7 

Word reading .03 .58 na 84.1 

Word building .27 .61 .027 83.7 

Vocabulary pairs .26 .66 .057 85.8 

Following directions .50 .70 .029 85.4 

na is not applicable.
 

Note: Sample size is 706.
 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details.
 

Table 8. Grade 2 logistic regression final model 

Variable 
Coefficient 

(β) 
Standard 

error 
Wald 

statistic 
Degrees 

of freedom 
Significance 

level Exp(β) 

95 percent 
confidence interval 

for Exp(β) 

Lower Upper 

Word reading 0.02 0.00 44.32 1 .00 1.02 1.01 1.02 

Spelling 0.01 0.00 21.92 1 .00 1.01 1.01 1.02 

Vocabulary pairs 0.01 0.00 26.29 1 .00 1.01 1.01 1.01 

Following 
directions 0.01 0.00 25.10 1 .00 1.01 1.01 1.01 

Constant –21.98 1.84 142.89 1 .00 0.00 na na 

na Is not applicable.
 

Note: Sample size is 706.
 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details.
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Grade 2 classification and regression tree results 

Model building. All four FAIR-FS tests were specified in a base model using the calibration 
dataset. Ten cross-validations were specified along with a minimum of three cases required 
to add another split. Based on the cross-validation results from the base model, the tree 
was pruned by specifying a complexity parameter of 0.016 (figure 6), which was chosen over 
0.096 because of greater confidence that the cross-validation error is below the threshold. 

The pruned tree resulting from this specification is shown in figure 7. As expected from 
the table of complexity parameter values, classification rules are based on four splits. The 
R-squared for model 1 is 0.60. 

Model testing. The classification rules were applied to the validation dataset to predict 
group membership as well as probabilities associated with membership in each group. 
Using these results, a classification table was generated (see table C4 in appendix C). 

Model revision and testing. Because the negative predictive power was only slightly higher 
than the standard of .85, the calibration model was revised to specify the addition of a loss 
matrix, where the cost of false negatives would be treated as two times the cost of false 
positives based on a judgment of the cost of underidentifying students at risk. The pruned 
tree resulting from this revision is shown in figure 8. Word reading was rated as the most 
important variable with a value of 48, followed by spelling at 26, vocabulary pairs at 16, 
and following directions at 9. The R-squared for model 2 is 0.71. 

Based on the CART results, students would be identified as at risk under either of the two 
following conditions (see figure 8): the student achieved a word reading score below 564, 
or the student achieved a word reading score of 564 or above, a following directions score 
below 451, and a vocabulary pairs score below 494. The classification table that resulted 
from applying the model to the validation dataset is provided in table C5 in appendix C. 

Figure 6. Grade 2 classification and regression tree complexity parameter values 
by cross-validation relative error 

 

 

 

 

 

 





 






 







 


                

       



Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 
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Figure 7. Grade 2 CART decision rules, model 1 
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CART is classification and regression tree. 

Source: Authors’ illustration. 

Figure 8. Grade 2 CART decision rules, model 2 
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CART is classification and regression tree. 

Source: Authors’ illustration. 
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Implications of the study 

The CART results were found to be comparable with those of logistic regression, with the 
results of both methods yielding negative predictive power greater than the recommended 
standard of .90. Given the comparability, the CART model may be more appealing in an 
education context because of the ease with which the results can be communicated to 
and used by practitioners. For instance, practitioners would be able to identify a student 
as at risk or not at risk by using the decision tree and would be able to know which assess­
ments, and therefore which component skills, placed the student in an at-risk category. 
They could see this information in a simple paper-and-pencil format. Evidence from the 
health care field suggests CART models may be easier for some practitioners to understand 
and implement quickly. Their use in early warning systems could be studied to determine 
whether school staff find them easier to use than logistic regression. 

CART models also hold several technical advantages over logistic regression. First, as a 
nonparametric method, a CART model is not sensitive to the presence of the outliers, 
unlike logistic regression, which is a parametric method. Second, it is not sensitive to 
collinearity between the variables. Third, a CART model is able to reveal complex inter­
actions among predictors, which may be difficult or impossible to estimate in the regres­
sion framework unless the interaction terms are specified a priori. 

Limitations of the study 

At the same time CART has several limitations when compared with logistic regression 
models. For example, a notable disadvantage is that the CART model is sensitive to the 
presence of missing data and, thus, requires either listwise deletion or data imputation. 
Combining decision trees from multiple imputed files is not easily conducted in a CART 
model, whereas parameter estimates from multiple imputed files can be averaged in logistic 
regression. In addition, with logistic regression, improvements in sensitivity or specificity 
could be expected by adjusting the cutscores used in group classifications. Depending on 
the importance of one decision over another, adjustments to the model specifications could 
be made in both models when used in practice. The specifications used in this study were 
designed to meet or exceed negative predictive power of 0.85, while maintaining accept­
able levels of sensitivity and specificity. 

Finally, both CART and logistic regression may be used complementarily in developing an 
early warning system, since each method provides different tools to the researcher. Logistic 
regression focuses on the relative statistical significance of the predictors, while CART 
emphasizes the absolute effects. Both types of outcomes may be important in analyzing 
and interpreting the results of the models and identifying at-risk students. 

19 



Appendix A. Measures of classification accuracy 

Several traditional indexes of classification accuracy can be used to evaluate results from 
logistic regression and CART models (Schatschneider, Petscher, & Williams, 2008). These 
indexes are derived from a 2 × 2 contingency or classification table that provides counts 
of individuals in four categories. In this study, students are categorized based on their per­
formance on a screening assessment (the Florida Assessments for Instruction in Reading– 
Florida Standards, or FAIR-FS) and an outcome assessment (the Stanford Achievement 
Test Series, Tenth Edition, or SAT-10) (table A1). 

The first index, sensitivity, is the proportion of students who are identified as at risk on the 
screening assessment among all students who fail the outcome—or the number of true pos­
itives divided by the sum of the true positives and false negatives (A/[A+C]). The second 
index, specificity, is the proportion of students who are identified as not at risk among all 
students who pass the outcome—or the number of true negatives divided by the sum of 
true negatives and false positives (D/[D+B]). The third index, positive predictive power, is 
the proportion of students who fail the outcome assessment among all students who are 
identified as at risk on the screening assessment—or the number of true positives divided 
by the sum of true positives and false positives (A/[A+B]). The fourth index, negative pre­
dictive power, is the proportion of students who pass the outcome assessment among all 
students who are identified as not at risk on the screening assessment—or the number of 
true negatives divided by the sum of false negatives and true negatives (D/[C+D]). 

Researchers have proposed different threshold values for sensitivity and specificity: many 
look for levels of at least .80, and some recommend at least .90 (Compton et  al., 2006; 
Jenkins, 2003). Jenkins suggested that screening assessments should demonstrate a nega­
tive predictive power of .90–.95 and a sensitivity level of .90–.95. 

The developers of early warning systems are often most interested in maximizing the neg­
ative predictive power while maintaining high overall classification accuracy (Petscher, 
Kim, & Foorman, 2011). The goal of this strategy is to minimize false negatives—that is, 
not underidentifying students so that at-risk students can receive timely interventions. A 
negative predictive power of .85 is the expected minimum standard for the FAIR-FS—that 
is, no more than 15 percent of students are underidentified. 

Table A1. Sample 2 × 2 classification table 

Screening assessment 

Outcome assessment 

Fail Pass 

At risk A: True positive B: False positive 

Not at risk C: False negative D: True negative 

Source: Authors’ illustration. 
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Appendix B. Data, measures, and outliers and missing data 

This appendix describes the data source, the Florida Assessment of Instruction in 
Reading–Florida Standards (FAIR–FS), as well as outliers and missing data. 

Data 

Participant data were obtained from an archive containing FAIR-FS data on approximate­
ly 2,000 students in grades 1 and 2 in 15 elementary schools in the Hillsborough County 
school district in Florida. The archive is the result of data obtained from a linking study 
conducted from December 2012 to April 2013 as part of Florida State University’s sub-
award from the Educational Testing Service’s assessment grant in the Institute of Edu­
cation Sciences/National Center for Educational Research’s Reading for Understanding 
initiative (Sabatini, PI; R305F100005). FAIR-FS was administered between December 3, 
2012, and January 11, 2013, and the Stanford Achievement Test Series, Tenth Edition 
(SAT-10) between April 2 and April 12, 2013. As part of its current testing practices, Hills-
borough County administered the SAT-10 to all students in grades 1 and 2, and Hills-
borough agreed to provide the SAT-10 scores for study participants. There was thus no 
need to administer the SAT-10 in grades 1 or 2. The subcontract that Florida State Uni­
versity has with the Educational Testing Service makes it clear that the university owns 
the FAIR-FS and all data produced under the subcontract. These analyses are not part of 
the Reading for Understanding subaward. 

Measures 

FAIR-FS tests in grades K–2 were developed to measure print knowledge—that is, alpha­
betic knowledge of letter names and sounds, phonological awareness, word reading, and 
spelling—and language skills—that is, syntax, vocabulary, and listening comprehension. 
The FAIR-FS consists of alphabetic and oral language tests designed for different grade 
levels. The tests included in each grade-specific analysis in this study varied by grade as 
follows: word reading (grades 1 and 2), word building (grade 1), spelling (grade 2), vocabu­
lary pairs (grades 1 and 2), and following directions (grades 1 and 2). 

Performance on each FAIR-FS test is reported using a developmental scale. Scores range 
from 200 to 800, with a mean of 500 and a standard deviation of 100. 

Outliers and missing data 

Grade 1. The initial grade 1 dataset included 1,028 students. Twenty-seven cases were 
deleted because of missing SAT-10 scores, and one case was deleted because of missing data 
on all FAIR-FS tests. An analysis of univariate and multivariate outliers, strongly recom­
mended before conducting logistic regression, resulted in the deletion of an additional 14 
cases. The final dataset included 986 students. 

The analysis of missing data in the final dataset of 986 students revealed that each test 
had less than 10  percent missing data (table B1). To address the missing data, multiple 
imputation with SAS 9.4 software was used to create a dataset with complete cases for all 
variables. Logistic regression can analyze and summarize multiple imputed datasets, but 
there is no accepted procedure for analyzing and summarizing classification trees generated 
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Table B1. Grade 1 missing data statistics (n = 986) 

FAIR FS test 
Total complete 

cases Mean 
Standard 
deviation 

Missing 

Count Percent 

Word reading 959 516.06 105.14 27 2.7 

Word building 911 504.86 98.26 75 7.6 

Vocabulary pairs 888 508.98 109.94 98 9.9 

Following directions 967 502.18 111.21 19 1.9 

FAIR-FS is Florida Assessments for Instruction in Reading–Florida Standards. 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

from multiple imputed files. Therefore, a decision was made to conduct 20,000 imputations 
and then use the mean imputed value for each missing value. 

Grade 2. The initial grade 2 dataset included 918 students. Fifteen cases were deleted 
because of missing SAT-10 scores. An analysis of univariate and multivariate outliers 
resulted in the deletion of an additional 16 cases. The final dataset included 887 stu­
dents, with missing data rates for each test of less than 5 percent (table B2). As in grade 
1, a dataset with complete cases for all variables was created by aggregating the results of 
20,000 imputations. 

Table B2. Grade 2 missing data statistics (n = 887) 

FAIR FS test 
Total complete 

cases Mean 
Standard 
deviation 

Missing 

Count Percent 

Word reading 866 614.28 112.95 21 2.4 

Spelling 853 501.26 102.57 34 3.8 

Vocabulary pairs 847 562.02 114.38 40 4.5 

Following directions 866 505.46 112.09 21 2.4 

FAIR-FS is Florida Assessments for Instruction in Reading–Florida Standards. 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 
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Appendix C. Classification tables 

Comparisons between the logistic regression and CART models are based on indexes of 
classification accuracy, including sensitivity, specificity, negative predictive power, and pos­
itive predictive power (see appendix A). These indexes are derived from a 2 × 2 classifi­
cation table that provides counts of individuals in four categories. In this study, students 
are categorized based on their predicted performance on the SAT-10 (from the statistical 
model) and their observed performance on the SAT-10. This appendix provides classifica­
tion tables resulting from all the models. 

Table C1. Grade 1 logistic regression classification table (n = 206) 

SAT 10 score: observed 

Total 0 (at risk) 1 (not at risk) 

SAT-10 score: 0 (at risk) 53 15 68 

predicted 1 (not at risk) 8 130 138 

Total 61 145 206 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

Table C2. Grade 1 CART classification table (n = 206) 

SAT 10 score: observed 

Total 0 (at risk) 1 (not at risk) 

SAT-10 score: 0 (at risk) 56 15 71 

predicted 1 (not at risk) 5 130 135 

Total 61 145 206 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

Table C3. Grade 2 logistic regression classification table (n = 181) 

SAT 10 score: observed 

Total 0 (at risk) 1 (not at risk) 

SAT-10 score: 0 (at risk) 47 15 62 

predicted 1 (not at risk) 9 110 119 

Total 56 125 181 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 

Table C4. Grade 2 CART classification table, model 1 (n = 181) 

SAT 10 score: observed 

Total 0 (at risk) 1 (not at risk) 

SAT-10 score: 0 (at risk) 39 14 53 

predicted 1 (not at risk) 17 111 128 

Total 56 125 181 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 
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Table C5. Grade 2 CART classification table, model 2 (n = 181) 

SAT 10 score: observed 

Total 0 (at risk) 1 (not at risk) 

SAT-10 score: 0 (at risk) 46 17 63
 

predicted 1 (not at risk) 10 108 118
 

Total 56 125 181 

Source: Authors’ analysis of data from the Florida Center for Reading Research; see appendix B for details. 
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Notes 

1.	 The study identified reading test scores that corresponded roughly to the proficiency 
levels set by the National Assessment of Education Progress (see National Assessment 
Governing Board, 2012). 

2.	 Surrogate splits provide an alternative to the primary split for those individuals missing 
a value on the primary split. For example, in figure 3 it may be the case that when 
these rules are applied in the future, a student may be missing test 3 scores. Splits are 
provided on the remaining tests that serve as an alternative to test 3 scores. See Ther­
neau and Atkinson (2013) for a detailed discussion of surrogate variables. 

3.	 The default cutscore of .5 was used in the logistic regression analyses to evaluate clas­
sification accuracy. Another cutscore, such as .70, which represents the base rate for 
success in the grade 1 sample (or .67 in grade 2), could be used to maximize one index 
over the other. In grade 1 a change to .70 increases sensitivity and negative predictive 
power, decreases specificity and positive predictive power, and reduces the overall per­
centage correct. 

Notes-1 



 

 

 

  

  

 

References 

American Institutes for Research. (2007). Reading First state APR data. Washington, DC: 
Author. Retrieved January 9, 2014, from http://www2.ed.gov/programs/readingfirst/ 
state-data/achievement-data.pdf. 

Beach, K. D., & O’Connor, R. E. (in press). Early response-to-intervention measures and 
criteria as predictors of reading disability in the beginning of third grade. Journal of 
Learning Disabilities. 

Berk, R. A. (2008). Statistical learning from a regression perspective. New York: Springer. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regres­
sion trees. Belmont, CA: Wadsworth International Group. 

Bruce, M., Bridgeland, J. M., Fox, J. H., & Balfanz, R. (2011). On track for success: The use 
of early warning indicator and intervention systems to build a grad nation. Washington, 
DC: Civic Enterprises. http://eric.ed.gov/?id=ED526421 

Carl, B., Richardson, J. T., Cheng, E., Kim, H., & Meyer, R. H. (2013). Theory and appli­
cation of early warning systems for high school and beyond. Journal of Education for 
Students Placed at Risk, 18(1), 29–49. 

Catts, H. W., Fey, M. E., Zhang, X., & Tomblin, J. B. (2001). Estimating the risk of future 
reading difficulties in kindergarten children: A research-based model and its clinical 
implementation. Language, Speech, and Hearing Services in Schools, 32(1), 38–50. 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. 

Compton, D. L., Fuchs, D., Fuchs, L. S., & Bryant, J. D. (2006). Selecting at-risk readers 
in first grade for early intervention: A two-year longitudinal study of decision rules 
and procedures. Journal of Educational Psychology, 98(2), 394–409. http://eric.ed.gov/ 
?id=EJ742190 

Davis, M., Herzog, L., & Legters, N. (2013). Organizing schools to address early warning 
indicators (EWIs): Common practices and challenges. Journal of Education for Students 
Placed at Risk, 18(1), 84–100. 

Fletcher, J. M., Foorman, B. R., Boudousquie, A., Barnes, M., Schatschneider, C., & 
Francis, D. J. (2002). Assessment of reading and learning disabilities: A research-based, 
treatment-oriented approach. Journal of School Psychology, 40(1), 27–63. http://eric.ed 
.gov/?id=EJ642598 

Francis, D., Fletcher, J., Stuebing, K., Lyon, G. R., Shaywitz, B. A., & Shaywitz, S. E. 
(2005). Psychometric approaches to the identification of LD: IQ and achievement 
scores are not sufficient. Journal of Learning Disabilities, 38(2), 98–108. http://eric.ed 
.gov/?id=EJ695597 

Ref-1 

http://www2.ed.gov/programs/readingfirst/state-data/achievement-data.pdf
http://www2.ed.gov/programs/readingfirst/state-data/achievement-data.pdf
http://eric.ed.gov/?id=ED526421
http://eric.ed.gov/?id=EJ742190
http://eric.ed.gov/?id=EJ742190
http://eric.ed.gov/?id=EJ642598
http://eric.ed.gov/?id=EJ642598
http://eric.ed.gov/?id=EJ695597
http://eric.ed.gov/?id=EJ695597


 

 

 

 

Fuchs, D., Compton, D. L., Fuchs, L. S., Bryant, J., & Davis, G. N. (2008). Making “sec­
ondary intervention” work in a three-tier responsiveness-to-intervention model: Find­
ings from the first-grade longitudinal reading study of the National Research Center 
on Learning Disabilities. Reading and Writing, 21(4), 413–436. 

Fuchs, L. S., Fuchs, D., & Hamlett, C. L. (2007). Using curriculum-based measurement to 
inform reading instruction. Reading and Writing, 20(6), 553–567. 

Good III, R. H., Simmons, D. C., & Kame’enui, E. J. (2001). The importance and deci­
sion-making utility of a continuum of fluency-based indicators of foundational reading 
skills for third-grade high-stakes outcomes. Scientific Studies of Reading, 5(3), 257–288. 

Gordon, L. (2013). Using classification and regression trees (CART) in SAS Enterprise Miner for 
applications in public health (Paper No. 089–2013). Lexington, KY: University of Kentucky. 
Retrieved May 21, 2014, from http://support.sas.com/resources/papers/proceedings13 
/089–2013.pdf. 

Harrell, F. E. (2001). Regression modeling strategies: With applications to linear models, logistic 
regression, and survival analysis. New York: Springer. 

Hernandez, D. J. (2011). Double jeopardy: How third-grade reading skills and poverty influence 
high school graduation. Baltimore, MD: Annie E. Casey Foundation. 

Jarvis, S. W., Kovacs, C., Badriyah, T., Briggs, J., Mohammed, M. A., Meredith, P., et al. 
(2013). Development and validation of a decision tree early warning score based on 
routine laboratory test results for the discrimination of hospital mortality in emergen­
cy medical admissions. Resuscitation, 84(11), 1494–1499. 

Jenkins, J. R. (2003, December). Candidate measures for screening at-risk students. Paper 
presented at the National Research Center on Learning Disabilities’ Responsive­
ness-to-Intervention Symposium, Kansas City, MO. Retrieved December 9, 2013, from 
http://www.nrcld.org/symposium2003/jenkins/index.html. 

Johnson, E., & Semmelroth, C. (2010). The predictive validity of the early warning system 
tool. NASSP Bulletin, 94(2), 120–134. 

Knowles, J. E. (2014). Of needles and haystacks: Building an accurate statewide dropout early 
warning system in Wisconsin (draft). Madison, WI: Wisconsin Department of Public 
Instruction. Retrieved March 13, 2014, from http://itp.wceruw.org/documents/Knowles 
DropoutEarlyWarningSystemforITPJan2013.pdf. 

Koon, S., Petscher, Y., & Foorman, B. R. (2014). Identifying at-risk readers in Florida using 
two methodologies (REL 2015–036). Washington, DC: U.S. Department of Educa­
tion, Institute of Education Sciences, National Center for Education Evaluation and 
Regional Assistance, Regional Educational Laboratory Southeast. 

Kuhn, L., Page, K., Ward, J., & Worrall-Carter, L. (in press). The process and utility of 
classification and regression tree methodology in nursing research. Journal of Advanced 
Nursing. 

Ref-2 

http://support.sas.com/resources/papers/proceedings13/089-2013.pdf
http://support.sas.com/resources/papers/proceedings13/089-2013.pdf
http://www.nrcld.org/symposium2003/jenkins/index.html
http://itp.wceruw.org/documents/KnowlesDropoutEarlyWarningSystemforITPJan2013.pdf
http://itp.wceruw.org/documents/KnowlesDropoutEarlyWarningSystemforITPJan2013.pdf


 

  

  

Kuhnert, P. M., Do, K. A., & McClure, R. (2000). Combining non-parametric models with 
logistic regression: An application to motor vehicle injury data. Computational Statis­
tics & Data Analysis, 34(3), 371–386. 

Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classification 
and regression tree (CART) analysis. Photogrammetric engineering and remote sensing, 
67(10), 1137–1142. 

Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classifica­
tion and regression tree analysis in public health: Methodological review and compari­
son with logistic regression. Annals of Behavioral Medicine, 26(3), 172–181. 

Lewis, R. J. (2000, May). An introduction to classification and regression tree (CART) analy­
sis. Paper presented at the Annual Meeting of the Society for Academic Emergency 
Medicine, San Francisco, CA. 

National Assessment Governing Board. (2012). “NAEP achievement levels.” Retrieved 
July 2, 2012, from http://nces.ed.gov/nationsreportcard/achievement.aspx. 

Neild, R. C., Balfanz, R., & Herzog, L. (2007). An early warning system. Educational lead­
ership, 65(2), 28–33. 

Petscher, Y., Kim, Y. S., & Foorman, B. R. (2011). The importance of predictive power in 
early screening assessments: Implications for placement in the RTI framework. Assess­
ment for Effective Intervention, 36(3), 158–166. http://eric.ed.gov/?id=EJ925613 

Piasta, S. B., Petscher, Y., & Justice, L. M. (2012). Diagnostic efficiency of preschool let­
ter-naming benchmarks: Relations with first-grade literacy achievement. Journal of 
Educational Psychology, 104(4), 945–958. 

Rumberger, R., & Lim, S. A. (2008). Why students drop out of school: A review of 25 years 
of research (California Dropout Research Project Report No. 15). University of Califor­
nia, Santa Barbara. Retrieved March 13, 2014, from http://inpathways.net/researchre­
port15.pdf. 

Ryan, M. (2011). Early Warning Indicator Systems. Denver, CO: Education Commis­
sion of the States. Retrieved March 13, 2014, from http://edsource.org//wp-content/ 
uploads/9436.pdf. 

Salford Systems. (n.d.). What is cross validation? San Diego, CA: Author. Retrieved 
February 21, 2014, from https://www.salford-systems.com/products/cart/faqs/item/114 
-what-is-cross-validation. 

Schatschneider, C., Petscher, Y., & Williams, K. M. (2008). How to evaluate a screening 
process: The vocabulary of screening and what educators need to know. In L. Justice 
& C. Vukelic (Eds.), Every moment counts: Achieving excellence in preschool language 
and literacy instruction (pp. 304–317). New York: Guilford Press. 

Ref-3 

http://nces.ed.gov/nationsreportcard/achievement.aspx
http://eric.ed.gov/?id=EJ925613
http://inpathways.net/researchreport15.pdf
http://inpathways.net/researchreport15.pdf
http://edsource.org//wp-content/uploads/9436.pdf
http://edsource.org//wp-content/uploads/9436.pdf
https://www.salford-systems.com/products/cart/faqs/item/114-what-is-cross-validation
https://www.salford-systems.com/products/cart/faqs/item/114-what-is-cross-validation


 

 

 

 

Shapiro, E., Solari, E., & Petscher. (2008). Use of an assessment of reading comprehension 
in addition to the oral reading fluency on the state high stakes assessment for students 
in grades 3 through 5. Journal on Learning and Individual Differences, 18, 316–328. 

Steadman, H., Silver, E., Monahan, J., Applebaum, P. S., Clark Robbins, P., Mulvey, E. P., 
et al. (2000). A classification tree approach to the development of actuarial violence 
risk assessment tools. Law and Human Behavior, 24(1), 83–100. 

Steinberg, D. (2013, February 19). Finding R-squared for CART regression trees. San 
Diego, CA: Salford Systems. Retrieved February 21, 2014, from http://1.salford-systems. 
com/blog/bid/270082/?utm_source=linkedin&utm_medium=social&utm_content= 
c9222a78–8b04–4d58–977e-fd5819277b8a. 

Takahashi, O., Cook, E. F., Nakamura, T., Saito, J., Ikawa, F., & Fukui, T. (2006). Risk 
stratification for in-hospital mortality in spontaneous intracerebral hemorrhage: A 
classification and regression tree analysis. Qjm, 99(11), 743–750. 

Therneau, T. M., & Atkinson, E. J. (2013). An introduction to recursive partitioning using the 
RPART routines (Mayo Foundation technical report). Washington, DC: Mayo Founda­
tion. Retrieved December 16, 2013, from http://cran.r-project.org/web/packages/rpart/ 
vignettes/longintro.pdf. 

Therneau, T. M., Atkinson, B., & Ripley, B. (2013). rpart: Recursive Partitioning (R package 
version 4.1–8). Retrieved December 16, 2013, from http://cran.r-project.org/web/ 
packages/rpart/rpart.pdf. 

Ref-4 

http://1.salford-systems.com/blog/bid/270082/?utm_source=linkedin&utm_medium=social&utm_content=c9222a78-8b04-4d58-977e-fd5819277b8a
http://1.salford-systems.com/blog/bid/270082/?utm_source=linkedin&utm_medium=social&utm_content=c9222a78-8b04-4d58-977e-fd5819277b8a
http://1.salford-systems.com/blog/bid/270082/?utm_source=linkedin&utm_medium=social&utm_content=c9222a78-8b04-4d58-977e-fd5819277b8a
http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://cran.r-project.org/web/packages/rpart/rpart.pdf
http://cran.r-project.org/web/packages/rpart/rpart.pdf


 

 

 

 

 

 

 

The Regional Educational Laboratory Program produces 7 types of reports
 

Making Connections 
Studies of correlational relationships 

Making an Impact 
Studies of cause and effect 

What’s Happening 
Descriptions of policies, programs, implementation status, or data trends 

What’s Known 
Summaries of previous research 

Stated Briefly 
Summaries of research findings for specific audiences 

Applied Research Methods 
Research methods for educational settings 

Tools 
Help for planning, gathering, analyzing, or reporting data or research 
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