Appendix B

Lemma 1. Let ¢, be the OLS estimator for ¢, in the two-level model in (23). If the true functional form
relationship between potential outcomes and the treatment assignment score is correctly specified in the
model, then, ¢, is a consistent estimator for ¢, . Furthermore, as the number of units, 7, increases to

infinity in (23) and for fixed m, @, converges to a normal distribution with variance:
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where p, is the correlation between Tl.RD and Score;. A comparable expression can be obtained for the

aggregated model in (8) by setting 0'§ = 0 and replacing Gf with 0,? .
Proof. Write (23) in terms of centered random variables as follows:
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where wy = W;D —E(wifD), T =T —p, S; =Score,— E(Score,), 7, =7,— E(z,) and
0; =6; —E(5;). Let w;, T;, S,, 7,and O, be respective empirically centered variables. If

T,
Z =(T" S))and Z, =(T 51) , then the OLS estimator for the parameters in (B.2.2) is as follows:

Standard asymptotic arguments can be used to prove that as » approaches infinity,

A

a1 L B P 0‘1
(B2.3) ( ]—”)[mE(Zi Zi)J E(mZ, wy.)z(a

a, 2

-1
j + [mE(Z: Zj‘)} E [mZ; (z; + 5;.)} :
In this expression,
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where o, is the covariance between 7," and 7,, and o, is the covariance between Score; and 7,. Note

that the covariance between Z; and 5; is zero because T,"” and Score; do not vary within schools. Thus,

after some algebra, it can be seen that as n approaches infinity,
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The second term on the right-hand-side of (B.2.5) is zero because it is the coefficient estimate on YZRD

when 7, is regressed on 7, and Score;. This conditional expectation is zero, because controlling for

Score;, there is no variation in treatment status. (Note that this result does not hold if the model is
specified incorrectly and 7, contains omitted score variables.) Thus, ¢, is asymptotically unbiased.

To obtain the asymptotic distribution of the two-level OLS estimator, we can rewrite (B.2.3) as follows:
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where o,(1) denotes a term that converges in probability to zero. Thus, using (B.2.4), we find after some
algebra that
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Because £ [(mrl* + Z é’;)(oﬁTl* - O'TSSi*)} =0, a simple application of the central limit theorem (see,
Jj=1

for example, Rao 1973) can be used to show that ¢, is asymptotically normally distributed with mean zero
and the following variance:
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The expressions in (B.2.7) and (B.2.1) are equivalent because o, = o2 p(1— p)pss .
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