
Technical Details of WWC-Conducted Computations 

(4-16-2007)

To assist in the interpretation of study findings and facilitate comparisons of findings across 
studies, the WWC computes the effect sizes (ES) and the improvement indices associated with 
study findings on outcome measures relevant to the WWC’s review. In general, the WWC 
focuses on ESs based on student-level findings regardless of the unit of assignment or the unit of 
intervention. Focusing on student-level findings not only improves the comparability of ES 
estimates across studies, but also allows us to draw upon existing conventions among the 
research community to establish the criterion for “substantively important” effects for
intervention rating purposes. In addition to ESs and improvement indices, the WWC also 
computes the levels of statistical significance of student-level  findings corrected for clustering 
and/or multiple comparisons where necessary.

The purpose of this document is to provide the technical details about the various types of 
computations conducted by the WWC as part of its review process, which will allow readers to 
better understand the findings that we report and the conclusions that we draw regarding the 
effectiveness of the educational interventions reviewed by the WWC.1 Specifically, the technical 
details of the following types of WWC-conducted computations are presented:

I Effect Size Computation for Continuous Outcomes
ES as Standardized Mean Difference (Hedges’s g) 
ES Computation Based on Results from Student-Level T-Tests or ANOVA
ES Computation Based on Results from Student-Level ANCOVA
ES Computation Based on Results from Cluster-Level Analyses
ES Computation Based on Results from HLM Analysis in Studies with 
Cluster-Level Assignment

II. Effect Size Computation for Dichotomous Outcomes
III. Computation of the Improvement Index 
IV Clustering Correction of the Statistical Significance of Effects Estimated with 

Mismatched Analyses 
V Benjamini-Hochberg Correction of the Statistical Significance of Effects 

Estimated with Multiple Comparisons

In addition to computational procedures, this document presents the rationale for the 
specific computations conducted and their underlying assumptions. These procedures are 
currently used to compute effect sizes and make corrections for study designs and reporting 
practices most commonly encountered during WWC’s review process. It is not meant to serve as 
a comprehensive compendium of an exhaustive list of ES computation methods that have ever 
been developed in the field. 

1 The WWC regularly updates WWC technical standards and their application to take account of new considerations
brought forth by experts and users.  Such changes may result in re-appraisals of studies and/or interventions
previously reviewed and rated. Current WWC standards offer guidance for those planning or carrying out studies,
not only in the design considerations but the analysis and reporting stages as well. WWC standards, however, may
not pertain to every situation, context, or purpose of a study and will evolve.
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I.  Effect Size Computation for Continuous Outcomes 

ES as Standardized Mean Difference (Hedges’s g) 

Different types of ES indices have been developed for different types of outcome measures,
given their distinct statistical properties. For continuous outcomes, the WWC has adopted the 
most commonly-used ES index—the standardized mean difference, which is defined as the 
difference between the mean outcome of the intervention group and the mean outcome of the 
comparison group divided by the pooled within-group standard deviation (SD) on that outcome
measure. Given that the WWC generally focuses on student-level findings , the default SD used 
in ES computation is the student-level SD.

The basic formula for computing standardized mean difference is as follows:

Standardized mean difference = (X1 – X2) / Spooled,     (1)

where X1 and X2 are the means of the outcome for the intervention group and the comparison
group respectively, and Spooled is the pooled within-group SD of the outcome at the student level. 
Formulaically,
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Spooled = sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}
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(g) = (X1 –X2)/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where n1 and n2 are the student sample sizes, and S1 and S2 the student-level SDs, for the 
intervention group and the comparison group respectively.

The ES index thus computed is referred to as Hedges’s g.2 This index, however, has been 
shown to be upwardly biased when the sample size is small. Therefore, we have applied a simple
correction for this bias developed by Hedges (1981), which produces an unbiased ES estimate by 
multiplying the Hedges’s g by a factor of [1-3/(4N-9)], with N being the total sample size. 
Unless otherwise noted, Hedges’s g corrected for small-sample bias is the default ES measure for
continuous outcomes used in the WWC’s review. 

2 The Hedges’ g index differs from the Cohen’s d index in that Hedges’s g uses the square root of degrees of
freedom (sqrt(N-k) for k groups) for the denominator of the pooled within-group SD (Spooled), whereas Cohen’s d 
uses the square root of sample size (sqrt(N)) to compute Spooled (Rosenthal, 1994; Rosnow, Rosenthal, & Rubin,
2000).
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In certain situations, however, the WWC may present study findings using ES measures
other than Hedges’s g. If, for instance, the SD of the intervention group differs substantially from
that of the comparison group, the PIs and review teams may choose to use the SD of the 
comparison group instead of the pooled within-group SD as the denominator of the standardized 
mean difference, and compute the ES as Glass’s  instead of Hedges’s g. The justification for 
doing so is that when the intervention and comparison groups have unequal variances, as in the 
case where the variance of the outcome is affected by the intervention, the comparison group 
variance is likely to be a better estimate of the population variance than the pooled within-group 
variance (Cooper, 1998; Lipsey & Wilson, 2001). The WWC may also use Glass’s , or other 
ES measures used by the study authors, to present study findings—if there is not enough 
information available for computing Hedge’s g. These deviations from the default will be clearly 
documented in the WWC’s review process.

The sections to follow focus on the WWC’s default approach to computing student-level 
ESs for continuous outcomes. We describe procedures for computing Hedges’s g based on 
results from different types of statistical analysis most commonly encountered in the WWC 
reviews.

ES Computation Based on Results from Student-Level T-Tests or ANOVA
For randomized controlled trials, study authors may assess an intervention’s effects based on 
student-level t-tests or analyses of variance (ANOVA) without adjustment for pretest or other 
covariates, assuming group equivalence on pre-intervention measures achieved through random
assignment. If the study authors reported posttest means and SD as well as sample sizes for both 
the intervention group and the comparison group, the computation of ESs will be straightforward
using the standard formula for Hedges’s g (see Equation (3)).

Where the study authors did not report the posttest mean, SD, or sample size for each 
study group, the WWC computes Hedges’s g based on t-test or ANOVA F-test results, if they 
were reported along with sample sizes for both the intervention group (n1) and the comparison
group (n2). For ESs based on t-test results,

Hedges’s g = t
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Hedges’s g = t * sqrt [(n1 +n2)/n1n2]       (4)

For ESs based on ANOVA F-test results, 

Hedges’s g = 
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Hedges’s g = sqrt [(F(n1 +n2)/n1n2]

ES Computation Based on Results from Student-Level ANCOVA

Analysis of covariance (ANCOVA) is a commonly used analytic method for quasi-experimental
designs. It assesses the effects of an intervention while controlling for important covariates,
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particular pretest, that might confound the effects of the intervention. ANCOVA is also used to 
analyze data from randomized controlled trials so that greater statistical precision of parameter
estimates can be achieved through covariate adjustment.

For study findings based on student-level ANCOVA, the WWC computes Hedges’s g as 
covariate adjusted mean difference divided by unadjusted pooled within-group SD. The use of 
adjusted mean difference as the numerator of ES ensures that the ES estimate is adjusted for 
covariate difference between the intervention and the comparison groups that might otherwise 
bias the result. The use of unadjusted pooled within-group SD as the denominator of ES allows 
comparisons of ES estimates across studies by using a common metric to standardize group 
mean differences, i.e., the population SD as estimated by the unadjusted pooled within-group SD. 

Specifically, when sample sizes, and adjusted means and unadjusted SDs of the posttest 
from an ANCOVA are available for both the intervention and the comparison groups, the WWC 
computes Hedges’s g as follows:

Hedges’s g = 
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Hedges’s g = (X1' –X2')/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where X1’ and X2’ are adjusted posttest means, n1 and n2 the student sample sizes, and S1 and S2

the student-level unadjusted posttest SD, for the intervention group and the comparison group 
respectively,

It is not uncommon, however, for study authors to report unadjusted group means on both 
pretest and posttest, but not adjusted group means or adjusted group mean differences on the 
posttest. Absent information on the correlation between the pretest and the posttest, as is 
typically the case, the WWC’s default approach is to compute the numerator of ES—the adjusted
mean difference—as the difference between the pretest-posttest mean difference for the
intervention group and the pretest-posttest mean difference for the comparison group. 
Specifically,

Hedges’s g = 
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Hedges’s g = [(X1 –X1-pre)- (X2 –X2-pre)]/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where X1 and X2 are unadjusted posttest means,  X1-pre and X2-pre unadjusted pretest means,  n1

and n2 the student sample sizes, and S1 and S2 the student-level unadjusted posttest SD, for the 
intervention group and the comparison group respectively, 

This “difference-in-differences” approach to estimating an intervention’s effects while 
taking into account group difference in pretest is not necessarily optimal, as it is likely to either 
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overestimate or underestimate the adjusted group mean difference, depending on which group 
performed better on the pretest.3 Moreover, this approach does not provide a means for adjusting 
the statistic significance of the adjusted mean difference to reflect the covariance between the 
pretest and the posttest. Nevertheless, it yields a reasonable estimate of the adjusted group mean
difference, which is equivalent to what would have been obtained from a commonly used 
alternative to the covariate adjustment-based approach to testing an intervention’s effect—the
analysis of gain scores. 

Another limitation of the “difference-in-differences” approach is that it assumes the 
pretest and the posttest are the same test. Otherwise, the means on the two types of tests might
not be comparable, and hence it might not be appropriate to compute the pretest-posttest
difference for each group. In cases where different pretest and posttests were used, and only 
unadjusted means on pretest and posttest were reported, the Principal Investigators (PIs) will 
need to consult with the WWC Technical Review Team to determine whether it is reasonable to 
use the difference-in-differences approach to compute the ESs.

The difference-in-differences approach presented above also assumes that the pretest-
posttest correlation is unknown. In some areas of educational research, however, empirical data 
on the relationships between pretest and posttest may be available. If such data are dependable, 
the WWC PIs and the review team in a given topic area may choose to use the empirical
relationship to estimate the adjusted group mean difference that is unavailable from the study 
report or study authors, rather than using the default difference-in-differences approach.  The 
advantage of  doing so is that, if indeed the empirical relationship between pretest and posttest is 
dependable, the covariate-adjusted estimates of the intervention’s effects will be less biased than 
those based on the difference-in-differences (gain score) approach. If the PIs and review teams
choose to compute ESs using an empirical pretest-posttest relationship, they will need to provide 
an explicit justification for their choice as well as evidence on the credibility of the empirical 
relationship.

Computationally, if the pretest and posttest has a correlation of r, then

Hedges’s g = 
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Hedges’s g = [(X1 –X2)- r(X1-pre –X2-pre)]/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where all the other terms are the same as those in Equation (7).

A final note about ANCOVA-based ES computation is that Hedges’s g cannot be 
computed based on the F-statistic from an ANCOVA using Equation (5). Unlike the F-statistic 
from an ANOVA, which is based on unadjusted within-group variance, the F-statistic from an 
ANCOVA is based on covariate-adjusted within-group variance. Hedges’s g, however, requires 

3 If the intervention group had a higher average pretest score than the comparison group, the difference-in-difference
approach is likely to underestimate the adjusted group mean difference. Otherwise, it is likely to overestimate the
adjusted group mean difference.
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the use of unadjusted within-group SD. Therefore, we cannot compute Hedges’s g with the F-
statistic from an ANCOVA in the same way as we compute g with the F-statistic from an 
ANOVA. If the pretest-posttest correlation is known, however, we could derive Hedges’s g from 
the ANCOVA F-statistic as follows:

Hedges’s g = 
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Hedges’s g = sqrt[F(n1 + n2)(1-r^2)/n1n2]

where r is the pretest-posttest correlation, and n1 and n2 are the sample sizes for the intervention
group and the comparison group respectively. 

ES Computation Based on Results from Cluster-Level Analyses

The ES computation methods described above are all based on student-level analyses, which are 
appropriate analytic approaches for studies with student-level assignment. The case is more 
complicated, however, for studies with assignment at the cluster level (e.g., assignment of
teachers, classrooms, or schools to conditions), where data may have been analyzed at the 
student level, the cluster level, or through multilevel analyses. Although there has been a 
consensus in the field that multilevel analysis should be used to analyze clustered data (e.g., 
Bloom, Bos, & Lee, 1999; Donner & Klar, 2000; Flay & Collins, 2005; Murray, 1998; and 
Snijders & Bosker, 1999), student-level analyses and cluster-level analyses of such data still 
frequently appear in the research literature despite their problems.

The main problem with student-level analyses in studies with cluster-level assignment is 
that they violate the independence of observations assumption underlying traditional hypothesis 
tests and result in underestimated standard errors and inflated statistical significance (see Section 
IV for details about how to correct for such bias). The estimate of the group mean difference in 
such analyses, however, is unbiased and therefore can be appropriately used to compute the 
student-level ES using methods explained in the previous sections. 

For studies with cluster-level assignment, analyses at the cluster level, or aggregated 
analyses, are also problematic. Other than the loss of power and increased Type II error, potential
problems with aggregated analysis include shift of meaning and ecological fallacy (i.e.,
relationships between aggregated variables cannot be used to make assertions about the 
relationships between individual-level variables), among others (Aitkin & Longford, 1986; 
Snijders & Bosker, 1999), Such analyses also pose special challenges to ES computation during 
WWC reviews. In the remainder of this section, we discuss these challenges and describe 
WWC’s approach to handling them during WWC reviews.

How to compute student-level ESs for studies with cluster-level analyses

For studies that only reported findings from cluster-level analyses, it might be tempting to 
compute ESs using cluster-level means and SDs. This, however, is not appropriate for the 
purpose of the WWC reviews for at least two reasons. First, because cluster-level SDs are 
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typically much smaller than student-level SDs,4 ESs based on cluster-level SDs will be much
larger than, and therefore incomparable with, student-level ESs that are the focus of WWC
reviews. Second, the criterion for “substantively important” effects in the WWC Intervention
Rating Scheme (ES of at least 0.25) was established specifically for student-level ESs, and does 
not apply to cluster-level ESs. Moreover, there is not enough knowledge in the field as yet for 
judging the magnitude of cluster-level effects. A criterion of “substantively important” effects 
for cluster-level ESs, therefore, cannot be developed for intervention rating purposes. An 
intervention rating of potentially positive effects based on a cluster-level ES of 0.25 or greater 
(i.e., the criterion for student-level ESs) would be misleading.

In order to compute the student-level ESs, we need to use the student-level means and 
SDs on the findings. This information, however, is often not reported in studies with cluster-level
analyses. If the study authors could not provide student-level means, the review team may use 
cluster-level means (i.e., mean of cluster means) to compute the group mean difference for the 
numerator of student-level ESs if: (1) the clusters were of equal or similar sizes, (2) the cluster 
means were similar across clusters, or (3) it is reasonable to assume that cluster size was 
unrelated to cluster means. If any of the above conditions holds, then group means based on 
cluster-level data would be similar to group means based on student-level data, and hence could 
be used for computing student-level ESs. If none of the above conditions holds, however, the 
review team will have to obtain the group means based on student-level data in order to compute
the student-level ESs.

While it is possible to compute the numerator (i.e., group mean difference) for student-
level ESs based on cluster-level findings for most studies, it is generally much less feasible to 
compute the denominator (i.e., pooled SD) for student-level ESs based on cluster-level data. If 
the student-level SDs are not available, we could compute them based on the cluster-level SDs 
and the actual intra-class correlation (ICC) (student-level SD = (cluster-level SD)/sqrt(ICC)). 
Unfortunately, the actual ICCs for the data observed are rarely provided in study reports. 
Without knowledge about the actual ICC, one might consider using a default ICC, which, 
however, is not appropriate, because the resulting ES estimate would be highly sensitive to the 
value of the default ICC and might be seriously biased even if the difference between the default 
ICC and the actual ICC is not large.

Another reason that the formula for deriving student-level SDs (student-level SD = 
(cluster-level SD)/sqrt(ICC)) is unlikely to be useful is that the cluster-level SD required for the 
computation was often not reported either. Note that the cluster-level SD associated with the ICC 
is not exactly the same as the observed SD of cluster means that were often reported in studies 
with cluster-level analyses, because the latter reflects not only the true cluster-level variance, but 
also part of the random variance within clusters (Raudenbush & Liu, 2000; Snijder & Bosker, 
1999).

It is clear from the above discussion that in most cases, requesting student-level data, 
particularly student-level SDs, from the study authors will be the only way that allows us to 
compute the student-level ESs for studies only reporting cluster-level findings. If the study 
authors could not provide the student-level data needed, then we would not be able to compute

4 Cluster-level SD = (student-level SD)*sqrt(ICC).
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the student-level ESs. Nevertheless, such studies will not be automatically excluded from the 
WWC reviews, but could still potentially contribute to intervention ratings as explained below. 

How to handle studies with cluster-level analyses in intervention ratings if the student-level ESs
could not be computed

A study’s contribution to the effectiveness rating of an intervention depends mainly on 
three factors: the quality of the study design, the statistical significance of the findings, and the 
size of the effects. For studies that only reported cluster-level findings, the quality of their design 
is not affected by whether student-level ESs could be computed or not. Such studies could still 
meet WWC evidence standards with or without reservations and be included in intervention 
reports even if student-level ESs were not available.

While cluster-level ESs cannot be used in intervention ratings, the statistical significance 
of cluster-level findings could contribute to intervention ratings. Cluster-level analyses tend to be
underpowered, hence estimates of the statistical significance of findings from such analyses tend 
to be conservative. Therefore, significant findings from cluster-level analyses would remain
significant had the data been analyzed using appropriate multilevel models, and should be taken 
into account in intervention ratings. The size of the effects based on cluster-level analyses, 
however, could not be considered in determining “substantively important” effects in 
intervention ratings for reasons described above. In WWC’s intervention reports, cluster-level 
ESs will be excluded from the computation of domain average ESs and improvement indices,
both of which will be based exclusively on student-level findings.
ES Computation Based on Results from HLM Analyses in Studies with Cluster-Level
Assignment

As explained in the previous section, multilevel analysis is generally considered the preferred
method for analyzing data of from studies with cluster-level assignment. With recent 
methodological advances, multilevel analysis has gained increased popularity  in education and 
other social science fields. More and more researchers have begun to employ the hierarchical 
linear modeling (HLM) method to analyze data of a nested nature (e.g., students nested within 
classes and classes nested within schools) (Raudenbush & Bryk, 2002)5. Similar to student-level
ANCOVA, HLM can also adjust for important covariates such as pretest when estimating an 
intervention’s effect. Unlike student-level ANCOVA that assumes independence of observations, 
however, HLM explicitly takes into account the dependence among members within the same
higher-level unit (e.g., the dependence among students within the same class). Therefore, the 
parameter estimates, particularly the standard errors, generated from HLM are less biased than 
those generated from ANCOVA when the data have a multilevel structure.

Hedges’s g for intervention effects estimated from HLM analyses is defined in a similar 
way to that based on student-level ANCOVA: adjusted group mean difference divided by 
unadjusted pooled within-group SD. Specifically,

5 Multilevel analysis can also be conducted using other approaches, such as the SAS PROC MIXED procedure.
Although different approaches to multilevel analysis may differ in their technical details, they are all based on
similar ideas and underlying assumptions.
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Hedges’s g = /sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

Where  is the HLM coefficient for the intervention’s effect, which represents the group mean
difference adjusted for both level-1 and level-2 covariates, if any;6 n1 and n2 are the student
sample sizes, and S1 and S2 the unadjusted student-level SDs for the intervention group and the 
comparison group respectively. 

One thing to note about the denominator of Hedges’s g based on HLM results is that the 
level-1 variance, also called “within-group variance,” estimated from a typical two-level HLM 
analysis is not the same as the conventional unadjusted pooled within-group variance that should 
be used in ES computation. The within-group variance from an HLM model that incorporates 
level-1 covariates has been adjusted for these covariates. Even if the within-group variance is 
based on an HLM model that does not contain any covariates (i.e., a fully-unconditional model),
it is still not appropriate for ES computation, because it does not include the variance between
level-2 units within each study condition that is part of the unadjusted pooled within-group 
variance. Therefore, the level-1 within-group variance estimated from an HLM analysis tends to 
be smaller than the conventional unadjusted pooled within-group variance, and would thus lead 
to an overestimate of the ES if used in the denominator of the ES.

The ES computations for continuous outcomes explained above pertain to individual 
findings within a given outcome domain examined in a given study. If the study authors assessed 
the intervention’s effects on multiple outcome measures within a given domain, the WWC
computes a domain average ES as a simple average of the ESs across all individual findings 
within the domain.

II. Effect Size Computation for Dichotomous Outcomes 

Although not as common as continuous outcomes, dichotomous outcomes are sometimes used in 
studies of educational interventions. Examples include dropout vs. stay in school; grade 
promotion vs. retention; and pass vs. fail a test. Group mean differences, in this case, appear as 
differences in proportions or differences in the probability of the occurrence of an event. The ES 
measure of choice for dichotomous outcomes is odds ratio, which has many statistical and 
practical advantages over alternative ES measures such as the difference between two
probabilities, the ratio of two probabilities, and the phi coefficient (Fleiss, 1994; Lipsey & 
Wilson, 2001).

6 The level-2 coefficients are adjusted for the level-1 covariates under the condition that the level-1 covariates are 
either uncentered or grand-mean centered, which are the most common centering options in an HLM analysis 
(Raudenbush & Bryk, 2002). The level-2 coefficients are not adjusted for the level-1 covariates if the level-1
covariates are group-mean centered. For simplicity purposes, the discussion here is based on a two-level framework
(i.e., students nested with clusters). The idea could easily be extended to a three-level model (e.g., students nested
with teachers who were in turn nested within schools).
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The measure of odds ratio builds on the notion of odds. For a given study group, the odds 
for the occurrence of an event are defined as follows:

Odds = 
p

p

1
,         (11)

Odds = p/(1-p)
where p is the probability of the occurrence of an event within the group. Odds ratio (OR) is 
simply the ratio between the odds for the two groups compared:
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OR = Odds1/Odds2 = [p1(1-p 2)]/[p2(1- p1)]
where  and  are the probabilities of the occurrence of an event for the intervention group 
and the comparison group respectively.

1p 2p

As is the case with ES computation for continuous variables, the WWC computes ESs for 
dichotomous outcomes based on student-level data in preference to aggregate-level data for 
studies that had a multi-level data structure. The probabilities (  and ) used in calculating 
the odds ratio represent the proportions of students demonstrating a certain outcome among 
students across all teachers/classrooms or schools in each study condition, which are likely to 
differ from the probabilities based on aggregate-level data (e.g., means of school-specific 
probabilities) unless the classrooms or schools in the sample were of similar sizes.

1p 2p

Following conventional practice, the WWC transforms odds ratio calculated based on 
Equation (12) to logged odds ratio (LOR) (i.e., the natural log of the odds ratio) to simplify 
statistical analyses:

LOR = In(OR)         (13)

The logged odds ratio has a convenient distribution form, which is approximately normal with a 
mean of 0 and a SD of /sqrt(3), or 1.81. 

The logged odds ratio can also be expressed as the difference between the logged odds, or 
logits, for the two groups compared. Equivalent to Equation (13),

LOR = ,       (14))()( 21 OddsInOddsIn
LOR = In(Odds1) - In(Odds2)

which shows more clearly the connection between the logged odds ratio index and the 
standardized mean difference index (Hedges’s g) for ESs. To make logged odds ratio comparable
to standardized mean difference and thus facilitate the synthesis of research findings based on 
different types of outcomes, researchers have proposed a variety of methods for “standardizing” 
logged odds ratio. Based on a Monte Carlo simulation study of seven different types of ES 
indices for dichotomous outcomes, Sanchez-Meca, Marin-Martinez, and Chacon-Moscoso 
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(2003) concluded that the ES index proposed by Cox (1970) is the least biased estimator of the 
population standardized mean difference, assuming an underlying normal distribution of the 
outcome. The WWC, therefore, has adopted the Cox index as the default ES measure for 
dichotomous outcomes. The computation of the Cox index is straightforward:

LORCox = LOR/1.65         (15)

The above index yields ES values very similar to the values of Hedges’s g that one would
obtain if group means, SDs, and sample sizes were available—assuming that the dichotomous
outcome measure is based on an underlying normal distribution. Although the assumption may
not always hold, as Sanchez-Meca and his colleagues (2003) note, primary studies in social and 
behavioral sciences routinely apply parametric statistical tests that imply normality. Therefore,
the assumption of normal distribution is a reasonable conventional default.

III. Computation of the Improvement Index

In order to help readers judge the practical importance of an intervention’s effect, the WWC 
translates ES into an “improvement index.” The improvement index represents the difference 
between the percentile rank corresponding to the intervention group mean and the percentile rank 
corresponding to the comparison group mean (i.e., 50th percentile) in the comparison group 
distribution. Alternatively, the improvement index can be interpreted as the expected change in 
percentile rank for an average comparison group student if the student had received the 
intervention.

As an example, if an intervention produced a positive impact on students’ reading
achievement with an effect size of 0.25, the effect size could be translated to an improvement
index of 10 percentile points. We could then conclude that the intervention would have led to a 
10% increase in percentile rank for an average student in the comparison group, and that 60% 
(10% + 50%=60%) of the students in the intervention group scored above the comparison group 
mean.

Specifically, the improvement index is computed as follows: 

(1) Convert the ES (Hedges’s g) to Cohen’s U3 index.

The U3 index represents the percentile rank of a comparison group student who 
performed at the level of an average intervention group student. An effect size of 0.25, for 
example, would correspond to a U3 of 60%, which means that an average intervention group 
student would rank at the 60th percentile in the comparison group. Equivalently, an average 
intervention group student would rank 10 percentile points higher than an average comparison 
group student, who, by definition, ranks at the 50th percentile.

Mechanically, the conversion of an effect size to a U3 index entails looking up on a table 
that lists the proportion of area under the standard normal curve for different values of z-scores, 
which can be found in the appendices of most statistics textbooks. For a given effect size, U3 has 
a value equal to the proportion of area under the normal curve below the value of the effect 
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size—under the assumptions that the outcome is normally distributed and that the variance of the 
outcome is similar for the intervention group and the comparison group.

(2) Compute:

Improvement index = U3 – 50% (16)

Given that U3 represents the percentile rank of an average intervention group student in 
the comparison group distribution, and that the percentile rank of an average comparison group 
student is 50%, the improvement index, defined as (U3 – 50%), would represent the difference in
percentile rank between an average intervention group student and an average comparison group 
student in the comparison group distribution.

In addition to the improvement index for each individual finding, the WWC also 
computes a domain average improvement index for each study as well as a domain average 
improvement index across studies for each outcome domain. The domain average improvement
index for each study is computed based on the domain average effect size for that study rather 
than as the average of the improvement indices for individual findings within that study. 
Similarly, the domain average improvement index across studies is computed based on the 
domain average effect size across studies, with the latter computed as the average of the domain
average effect sizes for individual studies.

IV. Clustering Correction of the Statistical Significance of Effects Estimated with
Mismatched Analyses 

In order to adequately assess an intervention’s effects, it is important to know not only the 
magnitude of the effects as indicated by ES, but also the statistical significance of the effects.
The correct statistical significance of findings, however, is not always readily available,
particularly in studies where the unit of assignment does not match the unit of analysis. The most
common “mismatch” problem occurs when assignment was carried out at the cluster level (e.g., 
classroom or school level), whereas the analysis was conducted at the student level, ignoring the 
dependence among students within the same clusters. Although the point estimates of the 
intervention’s effects based on such mismatched analyses are unbiased, the standard errors of the 
effect estimates are likely to be underestimated, which would lead to inflated Type I error and 
overestimated statistical significance.

In order to present a fair judgment about an intervention’s effects, the WWC computes
clustering-corrected statistical significance for effects estimated from mismatched analyses and 
the corresponding domain average effects based on Hedges’ (2005) most recent work. As 
clustering correction will decrease the statistical significance (or increase the p-value) of the 
findings, non-significant findings from a mismatched analysis will remain non-significant after 
the correction. Therefore, the WWC only applies the correction to findings reported to be 
statistically significant by the study authors.

The basic approach to clustering correction is to first compute the t-statistic
corresponding to the ES that ignores clustering, and then correct both the t-statistic and the 
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associated degrees of freedom for clustering based on sample sizes, number of clusters, and the 
intra-class correlation. The statistic significance corrected for clustering could then be obtained 
from the t-distribution with the corrected t-statistic and degrees of freedom. In the remainder of 
this section, we detail each step of the process.

(1) Compute the t-statistic for the ES ignoring clustering

This is essentially the reverse of Equation (4) that computes Hedges’s g based on t: 
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 t = g*sqrt [n1n2/( n1 + n2)]       (17)

where g is the ES that ignores clustering, and n1 and n2 are the sample sizes for the intervention
group and the comparison group respectively for a given outcome. For domain average ESs, n1

and n2 are the average sample sizes for the intervention and comparison groups respectively 
across all outcomes within the domain

(2) Correct the above t-statistic for clustering 

tA = t
]11)[2(

12)2(

m

N
N

m

N
N

,       (18)

tA = t*sqrt{[(N-2)-2(N/m-1) ]/[(N-2)(1+(N/m-1) )]}

where N is the total sample size at the student level (N = n1+ n2), m is the total number of
clusters in the intervention and comparison groups (m = m1+ m2, m1 and m2 are the number of 
clusters in each of the two groups), and  is the intra-class correlation (ICC) for a given outcome.

The value of ICC, however, is often not available from the study reports. Based on 
empirical literature in the field of education, the WWC has adopted a default ICC value of .20 
for achievement outcomes and .10 for behavioral and attitudinal outcomes. The PIs and review 
teams may set different defaults with explicit justification in terms of the nature of the research
circumstances or the outcome domain.

For domain average ESs, the ICC used in Equation (18) is the average ICC across all 
outcomes within the domain. If the number of clusters in the intervention and comparison groups 
differs across outcomes within a given domain, the total number of clusters (m) used for 
computing the corrected t-statistic will be based on the largest number of clusters in both groups 
across outcomes within the domain (i.e., largest m1 and m2 across outcomes). This gives the 
study the benefit of the doubt by crediting the measure with the most statistical power, so that the 
WWC’s rating of interventions will not be unduly conservative.
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(3) Compute the degrees of freedom associated with the t-statistics corrected for clustering:

)1(222)1)(2(
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h (19)

h =  [(N-2)-2(N/m-1) ]^2/[(N-2)(1- )^2+ (N/m)(N-2N/m) ^2+2(N-2N/m) (1- )]

(4) Obtain the statistical significance of the effect corrected for clustering

The clustering-corrected statistical significance (p-value) is determined based on the t-
distribution with corrected t-statistic (tA) and the corrected degrees of freedom (h).  This p-value 
can either be looked up in a t-distribution table that can be found in the appendices of most
statistical textbooks, or computed using the t-distribution function in Excel: p = TDIST(tA, h, 2).

Further information on this topic is available in the WWC’s technical papers on the WWC
Tutorial on Mismatch Between Unit of Assignment and Unit of Analysis and the WWC
Intervention Rating Scheme.

V.  Benjamini-Hochberg Correction of the Statistical Significance of Effects Estimated with
Multiple Comparisons

In addition to clustering, another factor that may inflate Type I error and the statistical
significance of findings is when study authors perform multiple hypothesis tests simultaneously.
The traditional approach to addressing the problem is the Bonferroni method, which lowers the 
critical p-value for individual comparisons by a factor of 1/m, with m being the total number of
comparisons made. The Bonferroni method, however, has been shown to be unnecessarily 
stringent for many practical situations; therefore the WWC has adopted a more recently
developed method to correct for multiple comparisons or multiplicity—the Benjamini-Hochberg
(BH) method (Benjamini & Hochberg, 1995). The BH method adjusts for multiple comparisons
by controlling false discovery rate (FDR) instead of familywise error rate (FWER). It is less 
conservative than the traditional Bonferroni method, yet still provides adequate protection
against Type I error in a wide range of applications. Since its conception in the 1990’s, there has 
been growing evidence showing that the FDR-based BH method may be the best solution to the 
multiple comparisons problem in many practical situations (Williams, Jones, & Tukey, 1999)

As is the case with clustering correction, the WWC only applies the BH correction to 
statistically significant findings, because non-significant findings will remain non-significant
after correction. For findings based on analyses where the unit of analysis was properly aligned 
with the unit of assignment, we use the p-values reported in the study for the BH correction. If 
the exact p-values were not available, but the ESs could be computed, we will convert the ESs to
t-statistics (see Equation (4)), and then obtain the corresponding p-values.7 For findings based on 

7 The p-values corresponding to the t-statistics can either be looked up in a t-distribution table, or computed using
the t-distribution function in Excel: p = TDIST(t, df, 2), where df is the degrees of freedom, or the total sample size 
minus 2 for findings from properly aligned analyses.
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mismatched analyses, we first correct the author-reported p-values for clustering, and then use 
the clustering-corrected p-values for the BH correction.

Although the BH correction procedure described above was originally developed under 
the assumption of independent test statistics (Benjamini & Hochberg, 1995), Benjamini and 
Yekutieli (2001) point out that it also applies to situations where the test statistics have positive 
dependency, and that the condition for positive dependency is general enough to cover many
problems of practical interest. For other forms of dependency, a modification of the original BH 
procedure could be made, which, however, is “very often not needed, and yields too conservative 
a procedure” (p. 1183).8 Therefore, the WWC has chosen to use the original BH procedure rather 
than its more conservative modified version as the default approach to correcting for multiple
comparisons. In the remainder of this section, we describe the specific procedures for applying 
the BH correction in three types of situations: studies that tested multiple outcome measures in 
the same outcome domain with a single comparison group, studies that tested a given outcome
measure with multiple comparison groups, and studies that tested multiple outcome measures in 
the same outcome domain with multiple comparison groups. 

Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures within the Same Outcome Domain Tested with a Single Comparison 
Groups

The most straightforward situation that may require the BH correction is when the study authors 
assessed an intervention’s effect on multiple outcome measures within the same outcome domain
using a single comparison group. For such studies, the review team needs to first check whether 
the study authors’ analyses already took into account multiple comparisons (e.g., through a 
proper multivariate analysis). If so, obviously no further correction is necessary. If the authors 
did not address the multiple comparison problem in their analyses, then the review team will 
need to correct the statistical significance of the authors’ findings using the BH method. For 
studies that examined measures in multiple outcome domains, the BH correction will be applied 
to the set of findings within the same domain rather than across different domains.  Assuming
that the BH correction is needed, the review team will apply the BH correction to multiple
findings within a given outcome domain tested with a single comparison group as follows:

(1) Rank order statistically significant findings within the domain in ascending order of the p-
values, such that: p1  p2  p3  …  pm, with m being the number of significant findings within 
the domain.

(2) For each p-value (pi), compute:

'  = ip ,
*
M

i
        (20)

[pi = i* /M]

8 The modified version of the BH procedure uses over the sum of the inverse of the p-value ranks across the m

comparisons (i.e.,
m

i i1

1
/ ) instead of in Equation (20).
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where i is the rank for pi, with i = 1, 2, … m; M is the total number of findings within the domain
reported by the WWC; and  is the target level of statistical significance.

Note that the M in the denominator of Equation (20) may be less than the number of 
outcomes that the study authors actually examined in their study for two reasons: (1) the authors 
may not have reported findings from the complete set of comparisons that they had made, and 
(2) certain outcomes assessed by the study authors may be deemed irrelevant to the WWC’s 
review. The target level of statistical significance, , in the numerator of Equation (20) allows us 
to identify findings that are significant at this level after correction for multiple comparisons. The 
WWC’s default value of  is 0.05, although other values of  could also be specified. If, for 
instance,  is set at 0.01 instead of 0.05, then the results of the BH correction would indicate 
which individual findings are statistically significant at the 0.01 level instead of the 0.05 level 
after taking multiple comparisons into account.

(3) Identify the largest i—denoted by k— that satisfies the condition: pi  pi’. This establishes the 
cut-off point, and allows us to conclude that all findings with p-values smaller than or equal to pk

are statistically significant, and findings with p-values greater than  pk are not significant at the 
pre-specified level of significance (  = 0.05 by default) after correction for multiple comparisons.

One thing to note is that, unlike clustering correction, which produces a new p-value for 
each corrected finding, the BH correction does not generate a new p-value for each finding, but 
rather only indicates whether the finding is significant or not at the pre-specified level of 
statistical significance after the correction. As an illustration, suppose a researcher compared the 
performance of the intervention group and the comparison group on eight measures in a given 
outcome domain, and reported six statistically significant effects and two non-significant effects 
based on properly aligned analyses. To correct the significance of the findings for multiple
comparisons, we would first rank-order the p-values of the six author-reported significant
findings in the first column of Table 1, and list the p-value ranks in the second column. We then 
compute pi’= i* /M, using Equation (20) with M = 8 and =0.05, and record the values in the 
third column. Next, we identify k, the largest i, that meets the condition: pi  pi’. In this example,
k = 4, and pk = 0.014. Thus, we can claim that the four finding associated with a p-value of 0.014 
or smaller are statistically significant at the 0.05 level after correction for multiple comparisons.
The other two findings, although reported as being statistically significant, are no longer 
significant after the correction.

Table 1.  An Illustration of Applying the Benjamini-Hochberg Correction for Multiple Comparisons

Author-reported or 
clustering-

corrected p-value
(pi)

P-value
rank (i)

8
)05.0(*

'
i

pi

pi’= i* 
(0.05)/8

pi  pi’?
Statistical significance

after BH correction
(  = .05) 

0.002 1 0.006 Yes significant

0.009 2 0.013 Yes significant

0.011 3 0.019 Yes significant

0.014 4 0.025 Yes significant
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0.034 5 0.031 No n.s.

0.041 6 0.038 No n.s.

Note. n.s.: not statistically significant.

Benjamini-Hochberg Correction of the Statistical Significance of Effects on a Given 
Outcome Tested with Multiple Comparison Groups 

The above discussion pertains to the multiple comparisons problem when the study authors 
tested multiple outcomes within the same domain with a single comparison group. Another type
of multiple comparisons problem occurs when the study authors tested an intervention’s effect 
on a given outcome by comparing the intervention group with multiple comparison groups. The 
WWC’s recommendation for handling such studies is as follows:

1. In consultation with the PI and the study authors if needed, the review team selects a single 
comparison group that best represented the “business as usual” condition or that is 
considered most relevant to the WWC’s review. Only findings based on comparisons
between the intervention group and this particular comparison group will be included in the 
WWC’s review. Findings involving the other comparison groups will be ignored, and the 
multiplicity due to one intervention group being compared with multiple comparison groups 
could also be ignored. 

2. If the PI and the review team believe that it is appropriate to combine the multiple
comparison groups, and if adequate data are available for deriving the means and SDs of the 
combined group, the team may present the findings based on comparisons of the intervention 
group and the combined comparison group instead of findings based on comparisons of the 
intervention group and each individual comparison group. The kind of multiplicity due to one 
intervention group being compared with multiple comparison groups will no longer be an 
issue in this approach.

The PI and the review team may judge the appropriateness of combining multiple 
comparison groups by considering whether there was enough common ground among the 
different comparison groups that warrant such a combination; and particularly, whether the 
study authors themselves conducted combined analyses or indicated the appropriateness, or 
the lack thereof, of combined analyses. In cases where the study authors did not conduct or 
suggest combined analyses, it is advisable for the review team to check with the study 
authors before combining the data from different comparison groups.

3. If the PI and the review team believe that neither of the above two options is appropriate for a 
particular study, and that findings from comparisons of the intervention group and each 
individual comparison group should be presented, they need to make sure that the findings 
presented in the WWC’s intervention report are corrected for multiplicity due to multiple
comparison groups if necessary. The review team needs to first check the study report or 
check with the study authors whether the comparisons of the multiple groups were based on a 
proper statistical test that already took multiplicity into account (e.g., Dunnett’s test (Dunnet, 
1955), the Bonferroni method (Bonferroni, 1935), Scheffe’s test (1953), and Tukey’s HSD 
test (1949)). If so, then there would be no need for  further corrections.
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It is also advisable for the team to check with the study authors regarding the appropriateness 
of correcting their findings for multiplicity due to multiple comparison groups, as the authors 
might have theoretical or empirical reasons for considering the findings from comparisons of 
the intervention group and a given comparison group without consideration of other 
comparisons made within the same study. If the team decides that multiplicity correction is 
necessary, they will apply such correction using the BH method in the same way as they 
would apply it to findings on multiple outcomes within the same domain tested with a single 
comparison group as described in the previous section.

Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures in the Same Outcome Domain Tested with Multiple Comparison
Groups

A more complicated multiple comparison problem arises when a study tested an intervention’s
effect on multiple outcome measures in a given domain with multiple comparison groups. The 
multiplicity problem thus may originate from two sources. Assuming that both types of
multiplicity need to be corrected, the review team will apply the BH correction in accordance
with the following three scenarios.

Scenario 1: The study authors’s findings did not take into account either type of multiplicity.

In this case, the BH correction will be based on the total number of comparisons made.
For example, if a study compared one intervention group with two comparison groups on five 
outcomes in the same domain without taking multiplicity into account, then the BH correction 
will be applied to the 10 individual findings based on a total of 10 comparisons.

Scenario 2: The study authors’s findings took into account the multiplicity due to multiple 
comparisons, but not the multiplicity due to multiple outcomes.

In some studies, the authors may have performed a proper multiple comparison test (e.g.,
Dunnett’s test) on each individual outcome that took into account the multiplicity due to multiple
comparison groups. For such studies, the WWC will only need to correct the findings for the 
multiplicity due to multiple outcomes. Specifically, separate BH corrections will be made to the 
findings based on comparisons involving different comparison groups. With two comparison 
groups, for instance, the review team will apply the BH correction to the two sets of findings 
separately—one set of findings (one finding for each outcome) for each comparison group.

Scenario3: The study authors’s findings took into account the multiplicity due to multiple 
outcomes, but not the multiplicity due to multiple comparison groups.

Although this scenario may be relatively rare, it is possible that the study authors 
performed a proper multivariate test (e.g., MANOVA or MANCOVA) to compare the 
intervention group with a given comparison group that took into account the multiplicity due to 
multiple outcomes, and performed separate multivariate tests  for different comparison groups. 
For such studies, the review team will only need to correct the findings for multiplicity due to 
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multiple comparison groups. Specifically, separate BH corrections will be made to the findings 
on different outcomes. With five outcomes and two comparison groups, for instance, the review 
team will apply the BH correction to the five sets of findings separately—one set of findings
(one finding for each comparison group) for each outcome measure.

The decision rules for the three scenarios described above are summarized in the table 
below.
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Table 2. Decision Rules for Correcting the Significance Levels of Findings from Studies That had a
Multiple Comparison Problem due to Multiple Outcomes in a Given Domain and/or  Multiple 
Comparison Groups, by Scenario

Authors’ Analyses Benjamini-Hochberg Correction
1. Did not correct for multiplicity 

from any source
BH correction to all 10 individual findings

2. Corrected for multiplicity due 
to multiple comparison
groups only

BH correction to the 5 findings based on T vs. C1 comparisons
BH correction to the 5 findings based on T vs. C2 comparisons

3. Corrected for multiplicity due 
to multiple outcomes only 

BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O1
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O2
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O3
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O4
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O5

Note. T: treatment (intervention) group;
  C1 and C2: comparison groups 1 and 2;
O1, O2, O3, O4, and O5: five outcome measures within a given outcome domain.

On a final note, although the BH corrections are applied in different ways to the 
individual study findings in different scenarios, such differences do not affect the way in which 
the intervention rating is determined. In all three scenarios of the above example, the 10 findings 
will be presented in a single outcome domain, and the characterization of the intervention’s
effects for this domain in this study will be based on the corrected statistical significance of each 
individual finding as well as the magnitude and statistical significance of the average effect size 
across of the 10 individual findings within the domain.
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