IES Blog

Institute of Education Sciences

IES Honors Dominic Gibson as Outstanding Predoctoral Fellow

Each year, IES recognizes an outstanding fellow from its Predoctoral Interdisciplinary Research Training Programs in the Education Sciences for academic accomplishments and contributions to education research. The 2018 winner, Dr. Dominic Gibson completed his Ph.D. in Developmental Psychology at the University of Chicago. He is currently a Postdoctoral Researcher at the University of Washington where he specializes in understanding how children learn words and mathematical concepts. In this blog, Dominic discusses his research and his experience as an IES fellow.  

What inspired you to focus your research on early mathematics?

So many everyday activities as well as many of humanity’s greatest achievements rely on math. Simple math becomes so second nature to us that it is often difficult for older students to conceptualize what it would be like to not have a basic understanding of numbers. But children take months and often years to learn the meanings of just the first few number words (one, two, three) and to learn how the counting procedure really works. Children’s acquisition of other math terms (angle, proportion, unit of measurement) is similarly marked by misconceptions and slow, difficult learning.  

Overcoming these learning challenges relies on an interesting mixture of uniquely human abilities (like language) and skills we share with other animals. Moreover, children’s ability to master early math concepts predicts their future academic success. Therefore, by studying how children learn about math, we can better understand the sources of humanity’s unique achievements and apply this knowledge to reducing early achievement gaps and maximizing our potential.

Based on your research, what advice would you give parents of pre-kindergartners on how to help their children develop math skills?

My biggest piece of advice is to talk to children about numbers and other basic math concepts. Children benefit from abundant language input in general, and “math talk” is no different. Even simply talking about different numbers of things seems to be particularly important for acquiring early math concepts. Numbers can be easily incorporated into a variety of activities, like taking a walk (“let’s count the birds we see”) or going to the grocery store (“how many oranges should we buy?”). Likewise, good jumping off points for using other types of early math talk such as relational language are activities like puzzles (“this one is too curvy to fit here—we need to find a piece with a flat edge”) and block building (“can you put this small block on top of the bigger one?”).

It also may be useful to note that even when a child can say a word, they may not fully understand what it means. For instance, two- to four-year-old children can often recite a portion of the count list (for example, the numbers one through ten) but if you ask them to find a certain number of items (“can you give me three blocks?”) they may struggle when asked for sets greater than two or three. Therefore, in addition to counting, it is important to connect number words to specific quantities (“look there are three ducks”). It may be especially helpful to connect counting to the value of a set (“let’s count the ducks—one, two, three—there are three!”).

My last piece of advice is to be careful about the types of messages we send our children about math. Many people experience “math anxiety,” and if we are not careful, children can pick up on these signals and become anxious about math themselves or internalize negative stereotypes about the types of people who are and are not good at math. Ensuring that children feel empowered to excel in math is an important ingredient for their success.

How has being an IES predoctoral fellow helped your development as a researcher?

The diverse group of people and perspectives I encountered as an IES predoctoral fellow made a huge impact on my development as a researcher. As an IES predoctoral fellow pursuing a degree in psychology, I met many students and faculty members who were interested in the same questions that interest me but who approached these questions from a variety of other disciplines, such as economics, public policy, and sociology. I also connected with networks of educators and policymakers outside of academia who alerted me to important issues that I may have missed if I had only worked within my own discipline. Through these experiences, I gained new tools for conducting my research and learned to avoid the types of blind spots that often develop when approaching a problem from a single perspective. In particular, I gained an appreciation for the challenges of translating basic science to educational practice and the number of interesting research questions that emerge when attempting to do this work.

Compiled by Katina Rae Stapleton, Education Research Analyst and Program Officer for the Predoctoral Interdisciplinary Research Training Programs in the Education Sciences, National Center for Education Research

New International Comparisons of Reading, Mathematics, and Science Literacy Assessments

The Program for International Student Assessment (PISA) is a study of 15-year-old students’ performance in reading, mathematics, and science literacy that is conducted every 3 years. The PISA 2018 results provide us with a global view of U.S. students’ performance compared with their peers in nearly 80 countries and education systems. In PISA 2018, the major domain was reading literacy, although mathematics and science literacy were also assessed.

In 2018, the U.S. average score of 15-year-olds in reading literacy (505) was higher than the average score of the Organization for Economic Cooperation and Development (OECD) countries (487). Compared with the 76 other education systems with PISA 2018 reading literacy data, including both OECD and non-OECD countries, the U.S. average reading literacy score was lower than in 8 education systems, higher than in 57 education systems, and not measurably different in 11 education systems. The U.S. percentage of top performers in reading was larger than in 63 education systems, smaller than in 2 education systems, and not measurably different in 11 education systems. The average reading literacy score in 2018 (505) was not measurably different from the average score in 2000 (504), the first year PISA was administered. Among the 36 education systems that participated in both years, 10 education systems reported higher average reading literacy scores in 2018 compared with 2000, and 11 education systems reported lower scores.

The U.S. average score of 15-year-olds in mathematics literacy in 2018 (478) was lower than the OECD average score (489). Compared with the 77 other education systems with PISA 2018 mathematics literacy data, the U.S. average mathematics literacy score was lower than in 30 education systems, higher than in 39 education systems, and not measurably different in 8 education systems. The average mathematics literacy score in 2018 (478) was not measurably different from the average score in 2003 (483), the earliest year with comparable data. Among the 36 education systems that participated in both years, 10 systems reported higher mathematics literacy scores in 2018 compared with 2003, 13 education systems reported lower scores, and 13 education systems reported no measurable changes in scores.  

The U.S. average score of 15-year-olds in science literacy (502) was higher than the OECD average score (489). Compared with the 77 other education systems with PISA 2018 science literacy data, the U.S. average science literacy score was lower than in 11 education systems, higher than in 55 education systems, and not measurably different in 11 education systems. The average science literacy score in 2018 (502) was higher than the average score in 2006 (489), the earliest year with comparable data. Among the 52 education systems that participated in both years, 7 education systems reported higher average science literacy scores in 2018 compared with 2006, 22 education systems reported lower scores, and 23 education systems reported no measurable changes in scores.

PISA is conducted in the United States by NCES and is coordinated by OECD, an intergovernmental organization of industrialized countries. Further information about PISA can be found in the technical notes, questionnaires, list of participating OECD and non-OECD countries, released assessment items, and FAQs.

 

By Thomas Snyder

What Do State CTE Directors Want to Learn from the Research Community?

Career Technical Education (CTE) is gaining widespread interest and support from state policymakers, who see it as a strategy to expand access to opportunity and meet employer needs. Between 2014 and 2018, states enacted roughly 800 policies related to CTE, and in 2019, workforce development was one of the top education-related priorities mentioned by governors in their state-of-the-state addresses.

What’s more, in 2018 Congress passed the Strengthening Career and Technical Education for the 21st Century Act (Perkins V), which reauthorized the federal law for CTE and invests around $1.2 billion a year to strengthen and expand CTE programs. The law was enacted in July 2019 and will be in full effect in July 2020 after states submit their four-year plans for CTE to the U.S. Department of Education (see more about the Perkins V planning process here).

With CTE in the spotlight, State CTE Directors are working hard to improve quality and equity in CTE. But state CTE offices often do not have the staffing or resources to conduct rigorous program evaluations to learn what’s working and what needs improvement. By partnering with CTE researchers, State Directors can gain critical insights into the impact of CTE programs, policies, and practices.

While the design, governance and delivery of CTE varies from state to state, there are several common questions and challenges across the country that CTE researchers can help address, particularly in light of Perkins V implementation:

Improving program quality: State leaders are working to improve CTE program quality by connecting secondary and postsecondary coursework, integrating academic and technical learning, aligning programs with labor market needs and expectations, and preparing learners to earn industry-recognized credentials of value. Tennessee, for example, recently revised its secondary CTE program standards and developed model CTE programs of study that meet statewide workforce needs. Answers to the following research questions would help fuel these efforts:

  • What set of experiences at the secondary and postsecondary levels (CTE coursework, work-based learning, dual enrollment, etc.) best prepares learners for postsecondary enrollment and completion, certificate and degree attainment, and high-wage employment?
  • Do these vary by region of the country, Career Cluster® or program of study?
  • Does the delivery mechanism (comprehensive high schools, career academies, area technical centers, technical colleges) matter?

Ensuring equitable access and success in CTE: To reverse historical inequities in CTE, state leaders are using data to identify disparities and ensure each learner can access, fully participate in, and successfully complete a high-quality CTE program of study. In Rhode Island, the Department of Education repurposed $1.2 million in state funds to launch an Innovation & Equity grant initiative, which provided resources to local recipients to recruit and support underrepresented student populations in high-quality programs. CTE researchers can help these efforts by addressing the following questions:

  • What are the classroom and workplace conditions in which CTE students of color are most likely to develop the interests, knowledge, and skills that prepare them to earn postsecondary credentials of value and obtain high-wage employment in their careers of choice?
  • What interventions, accommodations, and instructional strategies best prepare learners with disabilities to transition successfully into the workforce?
  • How does gender inform the development of occupational identity, and what can educators do to limit the effects of stereotyping on the career aspirations of learners?

Improving the quality and use of CTE data: Most State Directors believe improving and enhancing their CTE data systems is a priority, but only 45 percent say they have the information they need at both the secondary and postsecondary levels to improve program quality. States like Minnesota (through the State Colleges and University System) are working to improve the validity and reliability of their data by collaborating with industry-recognized credential providers to obtain data for their students. CTE researchers can help state leaders improve data quality in two ways:

  • Identifying relevant data sources and matching student records to allow for a comprehensive examination of student pathways and outcomes
  • Developing and sharing guidance for collecting, validating, and matching student data relevant to CTE

Fostering collaboration and alignment across state agencies: Supporting learner success requires cross-agency collaboration and coordination. State leaders are working to create seamless pathways by sharing data, coordinating program design, and braiding resources to achieve economies of scale. One example is Massachusetts, where Governor Charlie Baker established a cross-agency workforce skills cabinet to coordinate education, workforce, housing, and economic development. The following research questions would help accelerate the work in Massachusetts and other states:

  • Do states with policies that foster cross-agency coordination see better education and employment outcomes for students? Can merging datasets across agencies help states better understand and respond to student needs?
  • Does credit for prior learning and/or credit transfer between institutions decrease time to credential attainment and entry into employment?
  • How does the integration of support services—such as financial aid, Medicaid, Temporary Assistance for Needy Families, and other state and federal programs—impact the likelihood of student success?

Expanding career advisement opportunities: School counselors are the most trusted source of information on CTE and career options, and states are working to bolster their career advisement systems by reducing the counselor-to-student ratio, requiring each student to complete an individualized graduation plan, and developing user-friendly platforms for career exploration. In Oklahoma, for example, it is now policy for all students to identify their career and academic goals through the state’s new Individual Career and Academic Planning program. CTE researchers can help address the following questions:  

  • Do career and academic planning programs increase the likelihood that learners will complete CTE programs of study, graduate from high school, and earn postsecondary credentials?
  • How does early career exposure through job shadowing, career fairs and career counseling inform student course taking, academic achievement, and future employment and earnings?

As states chart a vision and path for the future of CTE, they can and should use their data to inform decisions. Researchers can help them collect and analyze high quality data to understand the relationships between CTE program elements and various learner outcomes. This can help them understand what is and isn’t working with current policy and practice and identify how to focus their efforts to improve quality and equity in CTE. In addition, researchers can help state directors plan and conduct rigorous evaluations as they roll out new CTE policies and programs. Over the next few months, Advance CTE and the Institute of Education Sciences (IES) will feature a series of successful partnerships between states and CTE researchers and explore how those projects provided critical data and insights to inform state policy.

This blog series was co-authored by Corinne Alfeld at IES (corinne.alfeld@ed.gov) and Austin Estes from Advance CTE (aestes@careertech.org). IES began funding research grants in CTE in 2017 and established a CTE Research Network in 2018. IES hopes to encourage more research on CTE in the coming years in order to increase the evidence base and guide program and policy decisions. At the same time, Advance CTE has been providing resources to help states improve their CTE data quality and use data more effectively to improve CTE program quality and equity.