IES Blog

Institute of Education Sciences

Updates on Research Center Efforts to Increase Diversity, Equity, Inclusion, and Accessibility

As we begin a new school year, NCER and NCSER wanted to share with our community some of the work we have been doing—and are seeking to do more of—in relationship to diversity, equity, inclusion, and accessibility (DEIA). We plan to provide occasional updates via this blog to share progress and keep the conversations going.  

Actions on Diversity

At the end of 2020, IES convened a Technical Working Group (TWG) to get feedback on ways that the research centers could improve our investments focused on DEIA. Under the leadership of Drs. Katina Stapleton and Christina Chhin, we convened a stellar panel that participated in a robust conversation. That conversation and the recommendations from the panel are available in this summary document. We are already implementing some of the recommendations and wanted to share steps that we have taken and our plans for next steps to advance DEIA in IES-funded research.

  1. One of the first steps that we took in response to the TWG recommendations was to take a close look at our Requests for Applications (RFAs), identify potential barriers to applicants from underrepresented groups, and revise and/or add language that more clearly articulated our commitment to DEIA, both in terms of those that conduct the research and in the populations studied. These changes were reflected in our FY 2022 RFAs, and we will continue to revise and improve our application materials.
  2. IES has been committed to building expertise among a broad range of scholars in the education sciences for nearly two decades. The TWG noted, however, that there is a pressing need to provide funds for early career investigators who may be working at MSIs, teaching-intensive institutions, and/or at institutions with limited opportunities for research mentorship. In response, IES launched an Early Career Mentoring for Faculty at MSIs research program. This new program extends our FY 2016 training investment in MSIs that we recompeted in FY 2021: the Pathways to the Education Sciences Training program. This program is designed to encourage undergraduate, post-baccalaureate, and masters-level students in groups that are historically underrepresented in doctoral education to pursue graduate study relevant to education research. Currently, there are seven IES-funded Pathways training programs in the United States, hosted by minority serving institutions (MSIs) and their partners. We are excited to see who applied in this first round of the Early Career Mentoring program and anticipate investing in this program in FY 2023 and beyond.  
  3. The TWG also recommended that IES intentionally reach out to the MSI community to ensure that they know about the opportunities available at IES. We held our first such event since the TWG on September 7, 2021, where IES hosted a virtual listening session at HBCU week. More than 250 scholars attended that session and provided valuable feedback on barriers to HBCU-based researchers applying for research funding from IES. We are in the process of scheduling additional listening sessions with other communities of researchers to provide more opportunities for input from diverse stakeholders and underrepresented groups.
  4. The TWG also recommended that IES take a deeper look at the demographic and institutional data of applicants to our grants programs to identify which groups of researchers and institutions are underrepresented. Data indicate that the percentage of applications received from MSIs between 2013 and 2020 was very small—4% of applications to NCER and 1% to NCSER. Of those applications that were funded, 10% of NCER’s awards were made to MSIs and none of NCSER’s awards were made to MSIs. IES reviewed the demographic information FY 2021 NCER and NCSER grant applicants and awardees voluntarily submitted, and among those who reported their demographic information, we found the following:
    • Gender (response rate of approximately 82%) - The majority of the principal investigators that applied for (62%) and received funding (59%) from IES identified as female.
    • Race (response rate of approximately 75%) - The majority of principal investigators that applied for (78%) and received funding (88%) from IES identified as White, while 22% of applicants and 13% of awardees identified as non-White or multi-racial.
    • Ethnicity (response rate of approximately 72%) - The majority of principal investigators that applied for (95%) and received funding (97%) identified as non-Hispanic.
    • Disability (response rate of approximately 70%) - The majority of principal investigators that applied for (97%) and received funding (96%) identified as not having a disability.

These data underscore the need for IES to continue to broaden and diversify the education research pipeline, including institutions and researchers, and better support the needs of underrepresented researchers in the education community. However, tracking our progress has proven to be a challenge. Responding to the demographic survey was voluntary so a significant number of applicants chose not to respond to particular questions. We strongly encourage all our grant applicants to respond to the demographic survey so that we will be better able to track our progress in improving diversity in our grant programs.

Addressing Misconceptions that Limit Diversity in IES Applicants

TWG panel members and attendees at the HBCU session highlighted a series of misconceptions that the education sciences community holds about the funding process at IES and recommended that IES identify communication strategies to address these misconceptions. IES hears that message loud and clear and wants to address at least a few of those misconceptions here.

Myth: IES only funds randomized controlled trials, limiting the range of researchers and institutions that can be competitive for IES grants.

Reality: IES funds a range of research, including measurement work, exploratory research, intervention development and testing, and efficacy and replication studies. We also fund a wide range of methods, including various experimental and quasi-experimental designs and mixed methods that combine quantitative and qualitative methods.

Myth: IES doesn’t support course buyout or summer salary.

Reality: IES supports grant personnel time to carry out research related activities. This can include course buyout and summer salary. Principal investigators on grants coordinate their budget planning with sponsored projects officers to ensure that their budgets comply with institutional guidelines as well as federal guidelines.

Myth: IES program officers are too busy to help novice applicants.

Reality: Because IES program officers are not involved in the peer review of applications, they can provide in-depth technical assistance and advice throughout the application process. They can even review drafts of proposals prior to submission! IES program officers can be your best resource in helping you submit a competitive grant proposal.

 

If you’d like to learn more about DEIA at IES, please see our Diversity Statement. You can also subscribe to our Newsflash and follow us on Twitter (@IESResearch) for announcements of future listening sessions. Please send any feedback or suggestions to NCER.Commissioner@ed.gov (National Center for Education Research) or NCSER.Commissioner@ed.gov (National Center for Special Education Research). Also, watch this blog over the next few months to read about the wide range of IES grantees and fellows from diverse backgrounds and career paths. Next up is our Hispanic Heritage Month (Sept. 15-Oct. 15, 2021) blog series.


Christina Chhin (Christina.Chhin@ed.gov), Katina Stapleton (Katina.Stapleton@ed.gov), and Katie Taylor (Katherine.Taylor@ed.gov) assisted Commissioners Albro and McLaughlin in writing this blog.

Perspective Matters: How Diversity of Background, Expertise, and Cognition Can Lead to Good Science

IES funds cutting-edge researchers who often bring multiple disciplines together. Dr. Maithilee Kunda (Vanderbilt University) is one such researcher who stands at the juncture of multiple fields, using artificial intelligence (AI) to address questions related to cognition and autism spectrum disorder. Recently, Dr. Kunda received an award from the National Center for Special Education Research to develop an educational game that leverages AI to help students with autism spectrum disorder better infer and understand the beliefs, desires, and emotions of others. As a computer scientist and woman of color performing education research, Dr. Kunda exemplifies the value that diverse backgrounds, experiences, and disciplines bring to the field.

Bennett Lunn, a Truman-Albright Fellow at IES, asked Dr. Kunda about her work and background. Her responses are below.

As a woman of color, how have your background and experiences shaped your scholarship and career?

Photo of Dr. Maithilee Kunda

In college, I was a math major on the theory track, which meant that my math classes were really hard! I had been what one might call a “quick study” in high school, so it was a new experience for me to be floating around the bottom quartile of each class. The classes were mostly men, but it happened that there was a woman of color in our cohort—an international student from Colombia—and she was flat-out brilliant. She would ask the professor a question that no one else even understood, but the professor’s eyes would light up, and the two of them would start having some animated and incomprehensible discussion about whatever “mathy” thing it was. That student’s presence bestowed upon me a valuable gift: the ability to assume, without even thinking twice, that women of color quite naturally belong in math and science, even at the top of the heap! I don’t even remember her name, but I wish I could shake her hand. She was a role model for me and for every other student in those classes just by being who she was and doing what she did.

I have been extremely lucky to have seen diverse scientists and academics frequently throughout my career. My very first computer science teacher in high school was a woman. At a high school science camp, my engineering professor was a man who walked with two forearm crutches. Several of my college professors in math, chemistry, and robotics were women. My favorite teaching assistant in a robotics class was a Black man. In graduate school, I remember professors and senior students who were women, LGBTQ people, and people of color. Unfortunately, I know that the vast majority of students do not have access to such a wealth of diverse role models. It is heartening, though, that even a single role model—just by showing up—has so much power to positively shape the perceptions of everyone who sees them in their rightful place, be it in STEM, academia, or whatever context they inhabit.

What got you interested in a career in education science?

I read a lot of science fiction and fantasy growing up, and in high school, I was wrestling with why I liked these genres so much. I came up with a pet theory about fiction writing. All works of fiction are like extended thought experiments; the author sets up some initial conditions—characters, setting, etc.—and they run the experiment via writing about it. In general fiction, the experiments mostly involve variables at the people scale. In sci-fi and fantasy, on the other hand, authors are trying to run experiments at civilization or planetary scales, and that’s why they have to create whole new worlds to write about. I realized that was why I loved those genres so much: they allowed me to think about planetary-scale experiments! 

This “what if” mindset has continued to weave itself throughout my scholarship and career.

How did it ever become possible for humans to imagine things that don’t exist? Why do some people think differently from others, and how can we redesign the workings of our societies to make sure that everyone is supported, enriched, and empowered to contribute to their fullest potential? These kinds of questions fuel my scientific passions and have led me to pursue a variety of research directions on visual thinking, autism, AI, and education.

How does your research contribute to a better understanding of the importance of neurodiversity and inclusion in education?

Early in graduate school, and long before I heard the term neurodiversity, the first big paper I wrote was a re-analysis of several research studies on cognition in autism. This research taught me there can be significant individual variation in how people think. Even if 99 other people with similar demographic characteristics happen to solve a problem one particular way, that does not mean that the hundredth person from the same group is also going to solve the problem that way.

I realized much later that this research fits very well into the idea of neurodiversity, which essentially observes that atypical patterns of thinking should be viewed more as differences than as being inherently wrong or inadequate. Like any individual characteristics you have, the way you think brings with it a particular set of strengths and weaknesses, and different kinds of thinking come with different strengths and weaknesses.

Much of my team’s current research is a continuation of this theme. For example, in one project, we are developing new methods for assessing spatial skills that dig down into the processes people use to solve problems. This view of individual differences is probably one that teachers know intuitively from working one-on-one with students. One of the challenges for today’s education research is to continue to bring this kind of intuitive expertise into our research studies to describe individual differences more systematically across diverse learner populations.

In your area of research, what do you see as the greatest research needs or recommendations to address diversity and equity and improve the relevance of education research for diverse communities of students and families?

For the past 3 years, I have been leading an IES project to create a new educational game called Film Detective to help students with autism spectrum disorder improve their theory of mind (ability to take another’s perspective) and social reasoning skills. This was my first experience doing research on an interactive application of this kind. I was a newcomer to the idea of participatory design, which basically means that instead of just designing for some particular group of users, you bring their voices in as active contributors early in the design process. Our amazing postdoc Dr. Roxanne Rashedi put together a series of early studies using participatory methods, so we had the opportunity to hear directly from middle schoolers on the spectrum, their parents, and their teachers about what they needed and wanted to see in this kind of technology.

In one of these studies, we had students try out a similar education game and then give us feedback. One young man, about 11 or 12 years old, got frustrated in the middle of the session and had a bit of a meltdown. After he calmed down, we asked him about the game and what he would like to see taught in similar games. He told us that he would really like some help in learning how to handle his frustration better so that he could avoid having those kinds of meltdowns. Impressed by his self-awareness and courage in talking to us about his personal challenges, we ended up designing a whole new area in our game called the Relaxatron arcade. This is where students can play mini-games that help them learn about strategies for self-regulation, like deep breathing or meditation. This whole experience reinforced for me the mindset of participatory design: we are all on a team—researchers, students, parents, and teachers—working collaboratively to find new solutions for education.

We are also proud to work with Vanderbilt’s Frist Center for Autism and Innovation to make our research more inclusive and participatory. One of the many excellent programs run by this center is a software internship program for college students or recent graduates on the spectrum. This summer, we are pleased to be welcoming three Frist Center interns who will be helping us on our Film Detective project.

What has been the biggest challenge you have encountered and how did you overcome the challenge?

Throughout my career, I seem to have gravitated towards questions that not many other people are asking, using methods that not many other people are using. For example, I am a computer scientist who studies autism. My research investigates visual thinking, but not vision. I work in AI, but mostly in areas out of the mainstream.

I get a lot of personal and intellectual satisfaction out of my research, but I do face some steep challenges that I believe are common for researchers working in not-so-mainstream areas. For instance, it is sometimes harder to get our papers published in the big AI conferences because our work does not always follow standard patterns for how studies are designed and implemented. And I do experience my share of impostor syndrome (feeling unqualified for your job even when you are performing well) and FOMO (fear of missing out), especially when I come across some trendy paper that already has a thousand citations in 3 months and I think to myself, “Why am I not doing that? Should I be doing that?”

I try to remember to apply the very lessons that my research has produced, and I am fortunate to have friends and colleagues who help lift me out of self-doubt. I actively remind myself about the importance to our species of having diverse forms of thinking and how my own individual view of things is a culmination of my unique lifetime of educational and intellectual experiences. That particular perspective—my perspective—is irreplaceable, and, more than any one paper or grant or citation, it is the true value I bring to the world as a scientist.

How can the broader education research community better support the careers and scholarship of researchers from underrepresented groups?

I think research communities in general need to recognize that inclusion and diversity are everybody’s business, regardless of what someone’s specific research topic is. For example, we assume that every grant proposal and paper follow principles of rigorous and ethical research design, no matter the specific methodology. While some researchers in every discipline specialize in thinking about research design from a scholarly perspective, everyone has a baseline responsibility for knowing about it and for doing it.

Similarly, while we will always want and need researchers who specialize in research on inclusion and diversity, these topics should not be considered somehow peripheral to “real science." They are just as much core parts of a discipline as anything else is. As I constantly remind my students, science is a social enterprise! The pool of individual minds that make our discoveries for us is just as important as any piece of equipment or research method.

What advice would you give to emerging scholars from underrepresented, minoritized groups that are pursuing a career in education research?

A few years ago, when I was a newly minted assistant professor, I went to a rather specialized AI symposium where I found myself to be one of only two women there—out of over 70 attendees! The other woman was a senior researcher whom I had long admired but never met, and I felt a bit star-struck at the idea of meeting her. During one of the coffee breaks, I saw her determinedly heading my way. I said to myself as she approached, “Be cool, Maithilee, be cool, don’t mention the women thing…”  I was gearing myself up to have a properly research-focused discussion, but when she arrived, the very first words out of her mouth were, “So, there’s only the two of us, huh!” We both burst out laughing, and over the next couple of days, we talked about our research as well as about the lack of diversity at the symposium and in the research area more broadly.

The lesson I learned from this wonderful role model was that taking your rightful place in the research community does not mean papering over who you are. Certain researchers are going to be rarities, at least for a while, because of aspects of who we are, but that is nothing to hide. The value we bring as scientists comes from our whole selves and we should not just accept that but embrace and celebrate it.

This blog is part of a series of interviews showcasing a diverse group of IES-funded education researchers that are making significant contributions to education research, policy, and practice. For the first blog in the series, please see Representation Matters: Exploring the Role of Gender and Race on Educational Outcomes.

Dr. Maithilee Kunda is the director of the Laboratory for Artificial Intelligence and Visual Analogical Systems and founding investigator for the Frist Center for Autism and Innovation at Vanderbilt University. This interview was produced and edited by Bennett Lunn, Truman-Albright Fellow for the National Center for Education Research and the National Center for Special Education Research.

 

English Learners with or at Risk for Disabilities

A young girl is sitting and reading a book

English learners (ELs) are the fastest growing group of students in U.S. public schools. They are disproportionately at risk for poor academic outcomes and are more likely than non-ELs to be classified as having specific learning disabilities and speech/language impairment. Data collected by the U.S. Department of Education in school year 2018-2019 (Common Core of Data, Individuals with Disabilities Education Act (IDEA) data) indicate that approximately 14.1% of students in classrooms across the country received services through IDEA Part B. Nationally, 11.3% of students with disabilities were ELs, a little higher than the percentage of total student enrollment who were ELs (10.2%). However, it is important to distinguish between language and literacy struggles that are due to learning English as a second language and those due to a language or reading disability. For those who have or are at risk for a disability and in need of intervention, it is also important that the interventions are linguistically and culturally appropriate for these children.

Since the first round of competitions in 2006, the National Center for Special Education Research (NCSER) has funded research on ELs with or at risk for disabilities. The projects are in broad topic areas, including early childhood; reading, writing, and language development; cognition and learning; and social and behavioral skill development. They vary with respect to the types of research conducted (such as exploration, development, efficacy, measurement) as well as the extent to which they focus on ELs, from ELs as the exclusive or primary population of interest to a secondary focus as a student group within the general population.

As an example, David Francis (University of Houston) explored factors related to the identification and classification of reading and language disabilities among Spanish-speaking ELs. The aim was to provide schools with clearer criteria and considerations for identifying learning disabilities among these students in kindergarten through grade 2. Analyzing data from previous studies, the team found that narrative measures (measures in which narrative responses were elicited, transcribed, and scored) were more sensitive to identifying EL students with disabilities than standardized measures that did not include a narrative component. They also found that the differences in student language growth depended on the language used in the instruction and the language used to measure outcomes. Specifically, language growth was greatest for Spanish-instructed students on Spanish reading and language outcomes, followed by English outcomes for English-instructed students, English outcomes for Spanish-instructed students, and with the lowest growth, Spanish outcomes for English-instructed students.

A number of these projects are currently in progress. For example, Ann Kaiser (Vanderbilt University) and her team are using a randomized controlled trial to test the efficacy of a cultural and linguistic adaptation of Enhanced Milieu Teaching (EMT). EMT en Español aims to improve the language and related school readiness skills of Spanish-speaking toddlers with receptive and expressive language delays who may be at risk for language impairment. In another study, Nicole Schatz (Florida International University) and her team will be using a randomized controlled trial to compare the efficacy of a language-only, behavior-only, or combination language and behavior intervention for students in early elementary school who are English language learners with or at risk for ADHD.

Overall, NCSER has funded 12 research grants that focus specifically on English learners, dual-language learners, and/or Spanish-speaking children with or at risk for disabilities, including the following:

In addition to the research focused specifically on English learners, many other projects include ELs as a large portion of their sample and/or focus some of their analyses specifically on the student group of ELs with or at risk for disabilities. A few recently completed studies show encouraging results with little differences between ELs and non-ELs. For example, Nathan Clemens (University of Texas, Austin) investigated the adequacy of six early literacy measures and validated their use for monitoring the reading progress for kindergarten students at risk for reading disabilities. As part of this project, the research team conducted subgroup analyses that indicated ELs do not necessarily demonstrate lower initial scores and rates of growth over time than non-ELs and that there are few differences between ELs and non-ELs in the extent to which the initial performance or rate of growth differentially predict later reading skills. As another example, Jeanne Wanzek (Vanderbilt University) examined the efficacy of an intensive multicomponent reading intervention for fourth graders with severe reading difficulties. The team found that those in the intervention group outperformed their peers in word reading and word fluency, but not reading fluency or comprehension; importantly, there was no variation in outcomes based on English learner status.

NCSER continues to value and support research projects that focus on English learners with or at risk for disabilities throughout its various programs of research funding.

This blog was written by Amy Sussman, NCSER Program Officer

Gender Stereotypes in STEM: Emergence and Prevention

In 2018, Dr. Allison Master and co-PI Andrew Meltzoff were awarded a grant, Gender Stereotypes in STEM: Exploring Developmental Patterns for Prevention. This 4-year project explores how and when gender stereotypes about STEM career pathways emerge. The study also seeks to identify ways to mitigate the effects of such stereotypes, such as whether a growth mindset can lead to changes in student attitudes and outcomes toward STEM. As an undergraduate student majoring in microbiology at UCLA, Yuri Lin, virtual intern at NCER, was interested in learning more about gender inequalities and stereotypes in STEM education. She recently had a chance to talk with Dr. Master about her research and its implications for increasing STEM participation among women.

 

How is American culture affecting the STEM gender gap, and how does the US compare to other countries on this issue?

When children grow up in American culture, they see lots of TV shows and books where mathematicians, scientists, and engineers are men. STEM-based toys are also heavily marketed toward boys rather than girls. Some countries have begun changing the portrayal of gender stereotypes in the media. For example, the UK’s Advertising Standards Authority has recently started banning TV commercials that reinforce gender stereotypes. Some cross-national studies have shown that gender-STEM stereotypes favoring men are linked to women’s lower success and participation in STEM. The United States is one of many Western countries in which women have more equality and freedom to choose their careers but are much less likely to choose STEM careers than men. We still have a lot of work to do in the United States to break down barriers for women in STEM, and we need to focus on helping girls and women see the value in choosing pathways into STEM.

 

Why do you think it is important to examine growth mindset as a potential way to reduce the effects of stereotypes and increase STEM interest in students?

Growth mindsets are beliefs that personal characteristics can be changed, through effort or the right strategies. This is contrasted with fixed mindsets, which are beliefs that those characteristics can’t be changed. Growth mindsets are particularly helpful for struggling students. Students who have a growth mindset remain focused on learning rather than looking smart, believe effort is important, and stay resilient even when they experience setbacks. These attitudes translate into putting forth more effort and determination, which lead to greater success. In our project, we want to know if a growth mindset can help girls stay motivated in computer science, a subject that can have a steep learning curve. Girls in particular often get discouraged when they feel that they don’t have what it takes to succeed in STEM. We hope that teaching girls to have a growth mindset will protect them from these negative stereotypes and increase their confidence in themselves and their sense of belonging in computer science.

 

Considering that your project includes students from grades 1 to 12, how do you plan to share your findings with teachers, students, and policymakers? Are there differences in how you might communicate the information for different age groups?

As a developmental psychologist, I think it’s important to communicate the information about different age groups to everyone! It can be very valuable to frame student motivation in the broader context of how students are growing and changing. Students start to endorse stereotypes about computer science and engineering very early—Grades 1-3—so elementary school is a great time to start counteracting stereotypes by showing a broad representation of who enjoys and succeeds in STEM. We start to see big gender gaps in computer science interest during middle school, so this is a great time to have girls participate in fun and engaging coding classes. And we’ve already noted how important it is for girls in high school to have a growth mindset in their STEM classes.

We have different goals for communicating with teachers, parents, and policymakers. We know that teachers are very busy, so we try to condense things into the most important practical tips. We’ve made short videos and infographics about our research for teachers. For policymakers, we write policy briefs, which combines our research with other findings that are relevant to education policy. And when we talk to parents, we try to focus on the importance of the experiences they provide for their kids. We really value spreading the word about our research to make sure it reaches people who can use it to make a difference. For more information and access to the various resources, please visit the I AM Lab website.

 


Allison Master, PhD (@AllisonMaster), a developmental psychologist and an assistant professor at the University of Houston, has conducted extensive research on the development of motivation and identity in STEM education. 

Written by Yuri Lin (ylin010101@g.ucla.edu), intern for the Institute of Education Sciences and a Microbiology, Immunology, and Molecular Genetics major at UCLA.

"Boys Have It; Girls Have to Work for It": Examining Gender Stereotypes in Mathematics Achievement

In 2020, Andrei Cimpian, along with co-PIs Sapna Cheryan, Joseph Cimpian, and Sarah Lubienski, were awarded a grant for “Boys Have It; Girls Have to Work for It”: The Development and Consequences of Gender Stereotypes About Natural Talent vs. Effort in Mathematics. The goal of this project is threefold: 1) to explore the origins of the gender stereotype that girls achieve in math due to effort and boys achieve in math due to natural talent, 2) to investigate the consequences of these stereotypes, and 3) to identify ways of reducing the negative effects of these stereotypes on mathematics outcomes. In this blog, we interviewed Dr. Andrei Cimpian on his inspiration and insights on this research, as well as his plans to disseminate the findings to education practitioners.

 

Dr. Andrew CimpianWhat spurred your research, and what prior research was foundational for this current study? 

The co-PIs and I were inspired to do this research because we were struck by the contrast between two sets of facts. On the one hand, girls do better in school than boys from kindergarten to grade 12. Women also obtain more bachelor’s and graduate degrees than men. On the other hand, we as a society still think of men as more brilliant and genius-like than women. For example, participants in a 2018 study referred more male than female acquaintances for a job that they were told requires natural smarts1. When the same job was said to require a strong work ethic instead, participants referred equal numbers of women and men.

Of course, societal views of women and men have changed quite a bit over the last century. With respect to general competence, women are now equal with men in the eyes of the American public. But the stereotype that associates “raw,” high-level intellectual talent with men more than women seems to have resisted change. Why?

Our research is testing a promising hypothesis: It is possible that people give different explanations for women’s and men’s intellectual successes, explaining men’s competence as being due primarily to their inborn intellectual talent and women’s as being due to their efforts. This effort-vs.-talent stereotype “explains away” women’s achievements by attributing them to a quality—perseverance—that is less valued in American culture than natural ability.

Versions of this explanatory stereotype have been documented in adults, but our project will provide its first systematic investigation among children. In particular, we will investigate the effort-vs.-talent stereotype in the domain of mathematics because innate ability is particularly valued in this domain1, which might make this stereotype especially consequential.

 

What are some examples of language or behavior that might suggest an individual holds a particular stereotype? Are there potential ways of mitigating the negative effects of stereotypes?

The best example of this stereotype that I can think of—and this is in fact the anecdote that crystallized our team’s interest in this topic—was recounted by co-PI Joseph Cimpian in a recent piece for The Brookings Institution (emphasis is mine):

About five years ago, while Sarah [Lubienski] and I were faculty at the University of Illinois, we gathered a small group of elementary teachers together to help us think through […] how we could intervene on the notion that girls were innately less capable than boys. One of the teachers pulled a stack of papers out of her tote bag, and spreading them on the conference table, said, “Now, I don’t even understand why you’re looking at girls’ math achievement. These are my students’ standardized test scores, and there are absolutely no gender differences. See, the girls can do just as well as the boys if they work hard enough.” Then, without anyone reacting, it was as if a light bulb went on. She gasped and continued, “Oh my gosh, I just did exactly what you said teachers are doing,” which is attributing girls’ success in math to hard work while attributing boys’ success to innate ability. She concluded, “I see now why you’re studying this.”

In terms of what can be done to mitigate the effects of this stereotype, our project will investigate a potential strategy: normalizing effort by making it clear to students that everyone (not just particular groups) needs to work hard to learn math. This message reframes what is viewed as necessary for success in math away from the belief that natural talent is key, thereby undercutting the power of effort-vs.-talent stereotypes.

 

The current study focuses on elementary school students in grades 1 through 4. What was the motivation for choosing this specific age group?

In general, gender stereotypes about intellectual ability seem to emerge quite early. For instance, girls as young as 6 and 7 are less likely than boys to associate being “really, really smart” with members of their own gender. For this reason, we think it is really important to focus on young children—we need to understand when effort-vs.-talent stereotypes first take root!

“Catching” these stereotypes when they first arise is also important for intervention purposes. If left unchecked, the effects of effort-vs.-talent stereotypes may snowball over time (for example, differences in the types of careers that young women and men are motivated to pursue).

 

What plans do you have to disseminate the findings of this research in ways that will be useful for education practitioners? 

We are mindful of the importance of getting this research into the hands of teachers so that they can use it in practice. We hope to write articles on this work for media outlets that draw educationally oriented audiences. To reach parents as well, we will coordinate with popular media outlets to disseminate the results of this work to general audiences. More generally, we will make every effort to ensure that the findings have maximal societal impact, raising awareness of effort-vs.-talent stereotypes among parents, educators, and the general public.

 


Andrei Cimpian, PhD (@AndreiCimpian), Professor of Psychology at New York University, has conducted extensive research on children’s conceptual development, explanations, and motivation in school.

Written by Yuri Lin (ylin010101@g.ucla.edu), intern for the Institute of Education Sciences.

Photo credit: Brian Stauffer


1The full PDF and resources are available at https://www.cimpianlab.com/motivation.