Inside IES Research

Notes from NCER & NCSER

IES-Funded Researchers Recognized with 2022 CEC Awards

At the recent 2022 Council for Exceptional Children (CEC) Convention and Expo, scholars were recognized for their research contributions to the field of special education. Among those honored by the CEC were several researchers funded through IES.

Photo of Kathleen Lane

Kathleen Lane, PhD, Roy A. Roberts Distinguished Professor in the Department of Special Education at the University of Kansas and associate vice chancellor for research, was awarded the 2022 Lifetime Achievement Award. This award recognizes an individual whose life’s work has been focused on improving outcomes for students with exceptionalities and the educators who serve them. Over the years, Dr. Lane has been involved in numerous projects funded by IES. She is currently serving as principal investigator (PI) on Project SCREEN, a NCSER-funded grant aimed at validating a free tool that K-12 educators can use to identify students who are at risk for emotional and behavioral disorders (EBD). As part of the Multi-Tiered Systems of Support Network, she is the PI for a Research Team enhancing and testing the efficacy of Ci3T, an intervention that combines positive behavior interventions and supports (PBIS) and response to intervention (RTI) approaches to build social skills, particularly for students with or at risk for EBD. This project was an extension of a prior NCER-funded researcher-practitioner partnership with a local school district to implement and test the Ci3T model. Dr. Lane also led Project WRITE, which focused on Self-Regulated Strategy Development (SRSD), an intervention that facilitates the teaching of writing and behavioral self-regulation techniques simultaneously. Dr. Lane’s project modified and tested SRSD for students with serious behavior challenges who struggle with writing. Dr. Lane also served as a mentor to another CEC award winner, Dr. Robin Ennis (below), on her Early Career Development and Mentoring project.

Photo of Robin Ennis

Robin Ennis, PhD, associate professor and special education program coordinator at the University of Alabama at Birmingham’s School of Education has received the 2022 Martin J. Kauffman Distinguished Early Career Research Award from the CEC’s Division for Research. This award recognizes an individual who has made outstanding scientific contributions in special education research within the first 10 years following receipt of their doctoral degree. Dr. Ennis was the principal investigator of a NCSER-funded Early Career Development and Mentoring project. In this project, Dr. Ennis developed a training model designed to support third grade teachers’ implementation of a low-intensity evidence-based strategy, instructional choice, to improve the academic and behavioral outcomes of students with or at risk for emotional disturbance. Initial testing indicated that teachers who received PD implemented the intervention with high fidelity and students experienced increased engagement.

Photo of Charles "Skip" MacArthur

Charles “Skip” MacArthur, PhD, professor of special education and literacy in the School of Education at the University of Delaware, received two awards from CEC. He received the Special Education Research Award, given in recognition of an individual whose outstanding research has had an impact on practice and has improved outcomes for youth with exceptional needs. In addition, Dr. MacArthur received the Division for Learning Disabilities’ Jeannette Fleischner Career Leadership Award for his leadership in research and impact on practice, including his work on improving writing instruction and assistive technology for students with learning disabilities. Dr. MacArthur has been the PI on two NCER-funded projects: one which collaboratively designed a curriculum for postsecondary developmental writing and that demonstrated positive impacts on writing quality, writing self-efficacy, and mastery motivation in a pilot study and a second which is evaluating the efficacy of the aforementioned curriculum.

Congratulations to this year’s award recipients!

This blog was authored by Julianne Kasper (American University), IES intern through the Virtual Student Federal Service.

Career and Technical Education in STEM for Students with Learning Disabilities: Research Updates and Implications

Career and Technical Education (CTE) Month® is celebrated every February to raise awareness about the role that CTE has in preparing students for college and career success and the achievements of CTE programs across the country. In recognition of this year’s CTE Month®, we caught up with Dr. Michael Gottfried, University of Pennsylvania, to discuss his CTE research.

Through NCSER’s Career and Technical Education for Students with Disabilities special topic area, Dr. Gottfried was awarded a grant to examine whether participating in STEM CTE courses in high school is related to pursuing and persisting in STEM majors and/or careers for students with learning disabilities (SWLDs), a project featured initially in a March 2020 blog. During our recent conversation, he shared updates with us about his CTE project as well as the policy and practice implications of his research.

When we discussed this project in 2020, you shared your research goals and what you had learned so far. Could you provide us with an update?

Since the last time that we chatted, we have made some great progress on this project. We have had several papers accepted for publication. In some of our work, we were interested in the STEM CTE coursetaking patterns of SWLDs in high school. We found that SWLDs are more likely to participate in CTE courses compared to students without disabilities. Yet, when looking at the specific category of STEM CTE courses, there is no evidence that SWLDs are more likely to participate in high school STEM CTE courses compared to students without disabilities.

We have also looked at specific outcomes for SWLDs in STEM CTE courses. For instance, we examined computer science STEM CTE coursetaking for SWLDs. Participation was associated with growth in STEM self-efficacy and STEM utility (usefulness of what is learned for practical application) for SWLDs, whereas it related to positive development of STEM self-efficacy and STEM identity, but not STEM utility, for students without learning disabilities.

After we discovered that little was known about the association between STEM CTE coursetaking and college STEM persistence for SWLDs, we wanted to explore this area. So far, we have found that SWLDs who earned more units of STEM CTE in high school were more likely to seriously consider and ultimately declare STEM majors in college that are related to high school STEM CTE courses, such as information technology or engineering technology.

You and your colleagues recently published a paper in Education Research based on your NCSER-funded research. Could you summarize the findings in this paper and the implications for policy and practice?  

In our paper, we set out to identify whether there were any observable changes in CTE participation over time. The unique aspect of this study was that it combined national data from the Education Longitudinal Study of 2002 and the High School Longitudinal Study of 2009 with administrative data from the state of Washington. Key findings indicated that CTE participation declined nationally between the graduating class of 2004 and the graduating class of 2009 except in the area of applied science, technology, engineering, mathematics, and medical/health (STEMM) CTE, which includes courses in information technology, engineering technology, and health sciences. Data from Washington tended to be less varied in nature compared to national data, with fewer discernible trends, though in general STEM CTE did appear to have an upward trend for all students.

Our work also has direct relevance to policy. Recent changes in the Carl D. Perkins Career and Technical Education for the 21st Century Act emphasized the need to focus on increasing access and participation in STEM-related CTE coursework. While there does appear to be an upward trend in participation in these STEM fields, the tradeoff may be coming at the expense of other CTE areas of study. Combined with the increasing pressure for students to complete more and more academic coursework in a push for college readiness, this decrease in non-STEM CTE participation is particularly noteworthy. Finally, our work helps highlight the importance of examining CTE trends at the state and national levels. Different states have different needs and different graduation requirements that may or may not include CTE participation. As such, given the overall call to increase CTE participation for SWLDs, we encourage future research that explores the implications of these trends for this population.

What do you hope that school leaders, CTE teachers, and students will learn from all the research you are conducting?

The research has numerous implications for policy and practice. First, the results will be important for policymakers as they consider new or revised educational policies to support the pursuance and persistence of SWLDs into STEM fields. Education policymakers in particular need to understand the effects of STEM CTE coursetaking for SWLDs at multiple time points (transition into college, during college, and post-college). Understanding these issues more completely will make for well-informed policy decisions that promote short- and long-term success in STEM for SWLDs. This, in turn, has larger social policy implications with respect to upward mobility and lifelong success.

This project also has important implications for practice. By sharing these results, we hope to support education practitioners in making the adjustments necessary to improve the use of educational resources to ensure that SWLDs are prepared for and engaged in fields with high growth potential. For instance, many states have begun to accept STEM CTE courses for graduation requirements, which increases the likelihood students will take these courses. As STEM CTE courses prove important for SWLDs across the pipeline, then states and districts might consider how to best encourage students to take and succeed in these courses.

What additional research is needed to improve CTE policy and practice?

The current work can inform the future development of an intervention, assessment, or decision to evaluate an intervention. Evidence that STEM CTE coursetaking is associated with higher likelihood of college enrollment and the pursuit of STEM pathways for SWLDs supports the need to study interventions that encourage STEM CTE coursetaking for these students. For example, a randomly selected set of SWLDs who do not take traditional STEM could be counseled into taking STEM CTE courses or placement tests could be used to assign students to STEM CTE or traditional STEM courses. In both cases, students could then be followed into college and beyond to compare education and career outcomes using rigorous research designs. The results could provide additional, strong evidence for the value of STEM CTE coursetaking on postsecondary STEM outcomes.

This blog was authored by Akilah Nelson (akilah.nelson@ed.gov), Program Officer at NCSER, and Michael Gottfried (mgottfr2@upenn.edu), Associate Professor at the University of Pennsylvania.