Inside IES Research

Notes from NCER & NCSER

Training the Next Generation of CTE Researchers: A Conversation with the CTE Research Network

IES funded the Expanding the Evidence Base for Career and Technical Education (CTE) Research Network (CTERN) in FY 2018 in order to increase the quality and rigor of CTE research, specifically by (1) coordinating IES-funded researchers studying CTE using causal designs and (2) training new researchers in causal methods to address CTE-related research questions. In this guest blog, the Network Lead’s PI, Katherine Hughes, and Training Lead, Jill Walston, from the American Institutes for Research (AIR), discuss the evolution of the institute across four years of training supported by the grant and what they learned about the components of effective training, in the hopes of sharing lessons learned for future IES-funded trainings.

About the Summer Training Institute

Each summer since 2020, CTERN has held summer training institute on causal research methods in CTE.  Across four summers, we had 81 trainees, including junior faculty, researchers in state or university research offices or institutes, doctoral students, and researchers in non-profit organizations. During the institutes, we had expert CTE researchers and national and state CTE leaders deliver presentations about CTE history, policies, theories, and recent research.

The major focus of the training was on research designs and statistical methods for conducting research that evaluates the causal impact of CTE policies and practices on student outcomes. The participants learned about conducting randomized controlled trials—considered the gold standard for causal research—as well as two quasi-experimental approaches, regression discontinuity and comparative interrupted time series designs. After presentations about the approaches, students worked with data in small groups to complete data analysis assignments designed to provide practical experience with the kinds of data and analyses common in CTE research. The small groups had dedicated time to meet with one of the instructors to discuss their analyses and interpret findings together. The combination of presentations and practical applications of data analysis with real data, and time in small groups for troubleshooting and discussion with CTE researchers, made for a rich experience that students found engaging and effective. The students received an IES certificate of course completion to mark their accomplishment.

Making Continuous Improvements Based on Lessons Learned

We had a continuous improvement mindset for our summer institute. After each week-long session was completed, the CTE research network director, training coordinator, and instructors met to review their perceptions of the training and most importantly the feedback students provided at the end of the week. We applied the lessons learned to make improvements to the agenda, communications, and student grouping approaches to the plans for the following summer.

Over the course of the four years of the summer institute training, we made a number of adjustments in response to feedback.

  • We continued to offer the institute virtually. The institute was originally intended to be held in person; an earlier blog describes our necessary pivot to the online format. While we could have safely changed to an in-person institute in 2022 and 2023, feedback from our students showed that the virtual institute was more accessible to a geographically diverse group. Many trainees said they would not have even applied to the institute if they would have had to travel, even with a stipend to help cover those costs.
  • We added more time for the students to get to know one another with virtual happy hours. Compared to in-person trainings, virtual trainings lack those natural opportunities for informal communications between students and with instructors that can foster engagement, trust, and joint purpose. While we couldn’t replicate in-person networking opportunities, we were able to improve the experience for the students by being intentional with informal gatherings.
  • We expanded the time for the small groups to meet with their instructors. Students reported that this office hour time was very valuable for their understanding of the material and in interpreting the output of the analyses they ran. We extended this time to optimize opportunities for discussion and problem solving around their data analysis assignments.   
  • We made improvements to the data assignment guidance documents. In the first year, students reported that they spent more time on figuring out initial tasks with the data which left less time for running analyses and interpreting their output. We modified our guidance documents that accompanied the assignments to spell out more explicitly some of the initial steps to shorten the time students spent on set-up and maximize their time doing the important work of coding for the analyses and examining output. We also provided links to resources about the statistical packages used by the students for those that needed time to brush up on their skills before the training began.
  • We doubled down on efforts to stay connected with the trainees and supported ways to have them stay connected to each other. For example, we let them know when CTERN’s researchers are presenting at conferences and invite them to connect with us and each other at these conferences. We’re now organizing a LinkedIn group to try to develop a community for our training alumni.

Our summer training institutes were a great success. We look forward to continuing this opportunity for researchers into the future, with a new version to be offered in the summer of 2025 by the CTE Research Network 2.0.


Jill Walston, Ph.D., is a principal researcher at the American Institutes for Research with more than 20 years of experience conducting quantitative research, developing assessments and surveys, and providing technical support to researchers and practitioners to apply rigorous research and measurement practices. Dr. Walston is the lead for training initiatives for the IES-funded Career and Technical Education Research Network.

Katherine Hughes, Ph.D., is a principal researcher at the American Institutes for Research and the principal investigator and director of the CTE Research Network and CTE Research Network 2.0. Dr. Hughes’ work focuses on career and technical education in high schools and community colleges, college readiness, and the high school-to-college transition.

This blog was produced by Corinne Alfeld (Corinne.Alfeld@ed.gov), a Program Officer in the National Center for Education Research (NCER).

 

Celebrating National STEM Day on November 8 and Every Day

IES widely supports and disseminates high-quality research focusing on science, technology, engineering, and mathematics (STEM) through NCER and NCSER. To celebrate National STEM Day on November 8 and every day, we highlight some of the work that NCER and NCSER have supported over the years in the various STEM areas, as well as opportunities for funding future work. Additional information about IES’s investment in STEM education can also be found on our STEM topic page.

Science

  • Researchers developed ChemVLab+ an online chemistry intervention that allows high school students to perform experiments and analyze data in a flexible, multimedia virtual chemistry lab environment. The online modules promote conceptual understanding and science inquiry skills aligned to the Next Generation Science Standards. The chemistry activities are freely available on the project website.
  • Researchers are developing Words as Tools, an intervention for emergent bilingual adolescents that is designed for use in English as a second language classes to promote development of metalinguistic awareness with science vocabulary. The lessons, being developed with a lens of culturally sustaining pedagogy, are intended to help build knowledge of essential science words as well as how words work in science.
  • Researchers are evaluating the efficacy of an integrated science and literacy curriculum (ISLC) designed to engage first grade students in scientific investigations at a level appropriate for young learners. ISLC addresses the challenges of language and literacy development by ensuring that the language of science is brought forward and explicitly addressed in an integrated approach.
  • Through Project MELVA-S, researchers are developing an online formative assessment that measures the science vocabulary knowledge of Latinx bilingual students with different levels of English and Spanish language proficiencies. Results from the assessment can be used to monitor the progress of individual students, help teachers differentiate language and vocabulary instruction, and provide additional science vocabulary supports.

Technology

  • Using The Foos by codeSpark, researchers are exploring computational thinking processes in grades 1 and 3 through a series of classroom-based studies.
  • Researchers are evaluating the efficacy of the CAL-KIBO curriculum, an educational robotics program designed for use with early elementary school-aged students to examine its impact on computational thinking, fluid reasoning, and math achievement.
  • Researchers are systematically investigating how specific features of immersive virtual reality (IVR) can be used to improve student outcomes in science learning. In particular, the researchers are exploring how visual and auditory IVR design features can enhance affective state and cognitive processing in general and for specific subgroups of learners.
  • Researchers are developing and testing TaylorAI, an artificial intelligence formative feedback and assessment system for hands-on science investigations to help build student competence as they engage in laboratory activities.
  • In partnership with the National Science Foundation, IES is co-funding two National Artificial Intelligence (AI) Institutes. Under NCER, the Institute for Inclusive and Intelligent Technologies for Education (INVITE) is developing artificial intelligence (AI) tools and approaches to support behavioral and affective skills (for example, persistence, academic resilience, and collaboration) to improve learning in STEM education. Under NCSER, the AI Institute for Exceptional Education (AI4ExceptionalEd) is using multiple cutting-edge AI methodologies to create the technology to assist speech-language pathologists with identifying students in need of speech and language services and delivering individualized interventions.

Engineering

  • Researchers are developing an innovative teacher professional learning intervention called Elevating Engineering with Multilingual Learners that is intended to help grade 3-5 teachers develop the knowledge and skills they need to effectively teach engineering to English learners and all students through culturally and linguistically responsive pedagogies and engineering instruction.
  • Product developers and researchers are developing and testing NEWTON-AR, an augmented reality (AR) application-based engineering, computer science, and STEM puzzle game for children in kindergarten to grade 3. Intended for use in classrooms, after-school programs, and at home, NEWTON-AR will combine AR, engineering, simulation, making, and programming into a sandbox game where students create, modify, simulate, prototype, and test contraptions to solve puzzle challenges.

Mathematics

  • Researchers have developed and tested for efficacy of Fusion, a first-grade intervention aimed at developing understanding of whole numbers for students at risk for mathematics learning disabilities. It is designed as a program for schools using a multi-tiered approach to instruction that provides increasingly intense levels of instruction based on the results of frequent progress monitoring of students.
  • Researchers tested for efficacy of Pirate Math Equation Quest, a word problem-solving intervention for third grade students with mathematics difficulties, including students with or at risk for mathematics learning disabilities.
  • Researchers assessed the efficacy of Interleaved mathematics practice, an intervention that rearranges math practice problems so that 1) different kinds of math problems are mixed together, which improves learning, and 2) problems of the same kind are distributed across multiple assignments, which improves retention. A new systematic replication study is also now underway to further examine the efficacy of interleaved mathematics practice.
  • Researchers have conducted several impact studies (one conducted with grade 7 students in Maine and replication study conducted in North Carolina) of ASSISTments, a free web-based program that provides immediate feedback to students and teachers on homework. ASSISTments can be used with any commercial or locally developed math curriculum, and teachers can assign "mastery" problem sets that organize practice to facilitate the achievement of proficiency.  

STEM Education Research Funding Opportunities

Research grant funding opportunities focusing on STEM education can be found across several programs and competitions. Currently, there are several active funding opportunities where training or research with a STEM education focus would fit:  

More information on these fundings opportunities can also be found at: https://ies.ed.gov/funding/


This blog was written by Sarah Brasiel (sarah.brasiel@ed.gov), program officer at NCSER and Christina Chhin (christina.chhin@ed.gov), program officer at NCER.

Inspiring Girls to Pursue STEM careers with the Dear Smart Girl Career Exploration Platform

The Department of Education’s Small Business Innovation Research Program (SBIR), which IES administers, funds the research, development, and evaluation of new, commercially viable education technology products. In this guest blog, Abi Olukeye of Smart Girl HQ discusses the inspiration behind her recently completed SBIR project, Dear Smart Girl, and the importance of helping girls envision themselves in STEM Careers.

What is Dear Smart Girl?

Our Dear Smart Girl platform is a learning experience that combines online interactive game-based learning curriculum with offline engaging activity kits and personalized STEM learning recommendations to enable elementary-aged girls achieve STEM career literacy by age 12. Our Dear Smart Girl platform is the only STEM career education platform on the market with an ecosystem of products with a research-driven design featuring age-appropriate, experienced-based informal learning content designed to facilitate STEM discovery, self-efficacy, and fluency for young female-identifying learners.

Through our Dear Smart Girl digital platform, we transform the way girls perceive and engage in STEM learning pathways by providing an innovative multi-stage learning experience.

Learning begins in the whimsical town of Ingenia, where learners are immersed into a digital world that is designed to capture aesthetics and themes that resonate with female-identifying students. Learners begin by selecting a storyline, each of which is associated with a STEM career and features a project-based problem-solving activity. Along the way, students gain new vocabulary and fluency with the subject area being exposed to them. In stage two, learners take their new skills offline and work to complete the real-life version of their game project using our complementary Dear Smart Girl project kit. These two stages of learning combine powerfully to strategically introduce, challenge, and engage young girls in STEM career exploration that builds their confidence and literacy in STEM pathways.

What inspired you to create the Dear Smart Girl platform?

The idea was born out of personal need. I started observing that at about age 3 my daughters were often describing toys and activities as either “boy things” or “girl things.” I was really stunned to see how early biases develop and felt strongly about finding ways to balance out their views. My first instincts were to find more toys and activities that would appeal to them and activities that would expose them broadly. And I fully anticipated that a quick internet search would surface plenty of options. I was so wrong. Not only were there limited options, most of what I found did not appeal to my daughters in terms of type of activity and aesthetics.

Reflecting on my own experience as someone who has a STEM degree and was, at the time, working at a global manufacturing firm leading technical projects, I decided to dive into the research about girls and STEM. I discovered that although women participate equally in the labor force, they only make up 28% of the STEM workforce. In addition, early adolescence tends to be when girls lean away from STEM at a higher rate than their male peers. That inspired me to work with other talented and passionate people to build products and facilitate experiences and help young female-identifying learning achieve STEM career literacy by age 12.

What are the types of STEM careers featured in Dear Smart Girl and why did you choose them?

Our pilot career module is an electrical engineering module, but over the course of the next two years, we are working to add five more game modules featuring chemical science, mechanical engineering, biology, software development and product designer careers. We select careers based on science standards being taught in 4th–7th grade. Our goal is to take topical themes and relate them to their real-world applications while also putting them in the context of the career domains that features the scientific concept and related skills. We also working to align to the National Career Clusters framework, which supports Career Technical Education (CTE) programs. 

What elements of Dear Smart Girl are uniquely tailored to female-identifying students?

We tailor our product to help sustain interest in STEM Career pathways in the following ways.

  • We are intentional about selecting and mapping careers in ways that show real-world relevance. Anecdotally, we find that when learners are excited about what they are building, they are more engaged and motivated to learn the skills needed to accomplish their goal.
  • We optimize our projects to create an experience that is a perfect blend of learning a new technical skill and creative design. According to Microsoft research on closing the STEM gap, 91% of girls describe themselves as creatives. When girls learn about how real-world STEM jobs can be used to help the world, their perception of the creativity and positive impact of STEM careers can more than double.
  • We use beautiful illustrations, colors, and imagery to creative engaging worlds and digital environment rich with representation for diverse female-identifying students.

What advice can you give technology developers who focus on female-identifying students?
For developers working on products designed for female-identifying students, I recommend a collaborative development approach. We co-create every career module we work on with students to get feedback early and often. While it is easy to fall for stereotypical storylines, female-identifying students have diverse needs, interests, and learning styles that should be celebrated with well-designed learning platforms.

What are the next steps for Dear Smart Girl?

We are so excited to have been recently award a phase 2 award to expand and commercialize our career exploration modules. Over next two years, we will develop and launch five additional career modules, expand educator tools, build in extension activities, and launch to CTE programs across the country.


Abi Olukeye is the founder and CEO of Smart Girl HQ, a company dedicated to closing the gender gap for females in the STEM pipeline by increasing the number of positive experiences young girls have with STEM early in their learning journey. Her vision is to create an ecosystem of products that when used together are a powerful catalyst for sustaining long-term engagement in STEM for young girls. Her work has been supported by National Science Foundation and the Department of Education through Small Business Innovation Research (SBIR) Awards, the NC Idea Foundation, and the Vela Education Fund. Abi is the chair of the board of CSEdResearch.org and a past member of the Computer Science K12 Standards Committee for North Carolina. She holds a bachelor’s degree in computer science from Virginia Tech and MBA from Indiana University. She and her husband live in Charlotte, NC and have two young daughters who greatly inspire her work.

This blog was produced by Katina Stapleton (Katina.Stapleton@ed.gov), co-chair of the IES Diversity Council.

Counting and Listening to Native American Students: Reflections on NIES and its Potential

In honor of Native American Heritage Month, IES is highlighting the National Indian Education Study (NIES) conducted by the National Center for Education Statistics (NCES) in partnership with the Office of Indian Education (OIE). Dr. Meredith Larson, who has been with the National Center for Education Research (NCER) since 2010 interviewed Dr. Jamie Deaton about NIES. Dr. Deaton has worked at NCES since 2009 and became the NIES Project Director in April 2010.

What is NIES, and how is it similar or different from other NAEP studies?

NIES describes the condition of education for American Indian and Alaska Native (AI/AN) students in the United States. Since 2005, NCES has administered it in conjunction with the National Assessment of Educational Progress (NAEP) state-level assessments in mathematics and reading at grades 4 and 8. The very large NAEP sample allows us to report data for AI/AN students nationally and for various subgroups of AI/AN students. In NIES, students first take either the NAEP mathematics or reading assessment, followed by a NAEP survey questionnaire, and then an NIES survey questionnaire (which emphasizes Native language and culture). Both NAEP and NIES survey questionnaires are also administered to the teachers and school administrators of AI/AN students. You can learn more about the survey design here.

 

 

What are some examples of how have policymakers, practitioners, or researchers used it?

NIES data has been used in Congressional testimony and at the state level. For example, NIES data has been included in past testimonies to the House of Representatives Subcommittee on Interior, Environment and Related Agencies; the House of Representatives Subcommittee on Early Childhood, Elementary, and Secondary Education; and the Senate Committee on Indian Affairs. At the state level, Oregon used NIES data to support a successful request to its state legislature to approve a full-time Indian Education Specialist within the Oregon Department of Education.

We also want to ensure that a variety of educational leaders—especially Native leaders—are aware of the study and can access the results and products. In addition to the online reports, we also produce hard copies to ensure results get to those without easy access to online documents. We help distribute these widely via a Native-owned NIES contractor (currently Tribal Tech, LLC) to Tribal colleges and universities, AI/AN studies programs at colleges and universities, all federal and state recognized tribes, AI/AN focused media, research centers, and other related AI/AN non-profits.

In addition, we want to get the results in the hands of school leaders. For example, all Bureau of Indian Education (BIE) schools serving grades 4 and 8 are in the NIES sample, and all of these schools receive hard copies of NIES reports.

What makes working on NIES study interesting to you?

Building partnerships with Native leaders both within and outside the federal government has been really rewarding. We administer NIES on behalf of the U.S. Department of Education’s Office of Indian Education (OIE) which provides funding for the study; integrates NIES data collection with its work when possible; and serves as a strong partner, advocate, and disseminator for NIES results. NIES is not only conducted in conjunction with the NAEP program but also conducted in conjunction with OIE’s work. Over the years, I have regularly presented to OIE grantees, and this has been a wonderful forum to share more about the study and also draw connections to and learn more about grantee-related work.

For NIES to be successful, it needs to be guided not just by assessment experts, but by Native experts. To this end, NCES established the NIES Technical Review Panel (TRP) made up of individuals with expertise in matters related to the education of AI/AN students. Members oversee the development of the NIES survey questionnaires and guide the planning, drafting, and revision of NIES publications with their ongoing expert consultation. In conjunction with the release of the last two NIES reports, the TRP has also authored a companion document, called  Setting the Context, that provides perspective on how this study fits into the larger sphere of education for AI/AN students. Tribal Tech recruits BIE schools for the study, disseminates study results at conferences focused on AI/AN education (for example, National Indian Education Association Annual Convention & Trade Show), and has established a long-term partnership with a Native-owned printing company (Sault Printing Company Inc.) that helps produce and disseminate NIES-related documents.

What excites you about NIES?

I’m very excited about last year’s release of the 2019 NIES Qualitative Data Companion as a public use data file (available in Excel files on the NIES main page). The data release marked the first time in NIES program history that qualitative survey questions, collected since 2005, became publicly available. Prior to the release, we ensured that all student and teacher responses were reviewed and edited to remove the presence of names or addresses and any other Personal Identifiable Information (PII). My hope is that having an established process for releasing this type of data will be beneficial to other IES data collections. Members of the TRP deserve a lot of credit for continuously advocating for this data. Had the TRP not done so, there was a real possibility that we would have dropped these qualitative questions from future data collections. Instead, we now have a model to follow for getting this data out to the public. We are also working on releasing previous NIES Qualitative Data Companions from earlier NIES administrations too.

From a research perspective, what do these qualitative data provide?

Researchers without a restricted-use data (RUD) license now can access this robust dataset. We recognize that many of our stakeholders live in remote areas and/or have other barriers to accessing the RUD (for example, those not affiliated with an institution). I think for doctoral candidates these data provide an opportunity for a dissertation with data already gathered and accessible for analysis.

There are many different angles to approach this open-ended data. For example, the final question on the NIES student survey is “What else would you like to say about yourself, your school, or about American Indian or Alaska Native people?” I’m curious what researchers would find as key differences when comparing grade 4 responses to grade 8. What are some themes and patterns in student respondents? What is the breakdown between responses that pertain to Native language and culture, and how does this differ across school types, such as public schools run by the states and schools operated through funding from the Bureau of Indian Education?  

Are there other resources for researchers interested in NIES data?

Another public use tool is the NIES Data Explorer available at NDE Core Web (nationsreportcard.gov). This explorer includes a wealth of data from all previous NIES administrations. If you go to the NDE Core Web page, you will find other relevant data explorers available including the Main NAEP, High School Transcript Study, and Long-Term Trend.


This blog was produced by Meredith Larson (Meredith.Larson@ed.gov), research analyst and program officer for postsecondary and adult education, NCER. Individuals or organizations interested in learning about field-initiated research or training grant opportunities to conduct work relevant to Native American/Alaska Native prekindergarten through postsecondary and adult education may contact her for initial technical assistance.

Education Research, Eyesight, and Overcoming Adversity: An Interview with Pathways Alumna Carrissa Ammons

The Pathways to the Education Sciences Research Training Program was designed to inspire students from groups that have been historically underrepresented in doctoral study to pursue careers in education research. In recognition of National Disability Employment Awareness Month (NDEAM), we asked Carrissa Ammons, an alumna of the California State University, Sacramento (CSUS) Pathways training program, to share her experiences as a student-researcher with low vision.

What sparked your interest in education research?

My interest in education research stems from my own lived educational experiences as a formerly impoverished person who was born with a visual impairment. My innate passion for understanding the world around me motivated me to continue learning, and my intrinsic curiosity drew me towards the sciences at a rather young age. Over time, I became interested in psychology, and I entered college with the goal of becoming a clinical psychologist. However, my exposure to research methods and applied research experiences within the Cultural and Community Lab at CSUS gave me the confidence to pursue a career as a researcher. Now, I want to use my knowledge and work to help reduce barriers to education for individuals who have not been historically represented within education and the social sciences.

What was your favorite experience as a Pathways fellow?

My Pathways summer internship at the Sacramento County Office of Education (SCOE) has been an invaluable part of my professional and personal development. The internship was challenging at times but also incredibly fulfilling. All of the SCOE staff I worked with were supportive and gave me great insight into how the state values and uses evidence-based decision making and evaluation. During my 10-week internship, I assisted with a variety of projects, including evaluations for programs relating to bullying prevention, underage substance use prevention and intervention, and California National History Day. I also helped complete a literature review on evidence-based practices in recruiting and retaining diverse teacher candidates for the SCOE internal education career pipeline program.

I learned that researchers who work for state organizations must excel at communicating their findings to both technical and non-technical audiences because they are often tasked with communicating data to individuals with little to no background in research, and because they heavily rely on data visualization as a means of disseminating information in a way that is easy to digest for a diverse array of audiences.

What have been some challenges or barriers you have faced in academia as a person with low vision?

Transportation and inequitable access to written and visual information have been the most salient barriers to education that I have faced during my academic career. I am unable to obtain a driver’s license in most states due to the level of my visual impairment, so I am often dependent on public transportation. While I am incredibly grateful for the increased freedom that I have been granted by the Sacramento Regional Transit, some areas of their system can still be a bit inconsistent—it can be difficult, if not impossible at times, to make impromptu changes to my weekly routines. This structural restriction to my mobility has made it difficult to participate in events and activities outside of certain time frames and areas, and this can evoke a lot of anxiety and aversions for me as I try to fully participate in academic experiences and extra-curricular activities.

For example, reaching the CSUS campus from my home via transit requires a transfer from a bus to the light rail and onto another bus. This process takes approximately 1 hour and 40 minutes from door to door for a trip that would typically take approximately 20 minutes by car. If an issue arose during any leg of this trip (such as a late or canceled bus), it could set me back an hour or more depending on the time of day. This has caused me to miss entire classes and events at times. Alongside the stress of arriving places on time, relying on the public transit system as one’s sole means of transportation can be incredibly taxing mentally at the end of the day. There were many times during my evening commute home from college when the bus on the last leg of my trip would be canceled for the evening due to a driver shortage, forcing me to either ask a loved one or use a rideshare service (which as a student was not always financially feasible). 

Having low vision has also been a barrier throughout my education; however, major advancements in accessible technology during my college years have provided me with more equitable access to visual information. There are some environments, such as academic conferences, where I still struggle to gain access to the same quality of experience as my fully sighted peers. For example, academic poster sessions are environments that require a lot of reading, and for individuals to be able to quickly scan information in order to get the most out of the limited time provided for each session. While most presenters are happy to explain their work to their onlookers, it can still be difficult at times to get the full picture of their work without being able to fully examine all the components of their posters, such as charts or tables.

One easy way presenters and conferences can disseminate information in a more equitable way is to include tools like QR codes on visual material to allow individuals to view them in ways that may be most accessible to them. Academic organizations can also make more of an effort to assess the needs of their members prior to conferences, rather than assuming that everyone with a disability will be able to advocate and accommodate for themselves prior to the event, especially those that claim to be student-friendly organizations. Learning to navigate new spaces can be difficult enough, let alone having to do so while having physical or mental traits that were not considered during the planning and implementation of these events.

What advice would you give students with disabilities who wish to pursue a career in education research?

I wish all students with disabilities could recognize that the concept of disability is a byproduct of living in a society that was not built with us in mind, and those traits do not reflect any deficit in our personal ability to achieve our dreams. It may be difficult at times, but never forget that representation is the only way we, as a scientific community, can achieve the fullest picture of the human experience and push the needle closer to creating an inclusive society for everyone, including ourselves. Despite being faced with myriad historic and contemporary barriers to inclusion and belonging within our society, we have always been here, we will always be here, and our voices deserve to be included in conversations pertaining to education and human development.


Carrissa Ammons recently graduated from California State University, Sacramento with a bachelor’s degree in psychology. As part of her Pathways fellowship at CSUS, Carissa conducted research with Dr. Lisa Romero on the efficacy of motivated self-regulation theory in mitigating implicit biases of college level educators. This summer, Carissa served as a data analysis and visualization intern at the Sacramento County Department of Education’s Center for Student Assessment and Program Accountability. Carissa is currently applying to graduate school and says her ultimate career goal is to become a professor of psychology and run her own research lab with a focus on studying diversity, equity, inclusion, and belonging within higher education, with an emphasis on personal identity and stereotype threat.

This NDEAM blog post was produced by Katina Stapleton (Katina.Stapleton@ed.gov), Program Officer for the Pathways to the Education Sciences Research Training program.