Inside IES Research

Notes from NCER & NCSER

Small Changes to Textbook Design Can Make a Big Difference for Student Learning

During spring 2020, the COVID-19 pandemic forced the closure of millions of U.S. schools. As schools reopened this fall, conversations have revolved around using this unique situation as a chance to rethink education and how students learn. When we think about innovative ways to improve education, ideas tend to gravitate towards radical changes to the classroom experience, expensive interventions, and costly professional development. Everyone is looking for the next “big” idea, but perhaps part of the solution lies in a more subtle, inexpensive, and less disruptive change that may be as impactful as a completely new education approach: strategic revisions to the materials teachers and students already use in their classrooms (whether in person or virtual).

Textbooks (or ebooks) and supplemental education materials are central to providing students with the content knowledge and practice experiences to support mastery of academic skills. Textbook developers spend significant time and effort to ensure that the content in those textbooks aligns to standards and provides students with the information and examples needed to understand key concepts. However, even with age-appropriate content and high-quality practice exercises, textbooks may not be effective as learning tools if they present and sequence information in a way that is not aligned to what we know about how people learn.

You may be wondering how much room there is for improvement—textbooks seem pretty good at delivering content as is, right? Actually, findings from three IES-funded projects demonstrate that there are multiple ways to improve texts and student understanding of key concepts. Here are a few of those ways:


Present a wide range of fraction practice problems. Textbooks focused on fractions learning tend to present more problems with equal denominators for addition and subtraction problems than for multiplication problems. Why does this matter? In IES-funded research, David Braithwaite and Bob Siegler showed that students pick up on this bias. As a result, students are more likely to make errors on equal denominator fractions multiplication problems because they are so used to seeing those problems when practicing fractions arithmetic and subtraction. The recommended minor change is to include a wider range of fractions practice problems, including equal denominator multiplication problems, to ensure that students do not form irrelevant associations between superficial features of a practice problem and the solution strategies they are practicing.


Provide students with a mix of practice problems that require different strategies rather than practice problems of the same type. Typical math practice involves solving the same type of problem repeatedly to practice the specific solution strategy a student just learned. However, across numerous IES-funded studies, Douglas Rohrer and his research team have shown that students benefit substantially more from math practice that involves a mix of problems that require different strategies (those learned in previous lessons mixed with those just learned). One of the major benefits of this approach is that students get practice choosing which strategy to use for a particular problem. Rohrer and his team found that across 13,505 practice problems from six popular math textbooks, only 9.7% of those problems were mixed up in this way. The recommended minor change is to simply mix up the problem sets so that students have more experiences encountering different types of problems in a single sitting.


Where and how you place visuals on textbook pages matters, especially when you want students to compare them. Textbooks typically use visuals such as diagrams and photos to help reinforce key concepts. In an IES-funded study, Bryan Matlen and colleagues examined anatomy and evolution chapters within three popular middle school science textbooks and found an average of 1.8 visuals per page. Students were expected to make comparisons using about a third of those visuals. Of those they had to compare, about half were positioned in suboptimal ways—that is, the images were not presented in a way that made it easy to identify how the elements of one image compare to the elements of the other. For example, imagine a student is asked to compare two x-ray images of hands to identify a bone that is missing from one of them. This task is much harder if one hand is shown upside down and the other is right-side up or perpendicular to the first image. Consistent with this example, Matlen and colleagues have conducted studies showing that visual comparisons are more effective when the features of the visuals that need to be compared are spatially aligned. The recommended minor change is to be intentional about the placement of visuals that students are supposed to be comparing; make sure they are placed in optimal alignment to each other so that it is easier for students to see how the features of one correspond to those of the other.


In sum, transformative, radical ideas about how to improve education are interesting to brainstorm about, but sometimes the key to improvement is identifying small changes that can deliver big results.

Written by Erin Higgins (, Program Officer for the Cognition and Student Learning Program, National Center for Education Research.


Comments are closed