

Authentic Power Calculations for RD Studies

J.R. Lockwood June 30, 2010

This presentation has not been formally reviewed and should not be cited, quoted, reproduced, or retransmitted without RAND's permission.

Power in a Randomized Experiment

- □ *d*: standardized effect size
- \Box *n*: # units in each arm

□ Can approximately handle most issues by fiddling with *n*; e.g.

- Clustering: replace *n* with $ESS = \frac{n}{DEFF}$
- **Covariates: replace** n with $ESS = \frac{n}{1-R^2}$
 - Imbalance: replace n with ESS = 4np(1-p)

Why is Power in RD Worse?

- \Box *S* = "forcing variable"
- $\Box T = treatment = 1\{S < 0\} (WLOG)$

 \Box Power degraded due to collinearity between S and T

• e.g. if S is uniform and T is split at the midpoint, $R_{ST}^2 = 0.75$

- □ Variance inflation is $\frac{1}{1-R_{ST}^2} = 4$
- □ → sample size required for power equivalent to randomized experiment is 4 times larger
- Equivalently, minimum detectable effect for equivalent sample size is 2 times larger

Why is Assessing RD Power More Challenging?

Primarily because power is affected by:

- **C** Shape of distribution of S and where cutoff c determining T is in that distribution
 - Schochet (2008) provides clear description
- **C** Estimators for $E(Y|c^{-})$ and $E(Y|c^{+})$ might be complex and may involve data-dependent data restrictions
 - E.g. Cross-validation choice of bandwidth (Ludwig and Miller, 2005; Imbens and Lemieux, 2008) or simultaneous choice of bandwidth and model complexity (Kirby, McCombs, and Mariano, 2009)
- Other complications like fuzziness and clustering exacerbate these issues

RAND

Simulation as an Alternative Approach

- ❑ Often know a lot about data during design of RD studies
 - "Happenstance RD": May have actual values of S and T and past values of Y (e.g. NCLB, RTTT)
 - Designed RD": Will know how you intend to construct S and T and again probably have good proxies for Y
- Rather than trying to map knowledge about the data into power formulas, use knowledge about the data to simulate outcomes and analysis procedure

Sketch of Approach

- \square β : True treatment effect
- \Box $D(\beta)$: Simulated data, depends on β
- $\square \hat{\beta}(D)$: Estimated treatment effect, depends on D
 - "Black Box" make it as complicated as analysis will be
- **Step 1: Estimate distribution of** $\hat{\beta}(D)$ **given** $\beta = 0$
 - Use this to determine rejection region R
- □ Step 2: Estimate $Pr\{\hat{\beta}(D) \in R\}$ for selected sequence of alternatives β
 - "Outer" loop: sequence of β
 - "Inner" loop: M Monte Carlo iterations and count how often estimated effect is in rejection region

RAND

June 30, 2010-6

Example Output

Advantages of Simulation Approach

- Anything can be inserted in the analysis no matter how hard it would be to examine analytically; e.g.
 - Cluster corrections with imbalanced samples, including the use of random effects models to aid efficiency
 - Complex model selection criteria, such as bandwidth and functional form choice via cross-validation
- No need to agonize over what is meant by an "effect size" in RD - outcomes of simulation study get reported on the natural scale of the outcome measure
- Simulation approach naturally provides power curves rather than MDE at a single value of power (e.g. 0.80) which is more informative

RAND

Conclusions

- RD is unlike a randomized experiment because careful statistical model selection and specification is inherent to obtaining valid impact estimates
 - i.e. in RD there is generally not a simple, analytically tractable procedure that will provide a compelling estimate.
- As standard practice for RD becomes more sophisticated (e.g. by WWC standards setting a high bar), simple formulas are less likely to provide authentic assessments of power
- □ Simulation is a defensible and relatively easy alternative
 - And can benefit from the fact that very specific data is often available during the design phase

RAND

June 30, 2010-9