Skip Navigation
Funding Opportunities | Search Funded Research Grants and Contracts

IES Grant

Title: Measuring Oral Reading Fluency: Computerized Oral Reading Evaluation (CORE)
Center: NCER Year: 2014
Principal Investigator: Nese, Joseph Awardee: University of Oregon
Program: Literacy      [Program Details]
Award Period: 4 years (8/1/2014-7/31/2018) Award Amount: $1,599,289
Type: Measurement Award Number: R305A140203
Description:

Co-Principal Investigator: Kamata, Akihito

Purpose: The University of Oregon sought to develop and validate a new computerized assessment system of oral reading fluency (ORF) for use with students in Grades 2 through 4, called Computerized Oral Reading Evaluation (CORE). CORE contains an automated scoring algorithm based on a speech recognition engine, shorter passages, and a latent variable psychometric model, collecting word-level data that are used in a model-based approach to scale ORF scores with increased reliability compared to traditional ORF scores. CORE has the potential to reduce: (1) human administration errors by standardizing administration setting, delivery, and scoring, (2) the time cost of ORF administration by allowing small-group or whole classroom testing; and (3) the resource cost to train staff to administer and score the assessment. CORE is to address the practical and psychometric inadequacies of traditional ORF assessments for screening and progress monitoring in order to better support instructional decision-making and improving student reading outcomes.

Project Activities: The project had three phases. During Phase 1, the project team developed 330 passage (long, medium, and short) for oral reading fluency assessment. During Phase 2, the project team developed and validated a model for oral reading fluency that incorporates response time and response accuracy and estimates a model-based words correct per minute (WCPM) parameter which is on the same scale as traditional ORF WCPM score. For Phase 3, the team compared the consequential validity properties of CORE compared to a traditional oral reading fluency assessment (easyCBM).

Key Outcomes: The main findings of this measurement study are:

  • Automatic speech recognition (ASR) can provide reliable WCPM scores compared to expert human scorers, shorter passages perform comparably to traditional passages read for one minute, and both can be used in schools as part of an ORF assessment system (Nese & Kamata, 2020).
  • Researchers generated a two-part binomial-lognormal joint factor model for ORF that includes components for reading accuracy and reading speed, and computation algorithms by maximum likelihood estimation (Potgieter, Kamata, & Kara, 2017) and by Bayesian MCMC estimation methods, including their standard errors (Kara, Kamata, Potgieter, & Nese, 2020).
  • Researchers generated a model-based words correct per minute (WCPM) parameter from the two-part binomial-lognormal joint factor model, which is on the same scale as traditional ORF WCPM scores. The standard error for the CORE model-based WCPM estimates was substantially smaller than the reported standard errors of traditional ORF systems, especially for scores at/below the 25th percentile. A large proportion of sample scores, and an even larger proportion of scores at/below the 25th percentile (about 99%) had a smaller standard error than the reported standard errors of traditional systems (Nese & Kamata, 2020).

Structured Abstract

Setting: The project was conducted with public elementary students in Grades 2 through 4 in 17 schools and five school districts (two towns, two suburbs, and one city) in Oregon or Washington.

Sample: Phase I participants included approximately 59 teachers and 978 students. Phase II participants included approximately 121 teachers and 2,897 students. Phase III participants included approximately 108 teachers and 2,618 students.

Assessment: The Computerized Oral Reading Evaluation (CORE) is an oral reading fluency assessment for students in Grades 2 through 4 that incorporates automatic speech recognition and a latent variable psychometric model. CORE uses speech recognition software that can minimize or eliminate the potential for administration errors by standardizing the delivery and setting, and automating scoring. CORE includes shorter passages (50 to 85 words) that are equated, horizontally scaled, and vertically linked, with a scale metric to reduce the standard error of measurement, improve psychometric standards for reliability and validity, and yield scores sensitive to instructional change.

Research Design and Methods: The project team developed 330 passages for oral reading fluency assessment: 110 at each of Grades 2-4, with 20 long passages (85 words, 5), 30 medium passages (50 words, 5), and 60 short passages (25 words, 5) for each grade. Comparisons were made for scoring methods (human scores, traditional human ORF scores, and automatic speech recognition scoring) and passage length (CORE passages vs. traditional oral reading fluency passages). The project team then developed and validated a binomial-lognormal joint factor model for oral reading fluency that incorporates response time and response accuracy. The team derived a model-based words correct per minute (WCPM) parameter from this model, which is on the same scale as traditional ORF WCPM scores, and developed computation algorithms by maximum likelihood estimation and by Bayesian MCMC estimation methods, including their standard errors. The model was used to estimate and equate passage-level parameters for the 150 medium and long CORE passages and the equated passage parameters were applied to estimate the model-based WCPM scores and their standard errors. The team then conducted a repeated measures study to compare the consequential validity properties of CORE compared to a traditional oral reading fluency assessment (easyCBM) for students in Grades 2 through 4, including student growth trajectories, standard errors and reliability, and predictive and concurrent validity using state reading test scores and easyCBM comprehension scores.

Control Condition: There is no control condition for this study.

Key Measures: The easyCBM ORF assessments were used as a traditional ORF assessments to establish passage content and criterion validity during Phase I and as a comparison for consequential validity during Phase III. State reading test scores (for students in Grades 3 and 4) and easyCBM reading comprehension scores (for all students in Grades 2 through 4) were used for predictive and concurrent validity analyses in Phase III. The team developed teacher questionnaires to measure teachers' perceptions of (a) feasibility, desirability, and passage length (Phase I), (b) traditional ORF assessment, and the CORE system and assessment procedures (Phase III), and (c) utility and interpretability of the CORE score reporting (Phase III).

Data Analytic Strategy: Linear mixed-effect models were used to validate ASR scoring and CORE passage length. The team developed a two-part model that includes components for reading accuracy and reading speed. The accuracy component is a binomial-count factor model, where accuracy is measured by the number of correctly read words in the passage. The speed component is a log-normal factor model, where speed is measured by passage reading time. Parameters in the accuracy and speed models are jointly modeled and estimated. Predictive modeling was used to analyze concurrent and predictive validity, and latent growth curve modeling was used to model student growth.

Related IES Projects: A Comprehensive Measure of Reading Fluency: Uniting and Scaling Accuracy, Rate, and Prosody (R305A200018); Developing Computational Tools for Model-Based Oral Reading Fluency Assessments (R305D200038). The CORE passages are also being used for progress monitoring in Moby.Read, an automated oral reading fluency and comprehension assessment for Grades K-5, developed by AMI and supported in part by IES (EDIES17C0030, 91990020C0070).

Project website: https://jnese.github.io/core-blog/

Publications

Nese, J. F. T. & Kamata, A. (2020). Evidence for automated scoring and shorter passages of CBM-R in early elementary school. School Psychology. Advance online publication. https://psycnet.apa.org/doi/10.1037/spq0000415

Kara, Y., Kamata, A., Potgieter, C., & Nese, J. F. T. (2020). Estimating model-based oral reading fluency: A Bayesian approach. Educational and Psychological Measurement. 80(5), 847-869.

Nese, J. F. T. & Kamata, A. (2020). Addressing the large standard error of traditional CBM-R: Estimating the conditional standard error of a model-based estimate of CBM-R. I. Assessment for Effective Instruction. https://doi.org/10.1177/1534508420937801

Potgieter, C. J., Kamata, A., & Kara, Y. (2017). An EM algorithm for estimating an oral reading speed and accuracy model. arXiv preprint arXiv:1705.10446. (available at https://arxiv.org/abs/1705.10446).


Back