Skip Navigation
Funding Opportunities | Search Funded Research Grants and Contracts

IES Grant

Title: Teaching the Crosscutting Concept of Emergent Cause-and-Effect to Overcome Misconceptions
Center: NCER Year: 2015
Principal Investigator: Chi, Michelene Awardee: Arizona State University
Program: Cognition and Student Learning      [Program Details]
Award Period: 4 years (8/16/20158/15/2019) Award Amount: $1,456,431
Type: Development and Innovation Award Number: R305A150336

Co-Principal Investigator: Merritt, Joi

Purpose: To address students' persistent misconceptions about the cause-effect relations of scientific phenomena, the research team will develop and pilot test an intervention to teach the common structure that appears to underlie many science concepts and phenomena, and in particular, those in which students have misconceptions (i.e., the "emergence" schema). The Principal Investigator's prior work suggests that misconceptions occur when a student incorrectly uses a more familiar schema to explain the cause-effect relations of these types of phenomena. This intervention will be notably different from current instructional approaches in that it will address multiple process concepts and phenomena across a variety of disciplines by teaching the structure that underlies those concepts and phenomena rather than focusing on remediating one misconception at a time.

Project Activities: In the first two years of the project, the research team will iteratively develop the modules for the intervention. In Year 3, they will run a pre-pilot study to determine the most effective module or combination of modules. The team will revise the modules based on the findings from this study. In Year 4, the research team will run a pilot study to compare the most effective module(s) identified in the pre-pilot study against a business-as-usual control condition. Throughout both studies, the research team will collect measures of student learning as well as measures of feasibility and fidelity of implementation.

Products: The products of this project include a fully developed intervention for high school students to teach the crosscutting concept of emergence and peer-reviewed publications.

Structured Abstract

Setting: Participating high schools are located in an urban district in Arizona. Iterative development data collection and the pre-pilot study will take place in an after school context while the pilot study will take place in high school classrooms.

Sample: Researchers will recruit approximately 80 high school students to participate in the iterative development process. The research team will recruit an additional 80 participants to participate in the pre-pilot study. Approximately 26 classrooms, each with about 20 students, will participate in the pilot study. Participants will be reflective of the demographics of their school, which has a diverse population (58% Hispanic, 33% White, 4% African American, 2% Asian/Pacific Islander, and 2% Native American) and has 58% of students with free or reduced lunch status.

Intervention: The intervention will consist of a module or series of modules to teach the crosscutting emergence structure that underlies many science concepts and phenomena. The research team will develop a Process Module to teach the emergence schema to students directly, by contrasting everyday emergent and sequential processes. They will also develop two Science Modules for diffusion and natural selection that instantiate these concepts within the emergence schema by directly pointing out and explaining each concept's emergent features and attributes. The module (or combination of modules) with the best transfer learning outcomes from the pre-pilot study will be selected as the intervention in the pilot study.

Research Design and Methods: In Years 1 and 2, the research team will develop the modules and conduct four supplemental studies with small numbers of participants to inform their design. Participants will interact with the materials and will participate in group discussions. The data collected will be used to design certain components of the modules (e.g., determining which examples to use for contrasting emergent and sequential processes). In Year 3, the research team will conduct the pre-pilot study in an after school setting. Students will be randomly assigned to one of four conditions (Process Module only, Science Modules only, all modules, or control) to see which module or combination of modules most effective. In Year 4, the research team will run the pilot study, which will be a quasi-experimental design comparing classrooms randomly assigned to either the best approach identified in the pre-pilot study (the intervention condition) or a control condition. For both the pre-pilot and pilot studies, students will complete pre-tests and post-tests, and feasibility and fidelity of implementation measures will also be collected.

Control Condition: The control condition in both the pre-pilot and pilot study is business as usual instruction.

Key Measures: For iterative development, measures will primarily include transcriptions of students' responses, feedback, and group discussions. For the pre-pilot and pilot studies, primary measures include researcher-developed pre- and post-tests to measure students' understanding of emergent and sequential processes as well as five science concepts (diffusion, natural selection, and three to-be-determined transfer concepts). Feasibility and fidelity of implementation will be measured with process data (e.g., students' learning progress), log data (e.g., time spent on an activity), classroom observations, and survey data.

Data Analytic Strategy: For both the pre-pilot and pilot studies, researchers will use multilevel structural equation models to account for the repeated measures design and the hierarchical nature of the data. The analyses will address whether teaching a general schema about emergence will help students better learn and understand other emergent science concepts with reduced misconceptions.


Book chapter

Henderson, J. B., Langbeheim, E., and Chi, M. T. H. (in press). Addressing Robust Misconceptions through Ontological Distinction between Sequential and Emergent Processes. In B. Sherin, T. Amin, & O. Levrini (Eds.), Converging and Complementary Perspectives on Conceptual Change, Routledge..