Analysis of Title IIB Mathematics and Science Partnerships in the Northwest Region
Analysis of Title IIB Mathematics and Science Partnerships in the Northwest Region

June 2007

Prepared by
Edith Gummer
Northwest Regional Educational Laboratory

Jennifer Stepanek
Northwest Regional Educational Laboratory
Issues & Answers is an ongoing series of reports from short-term Fast Response Projects conducted by the regional educational laboratories on current education issues of importance at local, state, and regional levels. Fast Response Project topics change to reflect new issues, as identified through lab outreach and requests for assistance from policymakers and educators at state and local levels and from communities, businesses, parents, families, and youth. All Issues & Answers reports meet Institute of Education Sciences standards for scientifically valid research.

June 2007

This report was prepared for the Institute of Education Sciences (IES) under Contract ED-06-CO-002 by Regional Educational Laboratory Northwest administered by Northwest Regional Educational Laboratory. The content of the publication does not necessarily reflect the views or policies of IES or the U.S. Department of Education nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

This report is in the public domain. While permission to reprint this publication is not necessary, it should be cited as:

This report is available on the regional educational laboratory web site at http://ies.ed.gov/ncee/edlabs.
This report describes the first year of the funded professional development activities in the Title IIB Math and Science Partnership projects in the Northwest Region and the evaluation models. The analysis is structured around the factors of professional development associated with changes in teacher knowledge and practice.

Title IIB Mathematics and Science Partnerships (MSPs) are the main resource in the No Child Left Behind Act to support the ongoing professional development of science and mathematics teachers. Funds available to states must be used to purchase high-quality professional development. In addition, with increasing concerns about accountability throughout the field—from federal agencies to the individual classroom teacher and student—educational interventions must demonstrate a positive impact on important educational outcomes. The Title IIB MSPs are intended to positively affect content knowledge and pedagogical skills for mathematics and science teachers. The ultimate goal is improved student achievement in mathematics and science.

This report describes the nature of the funded professional development activities in the Title IIB MSP projects in the Northwest Region and characterizes the models of evaluation during their first year of implementation, 2004–05. The analysis is structured around the factors of professional development that have been identified as associated with changes in teacher knowledge and practice (Desimone et al., 2002; Garet, Birman et al., 1999; Garet, Porter et al., 2001; Porter et al., 2000). The description of the evaluations examines the extent to which the projects have connected their activities to measurable outcomes for teacher knowledge and practice and for student achievement, measured those outcomes, and clearly articulated their qualitative and quantitative study designs.

All projects met at least some of the criteria for high-quality professional development

The prevalent model of professional development in the MSP projects was a two-week, content-focused workshop or institute held during the summer, with follow-up support for teachers during the school year. One reason that this model was so common is that three of the five Northwest Region states required it in their requests for proposals. However, most of the projects in Idaho and Montana—the two states that did not require an institute—also conform to this model. This may be because the model is highlighted and defined in both the legislation and the requests for proposals, or it may also reflect the prevalence of the institute model in the previously funded Eisenhower Professional Development Program.
Although the summer institute was prevalent, the projects in the Northwest Region did feature many variations on that model. Projects differed in the way they structured and conducted the follow-up activities, as well as in the amount of ongoing support. Some projects included less emphasis on the summer workshop and more on ongoing, school-embedded, and collaborative activities for teachers. Despite these variations, the multiple authorized activities suggested in the legislation—such as recruitment of mathematics, engineering, and science majors to teaching through a variety of mechanisms—are not the focus of projects funded in the Northwest Region.

All of the projects provided evidence in the documentation that they met at least some of the criteria for high-quality professional development. It is far from clear whether projects must meet all criteria in every category to be considered effective. No available evidence indicates that professional development projects are more effective when they are rated highly in all categories than when they receive high ratings in only some categories. Nor is there evidence that any criterion is more important or less important than the others.

Evaluations of many projects relied on capturing participant reactions and self-reporting as the only sources of evidence of their effectiveness. Few projects used well developed instruments to measure changes in teacher content knowledge. Projects indicated difficulties using state assessments to directly measure the impact of projects on student achievement. For instance, the professional development might include a majority of teachers who were teaching at a level different from that targeted by the state science assessment. The lack of instruments for measuring changes in teacher and student knowledge of specific content led some projects to attempt to develop their own measures, while other projects resorted to less rigorous methods.

Care should be taken in interpreting these findings because this analysis is based on the first year of implementing the Title IIB MSP programs, when evaluation designs may not be fully mature. However, the minimal extent to which the project evaluations addressed evaluation standards that should be well known in the evaluation and professional development community indicates larger issues than the barriers identified above. Clearly, there is room for improvement in the project evaluations.

Ongoing technical assistance is necessary to increase the evaluation skills of the state education agency staff responsible for the Title IIB MSP programs and the staff and evaluators of the individual projects. The U.S. Department of Education regional forums are a start in informing stakeholders about the method and instruments to improve evaluations, but access to these regional forums is limited by project budget constraints.

Evaluation presented significant challenges to the Title IIB MSP projects

Evaluation design and implementation in year one of the Title IIB MSP projects were problematic. In interviews many project staff and evaluators reported difficulties designing and implementing adequate evaluation due to the late awarding of the Title IIB MSP contracts for professional development. In addition, limited budgetary resources were identified as barriers to effective evaluation.
TABLE OF CONTENTS

Summary iii

Overview 1

1. This report addresses three research questions 1
2. Title IIB MSP programs vary across the five Northwest Region states 4
3. The Title IIB program has multiple implications for analyzing how policy is translated into professional development program implementation 5

What is the nature of the professional development provided by the Title IIB MSP projects in the Northwest Region? 5

1. Duration provides opportunities for in-depth study and ongoing support 6
2. Activity type has two dimensions: traditional and reform 6
3. Collective participation includes activities for teachers from the same school or district 7
4. Content focus addresses the substance of professional development 7
5. Active learning describes participants’ learning experiences 8
6. Coherence indicates how connected professional development is to other teacher learning and development activities 8
7. There are four criteria for describing partnership 9
8. Preconditions for partnership include existing relationships and mutual goals 9
9. Complexity characterizes the structure of the partnership 9
10. Interdependence describes how the partners organize their work 10
11. Communication describes the frequency of contact among partners 10
12. Only a brief comparison with the Council of Chief State School Officers project is possible 10

What is the nature of the evaluations of the Title IIB MSP projects in the Northwest Region? 11

1. Project context provides information about factors that might influence implementation 11
2. Evaluation purpose should be clearly identified 11
3. Evaluation questions should be aligned with project goals 12
4. The identity and credibility of the evaluator should be clear 12
5. Evaluation plans should describe stakeholder involvement 12
6. Methodological approaches need to be clearly described 13
7. Plans should report information sources and sampling 13
8. Information about data collection instruments is essential 13
9. Specific data collection procedures should be identified 14
10. Descriptions of quantitative analysis processes should be detailed 14
11. Qualitative analysis processes should be articulated 14
12. Results from the evaluation analyses here cannot be compared with those from the Council of Chief State School Officers 15

Under what conditions is the development of experimental or quasi-experimental models of evaluation appropriate and successful? 15

Findings suggest future directions for research 16

Notes 17

Appendix A Analysis of the Title IIB Mathematics and Science Partnerships professional development projects by state 18
Appendix B Analysis of the Title IIB MSP Professional Development evaluation projects by state 42
Appendix C Interview protocol 48
Appendix D Methodology 50
Appendix E Comparison of professional development criteria: Council of Chief State School Officers and Northwest Regional Educational Laboratory 57

References 58

Boxes
1 Details of the Title IIB Mathematics and Science Partnership legislation 2
2 Details of the Improving Evaluation of Professional Development in Mathematics and Science Education project 3

Figures
1 Most projects provided 80 or more hours of professional development 6
2 More than half of projects included at least some reform activities 7
3 Almost two-thirds of projects included collaboration among teachers from the same school or district 7
4 Most projects at least somewhat addressed content knowledge and teaching specific content 7
5 Most projects provided active learning in the form of planning for implementation 8
6 Ongoing communication was the most common dimension of coherence addressed by projects 9
7 Most activities were designed to produce outcomes only for teachers and schools 9
8 More projects had a vertical structure than had a horizontal structure 9
9 More than half the projects served a large geographic region 10
10 A pooled approach to collaboration was more common than a reciprocal approach 10
11 Just over half of projects provided information about frequency of communication in the documentation 10
12 Less than half of projects included information about the project context that might have influenced project implementation 11
13 Few projects included details on how the projects used the information from the evaluation 12
14 Few projects had evaluation questions that were clearly articulated, well aligned with project goals and objectives, and explicitly tied to data sources 12
15 More than a third of projects identified a specific person for the evaluation and included that person’s qualifications 12
16 Seven project evaluations mentioned stakeholder involvement 13
17 Over half the projects included some information about the design of the evaluation 13
More than half of projects identified the sources of information

Most projects provided some information about instruments they used to collect data for their reports

Few projects provided complete information on when and how data were collected

Most evaluations did not provide complete information on quantitative analysis

Only one project provided any information about how qualitative data were analyzed

Tables

A1 Journeys in Mathematics project features
A2 Classroom Assessment for Mathematics Performance project features
A3 Coeur d’Alene project features
A4 Developing Mathematical Thinking project features
A5 Twin Falls project features
A6 Billings project features
A7 Creating Opportunities in Mathematics for Exemplary Teaching project features
A8 Flathead and Salish Kootenai College project features
A9 High School Chemistry project features
A10 Improving Science Teaching project features
A11 Montana Science and Mathematics Consortium project features
A12 Greater Oregon Mathematics Partnership project features
A13 High Desert project features
A14 Northwest Regional Education Service District project features
A15 Willamette Valley Watershed Partnership Project features
A16 Eastern Washington project features
A17 Partnership for Reform in Secondary Science and Mathematics project features
A18 Watershed Investigation Partnership project features
A19 Whatcom and Skagit project features
D1 Data sources
D2 Analysis framework—professional development
D3 Analysis framework—partnership
D4 Analysis framework—evaluation