Promoting a Positive Math Identity

Module 1
The importance of math identity for math success
Training series progression

Module 1

The importance of math identity for math success
• Build knowledge of what math identity is and why it is important for math success

Module 2

Building the math environment (2 parts)
• Learn how to create a classroom environment that supports a positive math identity

Module 3

Kernels of practice
• Learn how to implement targeted activities that promote a positive math identity
Module 1 learning objectives

By the end of this session, you will be able to:

- Reflect on your own math identity.
- Describe how math identity impacts students’ engagement and learning.
- Recognize the role adults play in creating math environments that support the development of a positive math identity.
- Understand how math identity and the Standards for Math Practice support and build on each other.
Activity

Take a few minutes to write your “math autobiography”:

The last math course I took was ____________.

When I think about doing math, I feel _______.

An early experience in a math class that stands out for me was when___________.

One math teacher I remember is ____________, because ______________.

My family’s attitude toward math was ________.

I think I learned my present attitude toward math when ________________________.

I believe I have been successful in math, because ______________.
Would you describe your relationship to math as mostly positive, mostly negative, or somewhere in between? Why?

How do you think your experience with math as a young person shaped your "math life?"

In what ways, do you think, does your relationship to math influence or impact your work as a math teacher?
Elements of math success

- Conceptual understanding
- Procedural skill and fluency
- Mathematical reasoning ability
Elements of math success

Math agency
Conceptual understanding
Math identity
Procedural skill and fluency
Supportive environment
Mathematical reasoning ability
Math Success
Elements of math success

- Math identity
- Math agency
What is math identity?
• Beliefs about one’s self as a math learner.
• Beliefs about how one is perceived by others as a math learner.
• Beliefs about math and the nature of math abilities.

Content source: Solomon, 2008
What is math identity?
• Beliefs about one’s self as a math learner,
• Beliefs about how one is perceived by others as a math learner,
• Beliefs about math and the nature of math abilities.

What is math agency?
• Outward expression of math identity.

Content source: Aguirre, Mayfield-Ingram, & Martin, 2013
Why should we care about identity and agency?
Connection with Standards for Math Practice

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
What’s so special about math?
Amongst adults

- 93 percent report experiencing some level of math anxiety

Prevalence of negativity about math

Content source: Luttenberger, Wimmer, & Paechter, 2018
Prevalence of negativity about math

Amongst adults
- 93 percent report experiencing some level of math anxiety

Amongst students taking PISA
- 59 percent report worrying math will be difficult

Content source: Luttenberger, Wimmer, & Paechter, 2018
Prevalence of negativity about math

Amongst adults
- 93 percent report experiencing some level of math anxiety

Amongst students taking PISA
- 59 percent report worrying math will be difficult
- 33 percent report they get very tense when completing math homework

Content source: Luttenberger, Wimmer, & Paechter, 2018
Prevalence of negativity about math

Amongst adults
• 93 percent report experiencing some level of math anxiety

Amongst students taking PISA
• 59 percent report worrying math will be difficult
• 33 percent report they get very tense when completing math homework
• 31 percent state they get very nervous doing math problems

Content source: Luttenberger, Wimmer, & Paechter, 2018
Negativity about math

Math, more than other domains, carries baggage that can set students up to hold negative attitudes and beliefs.

I’m just not a numbers person.
I’m just not a letters person.
I’m so bad at reading.
Google image search for “Math Genius”

What do you notice about these images?

What cultural assumptions are reflected?
Stereotypes about math

Math ability is a “gift”

Certain people are more likely to get the “gift”
Stereotypes about math

Math ability is a “gift”

Certain people are more likely to get the “gift”

Some students will be less likely to develop strong math identities

Content source: Chestnut, Lei, Leslie, & Cimpian, 2018
Which groups does our society associate with brilliance?

Thanks, Mom and Dad, for All Your Support

By BILL MARSH JAN. 18, 2014

THE DISCONNECT BETWEEN PARENTS’ WEB SEARCHES AND REALITY
“Boys do not pursue mathematical activities at a higher rate than girls do because they are better at math. They do so, at least partially, because they think they are better.”

Shelley Correll, Stanford sociologist

Content source: Correll, 2001
Stereotypes emerge early

- Children endorse the stereotype that math is for boys as early as second grade.
- Gender stereotypes emerge before differences in math achievement.

Content source: Bian, Leslie, & Cimpian, 2017
Math is a gateway and gatekeeper
 • Access to advanced courses
 • Entrance to college
 • Access to math-dependent careers

Evident at a young age – early math skills are the strongest predictor of later academic outcomes

Content source: Douglas & Attewell, 2017; Duncan et al., 2007
What role do adults play?
Children whose *parents* are anxious about math are more likely to:

- Have math anxiety themselves
- Show lower math achievement

This is particularly true when math anxious parents provide frequent math homework help.

Content source: Casad, Hale, & Wachs, 2015; Maloney, Schaeffer, & Beilock, 2013
Children whose teachers are anxious about math are more likely to:

- Have math anxiety themselves
- Endorse negative math stereotypes
- Learn less in math

Teachers with math anxiety spend less time teaching math and rely more on teaching skills and facts

Content source: Beilock, Gunderson, Ramirez, & Levine, 2010; Sloan, 2010
Adults’ attitudes matter

Math ability is a “gift”

Certain people are more likely to get the “gift”

Teachers prescribe positive identities to particular students
Adults’ attitudes matter

• Teacher expectations for student achievement in math influence future student outcomes

• Teachers’ implicit attitudes are related to classroom achievement gaps

“Be careful how you interpret the world; it is like that.”
Erich Heller

Content source: Jamil, Larsen, & Hamre, 2018; Van den Bergh, et al., 2010
Reflection

What factors do you consider – consciously or not – when you first encounter a student?

What influences a teacher’s perceptions of a student’s potential?

How do educators’ perceptions of this potential influence their expectations and student performance?
Key aspects of math identity and agency
Key aspects of math identity

Math Identity

Math anxiety

Sense of belonging
Growth mindset
Perceived utility
What is belonging?

Feeling like an accepted, valued, and legitimate group member.
Belonging is a fundamental need

The need for social connections is innate and universal.

It is a need, not a want.

Content source: Baumeister & Leary (1995)
Exclusion is painful

Psychological consequences

- Sadness, anger
- Decreased self-esteem
- Impaired self-regulation
- Poorer cognitive function

Physical consequences

- Brain science suggests social pain and physical pain are experienced in overlapping brain systems
- Loneliness poses the same health risks as smoking, drinking, and obesity

Content source: Baumeister & Leary, 1995
Belonging in school: So what?

Positive Health Outcomes
- Substante abuse
- Early sexual initiation
- Violence
- Suicidal ideation
- Eating disorder development

School Belonging

Positive Academic Outcomes
- Self-efficacy
- Motivation
- Attendance
- Persistence
- Achievement

Decreased:

Content source: Goodenow, 1993; Osterman, 2000
Belonging as a “Psychological Hub”
Lack of belonging saps concentration and focus

Do I belong here?

I’m not sure ...

More vigilant

Classmate didn’t say “hi” in hall
Bad grade on math quiz
Teacher didn’t call on me

Assume the worst

Content source: Walton & Cohen, 2007
Classmate didn’t say “hi” in hall

I’m not sure I belong ...

No one at this school likes me.

Less effort toward relationships.

Yes, I belong!

It was loud in the hallway.

Be more direct next time.

Less effort toward relationships.

Do I fit in socially?

Interpretation

Response

Content source: Walton & Cohen, 2007
Belonging is multidimensional

Content source: Lewis & Hodges, 2015
I need to be more precise when I describe my ideas.

I hate math.
I'm not cut out for this.

Disengagement

Negative critique from partner in math class

Yes, I belong!

I need to be more precise when I describe my ideas.

Rephrase ideas

Interpretation

Do I fit in intellectually?
Olivia’s Story

Olivia is an eighth-grade girl who enjoys school and considers herself to be smart. She lives in a small town and hopes to be the first person in her family to attend college. Olivia has always excelled in math and has mostly earned As, with an occasional B.

During seventh grade, Olivia’s teacher identified her to enroll in an advanced math class, setting her up to take algebra in eighth grade. Olivia has found the work challenging and earned her first ever D on the first unit test.

Olivia’s teacher asked her to stay after class to discuss her performance. When they spoke, her teacher said that maybe algebra was too hard for her. If her grades don’t improve, her teacher will consider moving her into the regular eighth grade math class.
How does this aspect of math identity support and build on the SMPs?

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
How does this aspect of math identity support and build on the SMPs?

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
What is a growth mindset?

The belief that intelligence and ability can be developed with effort, strategies, and support.

Content source: Blackwell, Trzesniewski, & Dweck, 2007
What are mindsets?

Fixed Mindset
Intelligence and ability are fixed qualities from birth that cannot be changed significantly.

Growth Mindset
Intelligence and ability can be developed with effort, strategies, and support.

Content source: Blackwell, Trzesniewski, & Dweck, 2007; Claro, Paunesku, & Dweck, 2016
Mindsets are domain specific

Can I get better at this?
Growth mindset and math

Student mindset predicts math success

• Students with growth mindsets tend to have better math grades and test scores than students with fixed mindsets.

Content source: Blackwell, Trzesniewski, & Dweck, 2007; Claro, Paunesku, & Dweck, 2016
How does growth mindset impact math achievement?

When students have a growth mindset, they are MORE likely to:

- Believe that effort pays off. (“The harder you work at something, the better you will be at it.”)

- Set learning goals for themselves. (“The main reason I do my schoolwork is because I like to learn new things.”)

- Believe effort-based strategies will help them overcome failures. (“If I got a bad grade, I would work harder.”)

Content source: Blackwell, Trzesniewski, & Dweck, 2007
How does growth mindset impact math achievement?

When students have a growth mindset, they are MORE likely to:

• Believe that effort pays off. (“The harder you work at something, the better you will be at it.”)

• Set learning goals for themselves. (“The main reason I do my schoolwork is because I like to learn new things.”)

• Believe effort-based strategies will help them overcome failures. (“If I got a bad grade, I would work harder.”)

When students have a growth mindset, they are LESS likely to:

• Attribute failures to things they cannot control (“The test was unfair.”)

Content source: Blackwell, Trzesniewski, & Dweck, 2007
How does growth mindset impact math achievement?

When students have a growth mindset, they are MORE likely to:

• Believe that effort pays off. (“The harder you work at something, the better you will be at it.”)
• Set learning goals for themselves. (“The main reason I do my schoolwork is because I like to learn new things.”)
• Believe effort-based strategies will help them overcome failures. (“If I got a bad grade, I would work harder.”)

When students have a growth mindset, they are LESS likely to:

• Attribute failures to things they cannot control (“The test was unfair.”)

In sum, the research suggests that students with growth mindsets are willing to put in effort even when they struggle or fail, and they stay focused on what they can learn. These behaviors result in better math performance over time.

Content source: Blackwell, Trzesniewski, & Dweck, 2007
How does this aspect of math identity support and build on the SMPs?

What is a Growth Mindset?
The belief that intelligence and ability can be developed with effort, strategies, and support.

Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
How does this aspect of math identity support and build on the SMPs?

What is a Growth Mindset?
The belief that intelligence and ability can be developed with effort, strategies, and support.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
What is perceived utility?

Belief that math is useful, worthwhile, and relevant to life outside of school, now and in the future.

Content source: Hulleman & Harackiewicz, 2009
Math – why bother?

“What I find difficult in school is to understand the concept of learning advanced math. When I grow up, the job I want to do will have nothing to do with radicals, algebra, imaginary numbers, and all this other complicated stuff. I understand why we learn basic math, but why all this extra stuff? My job will never require any of that. Yes, you might say, "Well you'll need it later in life", but I always have a calculator for that. In fact if you go to your local supermarket, they use a cash register with a built in calculator. Besides occurrences with money (and I'm sure I'm not going to have questions dealing with radicals), why are we taught this stuff?”

Letter to Dr. Math, from mathforum.org

Content source: National Council of Teachers of Mathematics, Math Forum, 2005
Why does perceived utility matter?

- Students are more motivated when they see the connections between what they are learning, how it relates to their own life and goals, and how it might be useful later on in life.
Why does perceived utility matter?

• A simple classroom intervention was designed to help students identify the connections between math materials and their daily lives.

• Results from that intervention included:
 • Increased interest in the topic
 • Increased confidence
 • Better academic performance

• It was also effective to have parents help promote the utility of math.

Content source: Harackiewicz, Rozek, Hulleman, & Hyde, 2012; Hulleman & Harackiewicz, 2009
How does this aspect of math identity support and build on the SMPs?

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
How does this aspect of math identity support and build on the SMPs?

What is perceived utility?

Belief that math is useful, worthwhile, and relevant to life outside of school, now and in the future.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
What is math anxiety?

Feeling apprehensive, tense, and fearful about situations involving math.
What is math anxiety?

Feeling apprehensive, tense, and fearful about situations involving math

“Math. I hate math. It makes me feel all wiggly inside. During the [high-stakes test] last year, I thought I was going to throw up when we did the math part. I didn’t, but I always feel that way—even when we just line up for math class.”

Quote from 10-year-old girl asked about her least favorite subject

Content source: Maloney, Schaeffer, & Beilock, 2013
What is math anxiety?

- Different from just “not liking math” or having poor math skills.
- It is a global phenomenon, and it is highly prevalent—even in very young children.
- It increases with age, particularly math test anxiety.

Content source: Ashcraft, 2002; Gierl & Bisanz, 1995
Implications of math anxiety

Compared with their less math-anxious peers, students with math anxiety perform worse in math from elementary school through college.

Content source: Ma & Xu, 2004
Reciprocal cycle

- Math anxiety
- Math avoidance
- Poor preparation
- Worse performance

Content source: Ashcraft, 2002
Math anxiety robs performance

• Math anxiety disrupts working memory.

• Thus, math anxiety hurts performance by robbing the brain of cognitive capacity that could be spent on solving the math problems at hand.

Content source: Ashcraft & Kirk, 2001
How does this aspect of math identity support and build on the SMPs?

What is Math Anxiety?
Feeling apprehensive, tense, and fearful about situations involving math.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
How does this aspect of math identity support and build on the SMPs?

What is Math Anxiety?
Feeling apprehensive, tense, and fearful about situations involving math.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Content source: Common Core State Standards Initiative, n.d.
Tying it all together
Tying it all together

- Sense of Belonging
- Growth Mindset
- Math Identity
- Perceived Utility
- Math Anxiety

- Key components of math identity are distinct but interrelated
- Promoting one can benefit the others
Promoting math identity in the classroom

Video source: Inside Mathematics, n.d.
Promoting math identity in the classroom

• What key aspects of identity did you see in this discussion? How did these support one another?
• Which SMPs did you see students engage in?
Connection with Standards for Math Practice

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Reflection

Given what you’ve heard today, what do you think the math autobiographies of your typical student might look like?

How can you apply what you've learned to change how you help your students write their own math autobiographies?
What's next?

Module 1
The importance of math identity for math success
• Build knowledge of what math identity is and why it is important for math success

Module 2
Building the math environment (2 parts)
• Learn how to create a classroom environment that supports a positive math identity

Module 3
Kernels of practice
• Learn how to implement targeted activities that promote a positive math identity
Regional educational laboratories (RELs) partner with practitioners and policymakers to use data and evidence to help solve educational problems that impede student success. We do this by:

- Conducting rigorous research and data analysis
- Delivering customized training, coaching, and technical support
- Providing engaging learning opportunities
Content References

• Chestnut, E., Lei, R., Leslie, S. J., & Cimpian, A. (2018). The myth that only brilliant people are good at math and its implications for diversity. Education Sciences, 8(2), 65.

Content References

Content References

Image References

- elpesce. (2013, October 14). Drunk people at my work have no time to waste [Message board post]. Retrieved from https://www.reddit.com/r/funny/comments/1oexzn/drunk_people_at_my_work_have_no_time_to_waste/

Video References