Summary of research on the effectiveness of math professional development approaches

Russell Gersten, Mary Jo Taylor, Tran D. Keys, Eric Rolfhus, and Rebecca Newman-Gonchar
Instructional Research Group

This comprehensive literature review identified 643 studies of professional development interventions related to math in grades K–12. Thirty-two of the studies used a research design for assessing the effectiveness of math professional development approaches, and five of those met What Works Clearinghouse evidence standards. Of the five, only two found positive effects on student math proficiency.

This study used a systematic process modeled after the What Works Clearinghouse (WWC) study review process to answer the question: What does the causal research say are effective math professional development interventions for K–12 teachers aimed at improving student achievement? The study identified and screened 910 research studies in a comprehensive literature search for effectiveness studies of math professional development approaches. (See appendix A for details of the search, screening, and review process.)

Of these 910 studies, 643 examined professional development approaches related to math in grades K–12 and were conducted in the United States. Of the 643 studies, 32 focused primarily on math professional development provided to teachers and used a research design for examining effectiveness (see appendix B for a list of the 32 studies). Five of those were determined to have met WWC evidence standards (version 2.1) either with or without reservations (appendix C). And of those five, only two found positive effects on students’ math proficiency.

Thus, there is very limited causal evidence to guide districts and schools in selecting a math professional development approach or to support developers’ claims about their approaches. The limited research on effectiveness means that schools and districts cannot use evidence of effectiveness alone to narrow their choice. Instead, they must use their best judgment until more causal evidence becomes available.
The effects of five professional development approaches on student math proficiency

Of the five math professional development approaches that had effectiveness studies that met WWC standards, two had statistically significant positive effects, one had limited effects, and two had no discernible effect (table 1).³

Table 1. Summary of findings for the five effectiveness studies of math professional development approaches that met What Works Clearinghouse evidence standards

<table>
<thead>
<tr>
<th>Findings of the effectiveness study</th>
<th>Professional development approach</th>
</tr>
</thead>
</table>
| Statistically significant positive effects a | • Intensive math content courses accompanied by follow-up workshops (Sample McMeeking, Orsi, & Cobb, 2012).
• Lesson study focused on linear (measurement) model of fractions (Perry & Lewis, 2011). |
| Limited effects b | • Cognitively Guided Instruction (Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Jacobs, Franke, Carpenter, Levi, & Battey, 2007). c |
| No discernible effect d | • America’s Choice (Garet et al., 2010, 2011).
• Pearson Achievement Solutions (Garet et al., 2010, 2011). |

a. Implies that the researchers are confident that there is a real, causal relationship between the professional development approach and any subsequent changes in student performance and that the probability of observing such a result by chance is very slim. For more information, see U.S. Department of Education (2011) and WWC Glossary of Terms (http://ies.ed.gov/ncee/wwc/Glossary.aspx).

b. The effects were limited to knowledge of the equal sign. None of the measures of broader mathematics proficiency were significant.

c. The findings described differ from those reported in Yoon, Duncan, Lee, Scarloss, & Shapley (2007), which evaluated studies of professional development from 1986 to 2006 using standards similar to but less rigorous than those of the WWC standards (personal communication with Kwang Suk Yoon).

d. Implies that there was no evidence that the professional development approach had an effect on student math proficiency. For more information, see U.S. Department of Education (2011) and WWC Glossary of Terms (http://ies.ed.gov/ncee/wwc/Glossary.aspx).

Source: Authors’ literature review (see appendix A).

Statistically significant positive effects on student math proficiency

Intensive math content courses accompanied by follow-up workshops (Sample McMeeking, Orsi, & Cobb, 2012). This approach, stemming from a Mathematics Science Partnership grant funded by the National Science Foundation, combines math content courses and workshops. Teacher participants selected and enrolled in one or two university summer courses in math (lasting two to three weeks). The courses were geared toward the needs of middle school and upper elementary school teachers (for example, math modeling, algebraic patterns and functions, geometry). Each course focused 80 percent on math content, with time spent on math principles and math problems, and 20 percent on pedagogy. Fall follow-up workshops, held on four Saturdays, focused on designing lessons using the content from the summer courses. The fall courses were taught by university instructors, and the follow-up sessions were directed by both university instructors and district personnel approved by the university. This intensive professional development effort resulted in significant improvement in student math achievement as measured by the statewide assessment. The effect was found only for teachers who enrolled in two full math courses during the summer; there was no effect for teachers who enrolled in only one course.

Lesson study focused on linear (measurement) model of fractions (Perry & Lewis, 2011). In the lesson study approach small groups of teachers observed and analyzed fractions lessons that they planned collaboratively. The lesson study groups met 12–14 times over five months during the school year. Unlike the previous approach, where university instructors or district personnel provided intensive training and follow-up,
teachers took turns leading the group, following the lesson study cycle outlined in the intervention materials. Instructors and consultants provided the intervention materials (including a fractions toolkit that included materials to help students learn how to represent fractions on a number line) and were available to answer teachers' questions as they led their teacher study groups. Implementation was thus similar to actual practice in a school or district. This study resulted in a significant increase of fractions knowledge on a test at the end of the year in grades 2, 3, and 5 but not in grade 4.

Limited effects on student math proficiency

Cognitively Guided Instruction (Carpenter et al., 1989; Jacobs et al., 2007). Cognitively Guided Instruction focused on helping teachers understand how students think about math, what informal knowledge teachers bring to the classroom, and how algebraic principles can be linked to the arithmetic taught in elementary school. Carpenter et al. (1989) examined the effectiveness of Cognitively Guided Instruction provided in a four-week summer workshop. Jacobs et al. (2007) looked at an approach in which teachers met once a month, receiving onsite support from a facilitator one-half day a week. In both cases researchers from local universities conducted the professional development. Neither study provided the information needed to calculate effect sizes using WWC standards (version 2.1). Jacobs et al. (2007) found a statistically significant positive effect on student performance on a test focused on one specific, fairly limited topic: understanding the equals sign for simple addition problems.

No discernible effect on student math proficiency

America's Choice (Garet et al., 2010, 2011). America's Choice asks teachers to solve sets of math problems both individually and in small groups, use precise definitions, give short oral presentations explaining how they solved the problems, and receive feedback on their approach. Teachers present their solutions and discuss the most common student misconceptions associated with the topic. This approach was adapted to conform to the requirements of a national research study on rational numbers for grade 7 students. The adaptations included retooling the scope and sequence of the professional development approach. On a test of student knowledge of rational numbers, no statistically significant effect was observed at the end of either year 1 or year 2.

Pearson Achievement Solutions (Garet et al., 2010, 2011). Each professional development segment of Pearson Achievement Solutions (also referred to as Lesson Lab) focuses on a single problem or task. Each task is designed to elicit multiple approaches, which are intended to fuel extended discussions on the core ideas, common student approaches, and potential misconceptions associated with the task. The tasks were open-ended, and facilitators used their expertise to structure the discussions and determine whether to extend a professional development segment to address teacher responses. Extensive time was devoted to lesson planning, which was supplemented by videos. As in the America's Choice study, this approach was adapted to conform to the requirements of a national research study on rational numbers for grade 7 students. The adaptations included retooling the scope and sequence of the professional development approach. On a test of student knowledge of rational numbers, no statistically significant effect was observed at the end of either year 1 or year 2.

Implications of the findings

Until more causal evidence becomes available, schools and districts must supplement the limited evidence of effectiveness with their best judgment. Schools and districts should be encouraged to rigorously evaluate professional development approaches themselves and, when possible, to report the findings publicly to build up the knowledge base on the topic.
Appendix A. The search, screening, and review process

The research question that guided the systematic review of evidence outlined below was: What does the causal research say are effective math professional development interventions for K–12 teachers aimed at improving student achievement?

Study eligibility criteria

To be included in this review, studies had to meet four relevancy criteria:

- **Topic.** Each study included an intervention, program, or product focused on providing math professional development to teachers. The professional development had to focus on improving teacher content knowledge and instruction in math in order to improve student learning in math.

- **Time.** Math professional development studies had to be published between January 2006 and July 2012 or be identified in Yoon et al. (2007) as having met standards similar to earlier What Works Clearinghouse (WWC) evidence standards.6

- **Sample.** The sample had to include math teachers and their students in grades K–12 in the United States.

- **Study design.** Only studies that used a randomized controlled trial or a quasi-experimental design with a comparison group were included.

Reviewing studies using What Works Clearinghouse evidence standards

Studies were reviewed using the WWC Procedures and Standards Handbook (version 2.1) for group design studies (U.S. Department of Education, 2011). Although each study that met the screening criteria was reviewed by a WWC-certified reviewer, this report is not a WWC review but was modeled after the WWC approach to reviewing causal evidence. Studies that the first reviewer determined to have met standards were reviewed independently by a second reviewer. A senior reviewer double-checked each completed review to ensure its accuracy and to reconcile any differences between the reviewers. The summary of programs described in this report includes only professional development approaches with studies that reviewers determined met WWC evidence standards (version 2.1), with or without reservations.

Screening the research studies

Initially, 910 research studies were located through a comprehensive literature search (figure A1). Studies were then screened using a three-phase process:

- **643 studies met Phase I screening,** which means that they:
 - Included an intervention related to math.
 - Were published between January 2006 and July 2012 or were identified in Yoon et al. (2007) as having met standards similar to earlier WWC evidence standards.
 - Examined students in grades K–12.
 - Were conducted in the United States.

- **47 studies met Phase II screening,** which means that they:
 - Included an intervention, program, or product focused primarily on providing math professional development to teachers.
 - Used a relevant design (randomized controlled trial or quasi-experimental design).

- **32 studies met Phase III screening,** which means the nature of the math professional development approach was relevant to this brief. (15 studies from Phase II were excluded because the professional development approach was either generic professional development that did not focus on math—for example, school reform focused on strategic plans—or professional development that...
was associated with implementing a specific curriculum.) These 32 studies were reviewed using WWC evidence standards (version 2.1).

- 5 studies met WWC evidence standards (version 2.1), with or without reservations. One two-year study was discussed in two reports, each focused on one year of the project (Garet et al., 2010, 2011). This was treated as one study, but two professional development approaches were involved. Impacts were reported separately for each approach. One professional development approach (Cognitively Guided Instruction) was included in two studies.

- 2 studies (representing two professional development approaches) met WWC evidence standards (version 2.1), with or without reservations, and showed positive impacts on student math proficiency.

Figure A1. Screening funnel

![Screening funnel diagram](image)

Source: Authors.
Appendix B. Thirty-two final studies reviewed using What Works Clearinghouse standards

Of the 910 studies identified in the literature search, 643 examined interventions related to math in grades K–12 and were conducted in the United States. Of the 643 studies, the 32 studies listed in this appendix focused primarily on math professional development provided to teachers and used a research design for examining effectiveness. Five of those were determined to have met What Works Clearinghouse evidence standards (version 2.1) either with or without reservations; these are identified with an asterisk.

† Garet et al. (2010) and Garet et al. (2011) are together considered one study because the same two-year study appears in both reports. Each report focuses on one year of the project. However, because two different professional development approaches were involved in this study, the impacts for each approach are reported separately in this report.
Table C1. Intensive math content courses accompanied by follow-up workshops: potentially positive effects (professional development approach more effective for teachers enrolled in two math courses than for those enrolled in just one)

<table>
<thead>
<tr>
<th>Full citation</th>
<th>Research design</th>
<th>Analysis sample</th>
<th>Actual implementation</th>
<th>Nature of the counterfactual</th>
<th>Student outcome measures</th>
<th>Effect size (Hedges's g)</th>
<th>Statistically significant at $p < .05$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Quasi-experimental design<sup>a</sup></td>
<td>23 teachers and 2,319 students in grades 5–8 from four districts</td>
<td>Participants took either one or two university courses</td>
<td>No participation in the content-based math courses or follow-up sessions</td>
<td>Colorado Student Assessment Program proficiency rates (for teachers who completed only one summer math course)</td>
<td>0.09</td>
<td>No</td>
</tr>
<tr>
<td>McMeeking, L., Orsi, R., & Cobb, R. B. (2012). Effects of a teacher professional development program on the mathematics achievement of middle school students. Journal for Research in Mathematics Education, 43(2), 159–181.</td>
<td></td>
<td></td>
<td>Two to three weeks per course in the summer; four half-day follow-up sessions on Saturdays during the school year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Bolded values are substantively important; effect sizes of 0.25 or greater are considered substantively important, regardless of statistical significance, according to What Works Clearinghouse (WWC) evidence standards (version 2.1).

^b Meets WWC evidence standards (version 2.1) with reservations.

Source: Authors’ literature review (see appendix A).
Table C2. Lesson study focused on linear (measurement) model of fractions: potentially positive effects (one study with significant impact on student achievement)

<table>
<thead>
<tr>
<th>Full citation</th>
<th>Research design</th>
<th>Analysis sample</th>
<th>Actual implementation</th>
<th>Nature of the counterfactual</th>
<th>Student outcome measures</th>
<th>Effect size (Hedges’s g^*)</th>
<th>Statistically significant at $p < .05?^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perry, R. R., & Lewis, C. C. (2011). Improving the mathematical content base of lesson study summary of results. Retrieved January 24, 2013, from http://www.lessonresearch.net/IESAbstract10.pdf</td>
<td>Randomized controlled trial</td>
<td>213 teachers and 1,059 students in grades 2–5 from 27 districts</td>
<td>Lesson study on fractions (with fractions resource kit and lesson study tools) Actual duration (ranging from 7 to 42 hours) and scheduling varied by site Recommended duration: 12–14 meetings over five months of the school year</td>
<td>Counterfactual 1: Lesson study on locally chosen topic (with lesson study tools). No fractions toolkit. Teachers were told to choose a topic other than fractions for their lesson study sessions, but teachers still taught fractions to their students.</td>
<td>Fractions knowledge—a test developed by researchers</td>
<td>0.84</td>
<td>Yes^c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counterfactual 2: Business as usual (locally chosen professional learning other than lesson study on locally chosen topic). Teachers were told to choose a topic other than fractions for their professional learning work, but teachers still taught fractions to their students. Teachers attended a wide range of activities, including self-study and activities offered locally or at conferences.</td>
<td>Fractions knowledge—a test developed by researchers</td>
<td>0.71</td>
<td>Yes^c</td>
</tr>
</tbody>
</table>

a. Bolded values are substantively important; effect sizes of 0.25 or greater are considered substantively important, regardless of statistical significance, according to What Works Clearinghouse (WWC) evidence standards (version 2.1).

b. This document is a publicly available summary of the study; however, most of the data were obtained through an author query. The authors expect to publish their research in a peer-reviewed journal in the near future.

c. In subgroup analyses, researchers reported that results were statistically significant in grades 2, 3, and 5 but not in grade 4.

Source: Authors’ literature review (see appendix A).
Table C3. Cognitively Guided Instruction: limited effects (one study had no significant impact on any aspect of math proficiency; the other study had a significant impact on a brief measure of concepts of equality but no impact for any other aspects of math)

<table>
<thead>
<tr>
<th>Full citation</th>
<th>Research design</th>
<th>Analysis sample</th>
<th>Actual implementation</th>
<th>Nature of the counterfactual</th>
<th>Student outcome measures</th>
<th>Statistically significant at p < .05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpenter, T., Fennema, E., Peterson, P., Chiang, C. P., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26(4), 499–531.</td>
<td>Randomized controlled trial</td>
<td>40 teachers and approximately 480 grade 1 students from 24 schools</td>
<td>Four-week summer workshop, four days per week, five hours per day</td>
<td>Two two-hour workshops (one in September and one in February) focused on solving nonroutine problems using various heuristics. The counterfactual differed from Cognitively Guided Instruction in terms of focus, duration, extent of coverage, and purpose. According to the authors, “The goal was to provide control teachers with some sense of participation in the project and give them some immediate reward for their participation” (p. 507).</td>
<td>Iowa Test of Basic Skills Level 7 Computation</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iowa Test of Basic Skills Level 7 Problem Solving</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem solving subtest: simple addition/subtraction word problem</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem solving subtest: complex addition/subtraction word problem</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem solving subtest: advanced word problem</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem solving interview (a measure of students’ strategy use)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number facts interview (a measure of students’ strategy use)</td>
<td>No</td>
</tr>
<tr>
<td>Jacobs, V., Franke, M., Carpenter, T., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38(3), 258–288.</td>
<td>Randomized controlled trial</td>
<td>180 teachers and 606 students in grades 1–5 from 19 schools in one district</td>
<td>A 4.5-hour Saturday introductory meeting with teachers from across the district; 1.5-hour after-school workshops approximately once a month eight times over the year; additionally, a half-day per week of onsite coaching.</td>
<td>Business as usual; teachers in the control condition received professional development the year after the study.</td>
<td>Equality subtest (grade 1)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equality subtest (grades 2/3)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equality subtest (grades 4/5)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Computation subtest (grade 1)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Computation subtest (grades 2/3)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Computation subtest (grades 4/5)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solving equations subtest (grades 2/3)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solving equations subtest (grades 4/5)</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Student-level effect sizes were not calculated because the authors reported only classroom-level data and were not able to provide additional data when requested.

a. Authors reported results as nonsignificant but did not report effect sizes or relevant data for calculating effect sizes at the level of assignment (school level) using What Works Clearinghouse standards (version 2.1). However, because the authors used liberal means of calculating statistical significance, none of the effects would be statistically significant using the school as the unit of analysis.

Source: Authors’ literature review (see appendix A).
Table C4. America’s Choice: no discernible effects on students’ acquisition of math

Full citation	Research design	Analysis sample	Actual implementation	Nature of the counterfactual	Student outcome measures	Effect size (Hedges's g)	Statistically significant at \(p < .05 \)?
Garet, M., Wayne, A., Stancavage, F., Taylor, J., Walters, K., Song, M., et al. (2010). *Middle school mathematics professional development impact study: Findings after the first year of implementation* (NCEE 2010–4009). Washington, DC: U.S. Department of Education, Institute for Education Sciences, National Center for Education Evaluation and Regional Assistance.	Randomized controlled trial	Year 1: 99 teachers and 2,385 grade 7 students from 40 schools in 12 districts	Three-day summer institute, five one-day seminars during the school year, and 10 days of intensive in-school coaching. The in-school coaching sessions occurred immediately after each seminar and were scheduled (to the extent possible) to align with periods in which rational number topics were being covered in the districts' grade 7 math curriculum. The total intended dosage of professional development (including institutes, seminars, and coaching) in rational number topics was 68 hours.	Business as usual; grade 7 teachers in control schools received professional development offered by the district or state.	Year 1: Northwest Evaluation Association total score—a test of student knowledge of rational number topics	0.02	No

Source: Authors’ literature review (see appendix A).
Table C5. Pearson Achievement Solutions: no discernible effects on students’ acquisition of math

<table>
<thead>
<tr>
<th>Full citation</th>
<th>Research design</th>
<th>Analysis sample</th>
<th>Actual implementation</th>
<th>Nature of the counterfactual</th>
<th>Student outcome measures</th>
<th>Effect size (Hedges’s g)</th>
<th>Statistically significant at p < .05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garet, M., Wayne, A., Stancavage, F., Taylor, J., Walters, K., Song, M., et al. (2010). Middle school mathematics professional development impact study: Findings after the first year of implementation (NCEE 2010–4009). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance.</td>
<td>Randomized controlled trial</td>
<td>Year 1: 89 teachers and 1,826 grade 7 students from 37 schools in 12 districts</td>
<td>Three-day summer institute, five one-day seminars during the school year, and 10 days of intensive in-school coaching. The in-school coaching sessions occurred immediately after each seminar and were scheduled (to the extent possible) to align with periods in which rational number topics were being covered in the districts’ grade 7 math curricula. The total intended dosage of professional development (including institutes, seminars, and coaching) in rational number topics was 68 hours.</td>
<td>Business as usual; grade 7 teachers in control schools received professional development offered by the district or state.</td>
<td>Year 1: Northwest Evaluation Association total score—a test of student knowledge of rational number topics</td>
<td>0.05</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Authors’ literature review (see appendix A).
Notes

1. Effectiveness studies determine whether there is a causal relationship between the approach and the outcomes; in this case, effectiveness studies examine whether mathematics professional development approaches cause improvements in student mathematics proficiency.

2. These studies focused only on students in grades 1–8.

3. There are many professional development programs and approaches beyond the five presented here, and not all five have positive findings. These five are highlighted because the research evidence for these approaches is of the highest quality in terms of determining the professional development approach's effect. For this WWC-style review, the review team determined that these five studies met WWC evidence standards (version 2.1) with or without reservations. Effect on student achievement is just one piece of evidence to consider when deciding whether to adopt an approach.

4. Earlier case study research suggests that focusing on concrete materials that are also used in the classroom is a hallmark of effective professional development (Garet, Porter, Desimone, Birman, & Yoon, 2001; Gersten, Chard, & Baker, 2000; Huberman & Miles, 1984).

5. This finding differs from those reported in Yoon et al. (2007), which evaluated studies of professional development from 1986 to 2006, using standards similar to, but less extensive in some dimensions of research quality than an earlier version of the WWC standards (personal communication with Kwang Suk Yoon).

6. Yoon et al. (2007) evaluated studies of professional development from 1986 to 2006, using standards similar to, but less extensive in some dimensions of research quality than, an earlier version of the WWC standards (personal communication with Kwang Suk Yoon).
References

REL 2014–010

The National Center for Education Evaluation and Regional Assistance (NCEE) conducts unbiased large-scale evaluations of education programs and practices supported by federal funds; provides research-based technical assistance to educators and policymakers; and supports the synthesis and the widespread dissemination of the results of research and evaluation throughout the United States.

January 2014

This report was prepared for the Institute of Education Sciences (IES) under Contract ED-IES-C-12-0011 by Regional Educational Laboratory Southeast administered by Florida State University. The content of the publication does not necessarily reflect the views or policies of IES or the U.S. Department of Education nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

This REL report is in the public domain. While permission to reprint this publication is not necessary, it should be cited as:

This report is available on the Regional Educational Laboratory website at http://ies.ed.gov/ncee/edlabs.