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Abstract 
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman 
causal inference framework that underlies experiments. The key distinction between the considered causal models 
is whether potential treatment and control group outcomes are considered to be fixed for the study population (the 
finite-population model) or randomly selected from a vaguely-defined universe (the super-population model). 
Appropriate estimators are derived and discussed for each model. Using data from five large-scale clustered 
RCTs in the education area, the empirical analysis estimates impacts and their standard errors using the 
considered estimators. For all studies, the estimators yield identical findings concerning statistical significance. 
However, standard errors sometimes differ, suggesting that policy conclusions from RCTs could be sensitive to the 
choice of estimator. Thus, a key recommendation is that analysts test the sensitivity of their impact findings using 
different estimation methods and cluster-level weighting schemes.  
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Foreword 


The National Center for Education Evaluation and Regional Assistance (NCEE) conducts 
unbiased large-scale evaluations of education programs and practices supported by federal funds; 
provides research-based technical assistance to educators and policymakers; and supports the 
synthesis and the widespread dissemination of the results of research and evaluation throughout 
the United States. 

In support of this mission, NCEE promotes methodological advancement in the field of education 
evaluation through investigations involving analyses using existing data sets and explorations of 
applications of new technical methods, including cost-effectiveness of alternative evaluation 
strategies. The results of these methodological investigations are published as commissioned, 
peer reviewed papers, under the series title, Technical Methods Reports, posted on the NCEE 
website at http://ies.ed.gov/ncee/pubs/. These reports are specifically designed for use by 
researchers, methodologists, and evaluation specialists. The reports address current 
methodological questions and offer guidance to resolving or advancing the application of high-
quality evaluation methods in varying educational contexts. 

This NCEE Technical Methods paper serves to open up the “black box” of impact estimation for 
applied education researchers, and highlights both the importance of close attention to the 
estimation method and the importance of performing sensitivity tests using different estimation 
methods. Using the Neyman causal inference framework that underlies experiments, the report 
examines the estimation of impacts in two-stage clustered RCT designs. Several causal models 
are considered. The key distinction between these models is whether potential treatment and 
control group outcomes are considered to be fixed for the study population (the finite-population 
model) or randomly selected from a vaguely-defined universe (the super-population model). 
Appropriate estimators are derived and discussed for each model, highlighting the differences in 
underlying assumptions among them. Using data from five large-scale clustered education RCTs, 
the empirical analysis estimates impacts and their standard errors using the considered estimators 
to assess whether impact findings are sensitive to the use of different estimation methods and 
cluster-level weighting schemes each employs. 
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Chapter 1: Introduction 

In randomized control trials (RCTs) of educational interventions, random assignment is often performed 
at the school or classroom level rather than at the student level. These group-based designs are common, 
because RCTs in the education field often test interventions that provide enhanced services to teachers 
(for example, training in a new reading or math curriculum or mentoring services) or that test 
interventions that affect the entire school (for example, a school-wide social and character development 
program or re-structuring initiative). Thus, for these types of interventions, it is infeasible to randomly 
assign the treatment directly to students. 

Under these group-based designs, data are typically collected on students. Thus, using student-level data, 
the statistical procedures that are used to estimate average treatment effects (ATEs) and their standard 
errors must account for the potential correlation of the outcomes of students within the same groups. In 
particular, the standard errors of the ATE estimators must be inflated to account for design effects due to 
clustering. 

Over the past 40 years, a huge statistical literature across multiple disciplines discusses the estimation of 
treatment effects under two-stage clustered designs (see, for example, Rao 1972, Harville 1977, Laird and 
Ware 1982, Hsiao 1986, Liang and Zeger 1986, Baltagi and Chang 1994, Murray 1998, Raudenbush and 
Bryk 2002, Wooldridge 2002, and De Leeuw and Meijer 2008). These models have a number of labels, 
including random effects models, random coefficient models, one-way models, variance components 
models, panel models, hierarchical linear models (HLM), and linear mixed models. A number of 
statistical packages have been developed to estimate these models using analysis of variance (ANOVA), 
maximum likelihood (ML), restricted ML (REML), generalized estimation equation (GEE), and other 
methods. 

This paper contributes to this literature by discussing the estimation and interpretation of the ATE 
parameter under clustered RCTs using the non-parametric model of causal inference that underlies 
experimental designs. This model was introduced for non-clustered designs by Neyman (1923) and later 
developed in Rubin (1974, 1977) and Holland (1986). This article extends this theory to two-stage 
clustered RCTs, and develops regression equations that are consistent with this theory. The analysis 
focuses on continuous outcomes (such as test scores), and discusses relevant ATE parameters assuming 
that the outcome data are either (1) fixed for the study population (a finite-population model) or (2) 
random draws from population outcome distributions (the more common super-population model). 
Appropriate estimation methods and asymptotic moments are discussed for each model, and the methods 
are linked to the following commonly-used statistical packages: SAS, STATA, R, SUDAAN, and HLM. 
The paper considers both simple differences-in-means models and those that include baseline covariates.  

Finally, ATEs and their standard errors are estimated using the considered methods using data from five 
recent large-scale clustered RCTs in the education area. The purpose of this analysis is to examine the 
robustness of study findings to alternative estimation approaches. This is important, because education 
researchers typically employ statistical packages and estimation routines with which they are most 
comfortable, and published articles in the evaluation literature rarely report impact results using 
alternative estimation schemes. Thus, this article can provide information to education researchers about 
the assumptions underlying commonly-used ATE estimation methods, how these methods work, and the 
sensitivity of impact findings to alternative estimation strategies. The goal is not to identify the best 
methods, but to discuss options and interpretation. 
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The rest of this paper is in six chapters. Chapter 2 discusses the Neyman causal inference model, and 
Chapters 3 and 4 discuss the estimation of the ATE parameter under the finite- and super-population 
models, respectively. Chapter 5 discusses methods for estimating variance components for the super-
population model, and Chapter 6 presents findings from the empirical analysis. The final chapter presents 
a summary and conclusions. 
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Chapter 2: The Neyman Causal Inference Model 
This chapter discusses the Neyman finite-population (FP) and super-population (SP) causal inference 
models under two-stage clustered designs—the most common designs used in education RCTs. The focus 
is on continuous outcomes. The theory is then used to derive regression equations for estimating the ATE 
parameters. 

The Neyman Finite-Population Model for Two-Stage Clustered Designs 

Consider an experimental design where n  schools (or classrooms) are randomly assigned to either a 
single treatment or control condition. The sample contains np  treatment and n(1− p) control group 
schools where p  is the sampling rate to the treatment group (0 < p <1) . It is assumed that the sample 

contains mi  students from school i  and that there are M = mi total students in the sample. It is∑i

n 

=1 

assumed that student outcomes are not affected by the treatment status of other students.  

It is assumed for now that the n  schools and M  students define the population universe—the FP model 
considered by Neyman for non-clustered designs. Let YTij  be the “potential” outcome for student j  in 

school i  in the treatment condition and YCij  be the potential outcome for the student in the control 

condition. The difference between the two fixed potential outcomes, (YTij −YCij ) , is the student-level 

treatment effect, and the ATE parameter, β1, is the average treatment effect over all students: 

1 n mi 

(1) β =Y Y = (Y −Y ). 1 T − C ∑∑ Tij  Cij  M i=1 j=1 

This ATE parameter cannot be calculated directly because potential outcomes for each student cannot be 
observed in both the treatment and control conditions. Formally, if Ti is a treatment status indicator 
variable that equals 1 for treatment schools and 0 for control schools, then the observed outcome for a 
student, yij , can be expressed as follows: 

(2) yij = i Tij + (1 −T Y i ) Cij .TY 

Importantly, the potential outcomes in (2) are fixed and the only source of randomness is Ti . Thus, under 
the Neyman model, the ATE parameter pertains only to those students and schools at the time the study 
was conducted. Stated differently, the impact findings have internal validity but do not necessarily 
generalize beyond the study sample. This approach can be justified on the grounds that schools are 
usually purposively selected for education RCTs, and thus, may be a self-selected sample of schools that 
are willing to participate, and that are deemed to be suitable for the study based on their student and 
teacher populations and typical service offerings. Similarly, students in the study sample may not be 
representative of all students in the study schools, because they could be a potentially nonrandom subset 
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of students whose parents consented to participate in the study, who provided follow-up data, and who 
did not leave the study schools between baseline and followup.1 

Under this fixed population scenario, researchers are to be agnostic about whether the study results have 
external validity. Policymakers and other users of the study results can decide whether the impact 
evidence is sufficient to adopt the intervention on a broader scale, perhaps by examining the similarity of 
the observable characteristics of schools and students in the study samples to their own contexts, and 
using results from subgroup and implementation analyses.      

Following the approach for non-clustered designs used by Freedman (2008) and Schochet (2009), a 
regression model for (2) can be constructed by re-writing (2) as follows: 

(3) yij = β0 + β1(Ti − p) +ηij , where 

• β = pY + (1− p Y β =Y −Y are parameters to be estimated) and0 T C 1 T C 

• η =αij +τ ( i ) αij p Y  − T ) + − p Y  )(  Cij Cij ij T p− is an “error” term, where = ( Tij Y (1  −Y ) and 
2τ ij = (YTij −YT ) − (YCij −YC ).  

The error term ηij is a function of two terms: (1) αij , the expected observed outcome for the student 

relative to the expected mean observed outcome; and (2) τ ij , the student-level treatment effect relative to 

the ATE. Note that αij and τ ij sum to zero over all students. This model is non-parametric because it 
does not depend on the distributions of the potential outcomes. 

The model in (3) does not satisfy key assumptions of the usual random effects model, because ηij does 

not have mean zero (over all possible treatment assignment configurations), and, to the extent that τ ij 

varies across students, ηij is heteroscedastic, Cov(ηijηij′) is not constant for students in the same schools, 

Cov(ηijηi j ′ ′ ) is nonzero for students in different schools (for i i≠ ′ , j j≠ ′ ), and ηij is correlated with the 

i −regressor (T p) : 

E( )  = α , Var  η = τ 2 p(1  − p),  Cov  ( ) = τ τ  p(1  η ( )  η η  − p),  ij ij ij ij ij ij′ ij ij′ 

Cov ( i j  ) = −τ τ  i j p(1 − p) /( n −1), E[( − pi η ] = τ ij  p(1 − p).η ηij  ′ ′  ij  ′ ′  Ti ) ij  

Note that in this model, the error terms for students within the same schools are correlated only because 
they have the same treatment status, not because they face similar environments.   

1For cost reasons, in education RCTs, follow-up data are not usually collected for students in the baseline 
sample who leave the study districts. 

2In (3), the term (Ti-p) is used rather than Ti because it simplifies the mathematical proofs presented later in this 
paper, but this centering has no effect on the findings. 
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Importantly, the model in (3) should not be confused with a fixed effects model, where cluster effects are 
treated as fixed, and cluster-level dummy variables are included in the model. Rather, the model treats 
cluster-level effects as random due to the randomness of treatment status in the model error term.  
 
Finally, (3) implicitly assumes that schools are weighted by their student sample sizes. An alternative 
specification is to weight schools equally. In this case, the ATE parameter is β1 = Y T −Y C , where

Y T = (1/ n ) ∑ ∑n m i
i=1 j=1 

(YTij  / m n
C (1 mi 
 

i ) and Y = / n ) ∑ i=1 ∑ j=
are averages of school-level

1 
( YCij  / m i
) 

means. This ATE parameter pertains to the average school effect in the sample rather than to the average 
student effect. This weighting scheme will result in different impact estimates than the unweighted 
analysis if student sample sizes vary across schools and impacts vary by school sample size.  

 
 

The Super-Population Model for Two-Stage Clustered Designs 

We now consider a SP version of the Neyman causal inference model where the study schools and 
students are assumed to be random samples from broader populations (see Imbens and Rubin 2007 and 
Schochet 2008, 2009). This framework is typically used to estimate impacts under clustered RCTs in the 
education area, and is consistent with popular linear mixed model approaches, such as HLM.  
 
Under this framework, students are nested within schools. Let ZTi  be the potential outcome (mean 

posttest score) for school i in the treatment condition and ZCi  be the potential outcome for school i in the 
control condition. Potential outcomes for the n study schools are assumed to be random draws from 
potential treatment and control outcome distributions in the study super-population. It is assumed that 
means and variances of these distributions are finite and denoted by μ 2

T and σ uT for potential treatment  
outcomes and μ 2

C and σ uC for potential control outcomes. These two outcome distributions also define  
the distribution of school-level treatment effects in the super-population, which are assumed to have mean 
μ 2
τ  and variance στ . 

 
Suppose next that mi  students are sampled from the student super-population in study school i. The 

potential student-level outcomes YTij  and YCij  are now assumed to be random draws from student-level 
potential outcome distributions (which are conditional on school-level potential outcomes) with 
respective means Z Z 2 2

Ti  and Ci  and respective variances σ eT > 0 and σ eC > 0 . 
 
Under the SP model, the ATE parameter is μτ = E Z  ( Ti −Z Ci ) = μT −μ C . Thus, the impact findings are 
now assumed to generalize to the super-population of schools that are “similar” to the study schools. How 
should one interpret this super-population? Does it pertain to the study schools over the “long term” for a 
broader universe of students and school staff that change over time? Does it pertain to a broader set of 
schools in the study districts? To similar schools nationwide? The answers to these questions will likely 
depend on the context (and may not exist), but researchers should be aware that the usual approach for 
estimating treatment effects in education research makes the implicit assumption of external validity to a 
school universe that is likely to be vaguely defined. Nonetheless, this approach can be justified on the 
grounds that policymakers may generalize the findings anyway, especially if the study provides a primary 
basis for deciding whether to implement the tested interventions more broadly. Furthermore, this 
approach is more consistent with the Bayesian view that assessing intervention effects is a dynamic 
process that takes place in a context of continuously increasing knowledge.  
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As before, we can use (2) to express observed student outcomes in terms of potential outcomes, and can 
rearrange terms to yield the following regression model: 

(4) yij α0 α1Ti + +  ( i eij ) , where= +  u 

α = μ α μ μand = −  (the ATE parameter) are coefficients to be estimated0 C 1 T C 

u T Z  − + −  μ= ( μ )  (1  T )(  Z − ) is a school-level error term where E u( )i = 0,i i Ti  T  i Ci  C  

E Tu  0 = = 2 =  =  σ 2( ) = , Var u ( | T 1) σ , and Var u ( |T 0)  i i i i uT  i i  uC  

eij = i ( Tij − ZTi ) + −  (1  Ti )(  Cij − ZCi ) E eij = 0 ,T Y  Y  is a student-level error term where ( )  

E T e  ( , Var e 1)  2 Var e 0)  2( ) = E  u e  ) = 0 ( |  T = =σ ,  and ( |  T =  =  σ .i ij  i ij  ij i eT ij i eC 

Furthermore, if we define = +  as the total error term:δ u eij ij i 

2 2 2 2Var ( |ij i = =1)  σ σ  uT eT , Var ( |ij i = =σ  σ  uC eC , Cov( ,δ δi j ) 0 ,δ T + δ T 0)  + ij ′ ′  =

1)  2 , ( ,  T 0)  2Cov( ,δij δij′ | Ti = =σuT Cov δij δij′ | i = =σuC . 

Thus, this model is the usual random effects model with an exchangeable block diagonal variance-
covariance matrix for the error vector except that variances and covariances are allowed to differ for 
treatments and controls. 

Finally, note that (4) can also be derived using the following two-level HLM model (Bryk and 
Raudenbush, 1992): 

Level 1: yij = zi + eij 

2 :  z α α  T +u ,Level = +  i 0 1 i i 

=TZ  (1 )z + −T Z  where i  i Ti  i  Ci   is the observed school-level outcome, Level 1 corresponds to students, and 
Level 2 to units. Inserting the Level 2 equation into the Level 1 equation yields (4). Thus, the HLM 
approach is consistent with the SP causal inference theory. 

The Neyman Causal Inference Model 6 



  

Chapter 3: ATE Parameter Estimation for the Finite-Population 
Model 
This chapter discusses ATE parameter and variance estimation for the FP model with and without 
baseline covariates. Mathematical proofs of asymptotic results are provided in the appendix. It is assumed 
for the remainder of this article that sample sizes of clusters are large enough so that asymptotic results 
are approximately valid (see Bingenheimer and Raudenbush, 2004 for a discussion of this issue).  

 
 

Finite-Population Model Without Covariates 

Ordinary least squares (OLS) methods are appropriate for estimating β1 in (3), because the ATE  
parameter for the FP model pertains to the study sample only. The following lemma provides the 
asymptotic moments of the OLS estimator.  
 
Lemma 1. The simple OLS estimator for β1 under the FP model in (3) is β̂ 

1,SR = ( y T − y C ) , where yT  
and yC are (unweighted) sample means for the treatment and control groups, respectively. As n increases  
to infinity for an increasing sequence of finite populations, β̂1,SR  is asymptotically unbiased. Furthermore, 
assume that: 
 

(5) m =∑
n 1 n

mi / n → m, ∑∑
mi

∑
mi

(Y  ) → S 2
Tij −YT )(YTik −YT T , 

i=1 nm i=1 j=1 k =1 

1 ∑∑∑
n mi m i 1 ∑∑∑

n mi m

( 
i

Y Cij −Y C )(  Y Cik −Y C ) → S 2C , and  τ τ ij ik  → S 2 ,
nm τ
 

 i=1 j=1 k =1 nm i=1 j=1 k =1
  
 
where m, S 2 , S 2 

C , and S 2 ˆ
T τ are fixed, nonnegative, real numbers. Then, β1,SR  is asymptotically normal 

with variance: 

S 2 S 2 S 2

 (6) AsyVar (β̂ T
SR  C 

1, ) = + − τ .
nmp nm (1− p) nm 

The S 2 2 
T and S C terms pertain to the extent to which potential outcomes vary and co-vary across students 

within the same schools. The S 2
τ  term pertains to the extent to which treatment effects vary and co-vary 

across students within schools. Note that if student-level treatment effects are constant, S 2 
τ = 0 and 

S 2 
T = S 2

C . 
 
With heterogeneous treatment effects, it is difficult to find a consistent estimator for S 2 

τ , because this 

requires unobserved information on student-level treatment effects. However, because S 2 
τ ≥ 0 , ignoring 

this term will provide conservative variance estimators. Following this approach, a consistent estimator 
for the first two terms on the right-hand side in (6) can be obtained using the population averaged 
generalized estimating equation (GEE) approach developed by Liang and Zeger (1986) for clustered data 
(see also Hardin and Hilbe 2003). 
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To describe this method for general applications, it is assumed that xij is a row vector of model baseline 

covariates (including the intercept and T p ), is an 1 column vector of student outcomes, and− m xi yi i Vi 

is the assumed (“working”) m xmi covariance structure for yi . The GEE method for estimating thei

vector of regression parameters β solves the following equation for the score function S(β) : 

n ′( )∂μ β(7) S(β =∑ i Vi
-1 (yi −μi (β ) = ,)	 ) 0  

i=1 ∂β 

where i ( ) 	 yi  that is linked to a linear combination of the covariates through a μ β  is the expected value of 

monotonic differentiable link function g  where ( ) = xijβ and = g−1(g μij μij xijβ) . 

Equation (7) can be solved iteratively using a Taylor series expansion of  S(β̂)  around S(β) . Under this 
ˆ (iter+1) approach, the estimated parameter vector β  at iteration (iter +1)  can be updated from β̂(iter)  as 

follows: 

ˆ (iter+1) ˆ (iter) -1(iter) ˆ (iter) β = β + I0 S(β ) , where 

n ∂μ′ i -1 ∂μi(8)	 I0 = −E(∂S(β) / ∂β) =∑ Vi
 
i=1 ∂β ∂β
 

is the information matrix. The matrix I0  is sometimes replaced by J =  S(0 ∂ β)/∂β (Binder 1983). 

-1The model-based variance estimator of the solution β̂  is I0 . The empirical or robust “sandwich” 
-1 -1variance estimator uses the data to correct for the potential misspecification of Vi and equals I I I00 1

where 

n ∂μ′ i -1 -1 ∂μi′(9) I = V  rrV  ,1 ∑ i  i i  i  
i=1 ∂β ∂β 

ˆand ri = (yi −μi (β)) is an m x1 vector of regression residuals.i

In our application, we assume (1) an independent working correlation structure (that is, Vi  is the identity 
matrix), (2) an identity link function ( μij β0 + β1( i − ) ), and (3) the empirical sandwich variance= T p  

estimator. The ATE estimator for this linear model is then β̂1,GEE = ( yT − yC ) with the following 
asymptotic variance estimator: 

n m m	 mi i	 n mi i
ˆ ˆ 1	 2 1AsyVar β )	 T − r r (10)	 ( 1,GEE = 2 ∑∑∑( i p) ij ik ≈ 2 ∑∑∑r r ij ik ,
d i=1 j=1 k =1 (nm) p(1  − p) i=1 j=1 k =1
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∑∑
n mi 

where d = (T  p)2 
i − . This variance estimator is based on the sums of products and cross-products 

i=1 j=1 

of OLS residuals for students within the same schools. Table 3.1 displays statistical package routines that 
use this method. 
 
If schools are to be weighted equally under unbalanced designs, the GEE method can be applied by first 

pre-multiplying the outcome and explanatory variables (including the intercept) by the weights wij 

where wij ∝1/ mi  (Pfeffermann et al. 1998). Under this approach, it may be reasonable to also weight 
each school district equally if random assignment is conducted within school districts. 
 
Importantly, as discussed in Murray (1998), the GEE method should be used only if the number of 
clusters in each research condition is at least 20. For smaller sample sizes, simulations demonstrate that 
the Type I error rate may not be close to the nominal level.  
 
Finally, for the equal-school weighting scheme, model-free permutation (randomization) tests can also be 
used to test the strong null hypothesis that all student-level treatment effects are zero (Gail et al., 1996). 
Under this approach, observed school means are used to construct the distribution of all possible 
treatment effects under the null hypothesis of no impacts. This is done by (1) allocating schools to all 
possible combinations of np  “pseudo-treatment” schools and n(1− p) “pseudo-control” schools, (2) 

estimating a treatment effect β̂ 
1 for each of the [ !n n/  p!  n  (1  − p)!]  allocations, (3) sorting these treatment   

effects from smallest to largest, (4) observing where in the distribution the treatment effect for the actual 
treatment-control allocation lies, and (5) rejecting the null hypothesis if the  actual β̂1  lies outside the 
α / 2 or 1 (  − α / 2) quantiles of the permutation distribution (which will have mean 0).3 The validity of   
this method does not rely on a model, but only on correct randomization. 
 
Gail et al. (1996) demonstrate through simulations that Type I error rates of these tests are near nominal 
levels if n  is moderate, p  is near 0.5, and variances of the outcomes do not differ substantially across 
the treatment and control conditions. These conditions are likely to hold in practice. Furthermore, Gail et 
al. (1996) demonstrate that the procedure performs better using school-level residuals from regression 
models that include baseline covariates (see below). 
 
 
Finite-Population Model with Covariates 

We now examine ATE estimators when the FP models include fixed covariates, qij ,  pertaining to the 
pre-randomization period. The covariates are not indexed by T or C because their values are independent 
of treatment status due to randomization. The covariates could include both school-level covariates and 
student-level covariates that are centered at school-level means. All covariates are assumed to be centered 
at grand means. 
 

3For moderate n (say, n>30), the number of possible allocations becomes very large. In these cases, the 
permutation distribution can be estimated from a large random sample of reallocations of school means to the 
pseudo-treatment and control groups. 
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Table 3.1: Routines in the Considered Statistical Packages for Estimating ATE Parameters and Their 
Standard Errors, by Model 

Estimation 
Method 

Variance-
Related 

Formulas in 
Text 

Statistical Packages and 
Routines 

Notes on Estimation and 
Specification 

Finite-Population Model 

GEE (13) Sudaan: Regress 
SAS: Proc Genmod 
Stata: xtgee or regress 
vce(cluster) command 
R: gee or glm function 

An independent working correlation 
structure must be specified to obtain 
OLS parameter estimates. The empirical 
sandwich estimator should be specified. 
The Zeger or Binder optimization 
method can be specified in most 
packages. 

Permutation NA None Used for hypothesis testing using 
school-level means or regression 
residuals 

Super-Population Model 

Balanced Design (22) Sudaan: Regress 
SAS: Proc Reg or GLM 
Stata: regress command 
R: lm function 

Parameter and standard errors are 
obtained by applying OLS to the 
between-school regression model in 
(21). 

ANOVA (24), (25) SAS: Proc Panel 
Stata: xtreg sa 

Variance component estimates in (24) 
and (25) are inserted into (16) and (17) 
to obtain feasible GLS estimates 

ML (28)-(32) SAS: Proc Mixed 
Stata: xtmixed command 
R: lme package; 
HLM2, HLM3, HMLM2 

Yields feasible GLS estimates. 
Statistical packages use different 
defaults for using ML or REML, and for 
using Newton-Raphson, Fisher-Scoring 
or the EM algorithm for optimization. 

REML See (33) Same as for ML Same as for ML 

GEE (34), (35) Same as for GEE above An exchangeable working correlation 
structure must be specified; yields 
feasible GLS estimates using the model-
based or empirical sandwich variance 
estimators. The Zeger or Binder 
optimization method can be specified in 
most packages. 

NA: Not applicable. 
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In the Neyman model, the covariates are irrelevant variables because (3) is the true model. Thus, the ATE 
parameters considered above without covariates pertain also to the models with covariates. 

To examine asymptotic moments of the OLS estimator under the FP model with fixed covariates, we 
assume in addition to (5) that as n approaches infinity: 

m m m m m mn i i n i i n i i 

α f  f f  h f  ∑∑∑  ij ik ∑∑∑  ij ik ∑∑∑  ij ik 
i=1 j=1 k =1 2 i=1 j=1 k =1 2 i=1 j=1 k =1 2(11) → S , → S , and → S ,α f ff hf nm nm nm 

where fij  is the student’s predicted value from a full-sample OLS regression of αij  on qij ; hij  is the 
2 2 2predicted value from a full-sample OLS regression of τij on qij , and Sα f , S ff , and Shf  are fixed, 

nonnegative real numbers. The following lemma generalizes results in Schochet (2009) and Freedman 
(2008) to two-stage clustered designs. The proof is provided in the appendix. 

Lemma 2. Let β̂1,MR be the multiple regression estimator for β1 under the model in (3) and assume (5) 

and (11). Then, β̂1,MR is asymptotically normal with mean β1 and variance: 

2 2 2 
ˆ ⎛ ST SC Sτ ⎞ 1 2 2 2(12) AsyVar (β1,MR ) = ⎜ + − ⎟ − (2Sα f − S ff  + 2(1 − 2 p S) hf  ). 

⎝ nmp nm(1 − p) nm ⎠ nmp(1 − p) 

The first bracketed term in (12) is the variance of the OLS estimator under the FP model without 
covariates. The (2S 2 − S 2 )  term is a generalized version of the usual explained sum of squares from a α f ff 

multiple OLS regression, and will typically generate precision gains if the covariates are correlated with 
potential outcomes. The 2(1 2 ) 2 term pertains to regression-adjusted covariances between ij− p Shf α  and 

τij  for students within the same school. This term will be zero if p=0.5 or if the covariances between 
potential outcomes are similar in the treatment and control conditions (which would occur, for example, 
with constant treatment effects); otherwise this term could have any sign. 

A variance estimator for (12) can be obtained using the GEE approach discussed above. Let 
%X = (K T  Q ) , where K  is an m x1 column of 1s for the intercept, Τ% i is an m x1 vector containingi i i i i

the T p terms, and Qi  is a matrix of covariates for school i . In this case, a variance estimator is:i −

n n n
ˆ ˆ ⎡ −1 −1 ⎤(13)  AsyVar (β ) ( X X  ) (  ′ )(  X X  ) ,′ X  r r X  ′ ′ 1,MR = ⎢ ∑ i i ∑ i i i i ∑ i i ⎥⎣ i=1 i=1 i=1 ⎦ (2,2)  

where the residuals ri are calculated from a full-sample OLS regression of yi  on Xi . The permutation 

tests discussed above could also be used for significance testing using the school-level residuals ri  (for 
the equal-school weighting scheme). 
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Chapter 4: ATE Parameter Estimation For The Super-Population 
Model 
This chapter examines ATE parameter estimation for the SP model with and without baseline covariates, 
where it is assumed that error variances are the same in the treatment and control conditions: 
σ 2 = σ 2 = σ 2 and σ 2 2

uT uC u eT = σ eC = σ 2e . This assumption is commonly applied and greatly simplifies the  
presentation. 
 
This chapter focuses on generalized least squares (GLS) methods that are typically used to provide 
consistent and efficient estimators for α1 in (4). However, the chapter starts with a discussion of the OLS  
approach (which produces consistent, but inefficient estimates) so the SP and FP estimators can be 
compared using a common approach. Methods for estimating variance components to obtain feasible GLS 
estimates are discussed in Chapter 5. 
 
 
Super-Population Model Without Covariates 

The SP model in (4) for students in school i can be expressed in vector notation as follows: 
 

(14) y i =α 0 +α 1 T i +δ , i  
 
where Ω *	 

i = E(δiδ′i ) is an m x 2
i m u σ 2i	 positive definite variance-covariance with diagonal terms σ + e and 

off-diagonal terms σ 2
u . The estimation of this model using OLS and GLS methods is discussed next.   

 
 

OLS Methods 
 
Standard methods (see, for example, Schochet 2008) can be used to show that as n increases to infinity, 
the OLS estimator α̂1,SR = ( yT − yC ) is asymptotically normal with mean α 1 and asymptotic variance  
that can be estimated as follows: 
 

⎛ ∑n m2σ̂ 2 2 ⎞
(1 	 1 5)	 AsyVar ˆ (α̂ ) = ⎜ i=1 i u σ̂

 e ⎟1,SR p(1− p) ⎜ ( ∑n + ,
 
m )2 

⎝ = ∑n ⎟
i 1 i i=1 

m i ⎠
  
 
where σ̂ 2 ˆ 2	 2

u  and σ e	  are estimators for σ u  and σ 2
e , respectively. Note that this variance is minimized if

p = 0.5 and m i = m  for all schools (that is, for balanced designs). 
 
The term in parentheses in (15) can be computed by summing the elements of Ω̂ *

i across schools and 

dividing by M 2 , where Ω̂ * 2 
i  is an estimator for Ω*

i . Thus, (15) is comparable to the S 2 
T and S C terms 

in (6) for the FP model. Thus, an important difference between the SP and FP models is that unlike the SP 
model, the FP model contains S 2 

τ , which reduces variance. Thus, in theory, the variance may be 
somewhat smaller under the FP model, which is expected, because the SP model assumes external 
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validity, with an associated loss in statistical precision. However, as noted, it is difficult to estimate S 2 
τ  

for clustered designs; thus, precision gains for the FP model cannot typically be realized in practice. 
 

 
GLS Methods 
 
Consider a generic regression model where the covariate and variance matrices for school i are denoted 
by Xi  and Ω i , respectively. The feasible GLS estimator of the parameter vector α is then:  
 

 (16) α̂ GLS = (∑n X′iΩ ˆ 
-1 
i Xi )

−1( ∑n X′
i

Ω̂ -1
i 1 =1 i y= i i ),   

 
where Ω̂ i is an estimator for Ωi .  
 
In our case Xi = [K  T  i ] , so (16) reduces to 
 

∑ 
np w y ∑ 

n(1− p )

i T  : =1  i i i T  : =0
w y 

α̂ = −
i i 

i

np  i
1,GLS n(1− ,

∑ w ∑ 
 p ) w

 i T  : i 
i =1 i T: =0 i 

i  
 
where yi  is the mean outcome in school i  and w i = [σ̂ 2 2 m 1

u + (σ̂ e / i )]  − is the associated school-level
weight. This is a weighted differences-in-means estimator, where the weights are inverses of the variances 
of school-level means. 
 
The weights can also be expressed as w = [ICC  +{(1− ICC  ) / m }] −1 where ˆ 2 2

i i ICC =σ /(σ̂ +σ̂ 2 ) is u u e  
the estimated intraclass correlation coefficient. The first ICC term inside the brackets is common to all  
schools. Thus, the weights differ due to the second term. Schools with smaller variances (more sampled 
students) receive more weight in the analysis than schools with larger variances (fewer sampled students), 
because the larger schools provide more information on the super-population parameters μT  and μC . As 
ICC approaches zero, the SP weights converge to the FP weights where schools are weighted by their  
sample sizes. Conversely, as ICC approaches one, the SP weights converge to the FP weights where  
schools are weighted equally. Under the SP approach, it may be reasonable to weight each school district 
by the size of their school population if random assignment is conducted within school districts. 
 
It is well known that under weak regularity conditions, the feasible GLS estimator is asymptotically 

normal with mean α and variance E( X′Ω -1 X )−1 /  n (see, for example, Wooldridge 2002). This ∑i  i i i 

variance can be estimated as follows: 
 

 (17) AsyVâr (α̂ ) = (∑ X′Ω ̂  -1 X )−1
GLS i i i i ,

 
 
which in our case reduces to 
 

⎡ np 1 1 
−1 

ˆ n(1− p) ⎤
(18) AsyVar(α̂1,GLS ) = ⎢ (1− p) 2 ∑ + p 2 .  

⎣
i T  : i =1  2  ⎥σ̂ u + (σ̂ 2 ∑ i T  : i =1 2 2

e / mi ) σ̂ u + (σ̂ e / mi ) ⎦ 
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For known Ω i , the GLS estimator is the best linear unbiased estimator (BLUE) (although this may not 

hold if Ω ˆ
i  is replaced by Ω i ). The ANOVA, ML, REML, and GEE approaches discussed in Chapter 5 

yield feasible GLS estimators where estimators for σ 2 
u and σ 2 

e are inserted into (16) and (17). 
 
For a given sample size, the variance in (18) is minimized when mi = m  and p = 0.5 . Furthermore, if 

m mi = , the OLS and GLS estimators of α1 are identical and yield the following simple variance 
estimator: 
 

1 ⎛ σ̂ 2 σ̂ 2 ⎞
(19) AsyVarˆ (α̂1,Balanced ) = ⎜

u + e
⎟. p(1− p) ⎝ n  nm  ⎠  

 
Note that replacing m  by m  in (19) is a serviceable variance estimator for designs where sample sizes 
vary somewhat across schools, which can be seen by setting mi = m in (18). 

 
 

Super-Population Model With Covariates 

Under the SP model with covariates, the covariates qij as well as the potential outcomes are considered to  
be random draws from joint super-population distributions. For the estimation model, the covariate matrix 
is now X i = [K T  i Qi ] and Ω i  is now conditional on Qi . In principle, the covariates should be
considered irrelevant variables because (14) is the true model. This procedure, however, considerably 
complicates the asymptotics for the GLS estimator, because Qi will tend to be correlated with the error  
term, and Ω i  will differ from the true Ω*

i .
4    

 
Consequently, the following analysis strays somewhat from the Neyman framework and assumes that the 
true model contains Qi . In this case, the GLS formulas in (16) and (17) also apply to the SP model with 
covariates. 

4For the OLS estimator, the first problem can be overcome (as it was for the FP model) and the second problem 
does not occur. The asymptotic variance of the OLS estimator is similar in form to that for the FP model in (12) but 
does not include terms comparable to S

τ

2 (not shown). 
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Chapter 5: Variance Component Estimation for the Super-
Population Model 

Feasible GLS estimation requires estimates of the variance components σ 2 σ 2 
u and e . This chapter 

discusses key features of ANOVA, ML, REML, and GEE estimation methods that can be used to estimate 
these variance components and that are used in the empirical analysis. To keep the presentation 
manageable, the discussion does not focus on other methods, such as bootstrap, jackknife, and other 
resampling methods. De Leeuw and Meijer (2008) provide an excellent, more detailed discussion of GLS 
estimators for multilevel models. 
 
For simplicity of exposition, in what follows, let the symbol Ω i  represent a generic covariance matrix for 
school i, Xi represent a generic covariate matrix for a school, and δ = u ei +  represent a generic ij ij 

normally distributed error for a student. 
 
 

Balanced Design Estimator 

When m mi =  for all schools—that is, for balanced designs—a consistent variance estimator for the
simple differences-in-means estimator has the following simple form: 
 

S 2 

(20) AsyVaˆ r (α̂1, Balanced ) = B ,
np(1− p)  

 
where 
 

∑
np n (1

∑
− p )

 ( y  y )2 
i − yT )

2 +  ( yi − C 

S 2 = i T  : i =1  i T  : i =0
B n − 2  

 
is the variance of the mean outcome between schools (see, for example, Cochrane 1963). This estimator is 
consistent because E( )S 2 

B =σ 2 ( 2
u + σ e / m ) (see (19)). 

 
If covariates are included in the model, (20) can be generalized using the following between-school  
regression model: 
 

(21) yi =α0 +α1Ti +q′i 2α  +δi ,  
 

where yi  is the school-level mean, qi  is a k x1 1 vector of school-level covariates (that could include 

student-level covariates averaged to the school level), and δi = (ui +ei ) is the school-level error term. 

Estimating (21) by OLS yields the following variance estimator for α1 : 
 

(22) AsyV̂ ar (α̂ ′ −1
1,Balanced ) = (X X )2,2 RSSB /( n − k1 − 2), 
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where X K=[	 TQ] is the covariate matrix and RSSB  is the regression residual sum of squares.
 
For balanced designs, α̂1,Balanced is an ANOVA or REML estimator and is minimum variance unbiased 
under normality of the error terms (Searle 1971). This estimator, however, has no optimal properties for 
unbalanced designs. Nonetheless, it is appealing due to its simplicity, because it is based entirely on the 
between-school OLS regression, and produces serviceable estimates for designs that are not too highly 
unbalanced (which is typically the case in practice). As discussed next, estimating variance components to 
account for unbalanced designs becomes considerably more complex.  
 
 
ANOVA Estimator 

The ANOVA estimator is a method-of-moments estimator that equates regression residual sums of 
squares to their unobserved expectations and solves these equations to obtain estimators for the variance 
components. ANOVA methods have the advantage that the variance components can be obtained in one 
step using easily-understood OLS regression residuals, rather than iteratively, as is the case for the ML, 
REML, and GEE methods. The disadvantage of the ANOVA methods is that for unbalanced designs, they 
have no optimal properties beyond asymptotic unbiasedness.   
 
This section discusses the Swamy and Arora (SA; 1972) ANOVA method that was adapted for 
unbalanced designs by Baltagi and Chang (1994). De Leeuw and Meijer (2008) and Baltagi and Chang 
(1994) discuss alternative ANOVA estimators that are similar to the SA method. 
 
Under the SA method, an estimator for the student-level variance, σ 2 

e , is obtained by first estimating a 
within-school OLS regression: 
 

(23) ( yij − yi ) = (qij −qi )γ + (eij − ei ).  
 

This yields the following consistent variance estimator for σ 2
e : 

 

 (24) σ̂ n
	2e A, NOVA  = RSSW /( ∑ mi −n − k2 ),         

i 

 
where RSSW  is the regression residual sum of squares from (23) and k2  is the number of student-level 
(within school) covariates. 
 
To obtain an estimator for σ 2 

u , the SA method uses the residual sum of squares RSSB  from the between-
school regression in (21) where schools are weighted  by their sample sizes. In this case, 
RSS ˆ δ δˆ

B = δ	′W = ′B W′ Bδ,  where  W  is an nxn  diagonal weight matrix with weights mi  along the 

diagonal, and B = [IM - X(X′W X) -1 X′W ].  Using matrix algebra, it can be shown that:  
 

E R( SS  2 2 -1
B	 ) = E  (tr  [  δ′ ′B W Bδ])  = σ u tr  [B W′ B  ] +σ e tr  [B  ′W
  BW  ]

= σ 2 (∑ n 
u m ti − r  [(X′W X) -1 X′W W′X ]) +σ 2


e (n − k1 − 2),  
i=1  

where tr is the matrix trace operator. Thus, a consistent estimator for σ 2 
u is: 
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2
 (25) σ̂ = [  2 

u ANOVA − ˆ n 
, RSS B σ e , ANOVA (n − k 1 − 2)] /( ∑ m i − [ ′ -1

i
tr (X W X) X′WW′X 

=1 
]),

 
 
which could be negative (leading to a negative ICC estimate).  
 
The estimators for σ 2 and σ 2 

e u  in (24) and (25) can be inserted into (16) and (17) to obtain feasible GLS 
estimates. Note that for balanced designs, this approach yields (22). The ANOVA approach can be 
implemented using SAS (see Table 3.1). 

 
 

Maximum Likelihood Estimator 

ML methods simultaneously estimate ATE parameters and variance components, and are often used to 
estimate linear mixed models (such as HLM models) that are popular in the education field (see, for 
example, Raudenbush and Bryk 2002). ML estimators are consistent and asymptotically efficient, but do 
not take into account the loss in degrees of freedom due to the regression coefficients in estimating the 
variance components. 
 
To demonstrate the ML method, it is convenient to express Ω i  as σ 2

e Λi , where
 

(26) Λi = I m i
+λJ mi 

,  
 

where I 2 
mi 

 is the identity matrix, Jmi 
 is an m x 2 

i mi matrix of 1s, and λ =σ σ/  u e . Note that

Λ −1 
i = I m − (mi +λ −1 −1

i
) J mi 

. Because of the normality assumption, the log likelihood is: 
 

M M 1 n 1 n

(27) log L = −  log(2 π ) − log σ 2
e − ∑ log | Λi | − 2 [∑ (y - i X  -1

i α Λ)′ i (y - X  
2 2 2 2σ i iα)], 

i=1 e i=1  
 
where | Λi | denotes the determinant of Λi . 
 
Taking derivatives in (27) with respect to the parameters and setting them equal to zero yields the 
following closed-form solutions for α̂  and σ̂ 2 ˆ

e (for a given λ ): 
 

(28) α̂ = (∑ 
n X′ Λ̂ -1 X )−1 ˆ 

MLE i ( n ′i  
-1y

 i=1 i i ∑i=1
X Λi i ), and 

  1 n 

(29) σ̂ 2e M, LE  = [∑ ( y - ˆ -1
i X  i α Λ)′ ˆ i  ( y -i X  i α̂)]. M i=1  

 
Equation (28) is the feasible GLS estimator in (16). 
 
The first-order condition for λ  is a nonlinear equation that must be solved numerically:  
 

∂ log L 1 n 1 n

   (30) 0 = grad =  = − ∑tr  [Λ-1 
i Jmi 

] + 2 [ ∑ (yi - X  α Λ)′[  -1 Jm Λ
-1

i i i i ]( y -i X  iα)].  
∂λ 2 i=1 2σ i=1 e
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One common iterative method is the Newton-Raphson method where λ̂ (iter +1)  is updated from λ̂ (iter ) as 
follows: 
 

(31) λ̂ (iter +1)  = λ̂ (iter +1)  −H  −1(  iter )grad  (iter ) ,  
  
where 
 

∂2 log L 1 n 1 n

(32) H = = ∑tr  [Λ-1J i mi 
Λ-1 

i Jm ] − ′ -1 -1 -1

∂ ∂λ λ  2 i σ 2 [∑( y i - X  i α Λ) i J m Λ Jm Λi (y
i i i i - Xiα)]   

i=1 e i=1 

 
is the Hessian matrix.5 Other iterative methods use −E H( )  = .5  ∑ -1 -1 in (31) rather than

i 
tr  [Λ i Jm i

Λ i Jm i 
] 

H  (Fisher scoring) or the expectation-maximization (EM) algorithm (see Little and Rubin 2002). 
 
The model parameters can then be estimated using the following steps: (1) obtain an initial value for λ̂  
(for example, using the ANOVA method), (2) calculate α̂ and σ̂ 2

MLE e M, LE using (28) and (29), (3) update
  

λ̂
 using (30)-(32), and (4) return to Step (2) until convergence is achieved. Final feasible GLS estimators  
can then be obtained using (16) and (17). Table 3.1 displays statistical package routines that use the ML 
method. 
 
Note that most statistical packages impose a non-negativity constraint for λ̂  at each iteration. Murray 
(1998) and Stroup and Littell (2002) demonstrate through simulations, however, that this constraint could 
deflate the Type I error rate and reduce statistical power. Thus, these authors recommend that options be 
used in statistical packages that allow for negative variance component estimates. A similar issue applies 
to the REML estimator discussed next. 

 
 

Restricted Maximum Likelihood Estimator 

Unlike the ML approach, the REML approach for the variance components adjusts for the degrees of 
freedom loss due to the estimation of the regression parameters (Patterson and Thompson 1971). The 
REML approach separates the likelihood into two independent parts, one of which depends only on the 
variance components (the part of interest). The approach profiles out the covariates by finding a linear 
combination of the outcomes, y* = Ly  , whose distribution does not depend on α,  where L  is a 
(M −k x) M   matrix and k  is the rank of the covariate matrix X . 6  
 
To find L,  consider first the OLS regression residuals r P= y , where P = (I ′ -1 

M − X(X  X)  X′) is an 
MxM  idempotent matrix. Note that because y  is assumed to have a multivariate normal distribution, 

                                                      
5The formulas in (30) and (32) can be obtained using (26) and the matrix identities: 

∂ | Λi | / ∂λ =|  Λ -1 | tr( Λ-1 ∂Λ -1  -1 -1 

i i i / ∂λ ) and  ∂Λ     
 i / ∂λ = −Λi (∂Λi / ∂λ)Λi .    

6The REML approach does not depend on the specific choice of L , so one choice is derived.  
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r N~ (0,  PΩP ′)	 , which is independent of α . Thus, a solution for L  (which has ( M −k) rows) can be 
obtained from P  by satisfying the relation P L= ′L subject to the normalizing condition IM-k = LL  ′ . 
Such a solution can be found using the eigenvectors ( )E  and eigenvalues of P . Note that because P  is 
idempotent, (M −k) eigenvalues will be one (say, the first ones) and the remaining k  will be zero. 
Thus, L  can be calculated as the first (M −k)  rows of E′ . 
 
Using this L,  it follows that y* =Ly  ~ (N 0,  LΩL ′) , whose distribution is independent of α . The 
REML log likelihood can be obtained using this distribution. Harville (1974) shows, however, that an 
equivalent log likelihood that shows more clearly the way that the regression parameters are profiled out 
of the likelihood can be expressed as follows: 
 

M k  − M k− n n 

(33)	 log L = −  log(2 π ) − log( σ 2 1 1 ′ -1

2 2 e ) − ∑ log | Λi | − ∑ log | Xi Λi Xi |2 i=1 2 i=1 

1  + ∑
n 

 log | X X  ′ 1 n	 

i i | − 2 [∑ (y  Λ-1

2 2σ i  - X  iα GLS  )′  i  (y i  - X iα GLS  )], 
i=1	 e i=1  

 
where α  is given in (16). This likelihood can be maximized with respect to σ 2 

GLS e and λ using the   
methods discussed above for the ML estimator (not shown). REML estimates of the variance components 
can then be used in (16) and (17) to obtain feasible GLS estimators. REML estimates are asymptotically 
equivalent to ML estimates, but the REML approach tends to produce larger standard errors due to the 
degrees of freedom adjustments. Table 3.1 displays statistical package routines that use the REML 
method. 

 
 

GEE Estimator 

The GEE estimator (discussed above) is also a feasible GLS estimator for the SP model. The ATE 
parameter estimate obtained from (7) yields the feasible GLS estimator in (16), and the model-based GEE 
variance estimator using (8) yields the feasible GLS variance estimator in (17). The GEE empirical 
sandwich variance estimator is I I-1 I-1

0 1 0  where 
 

∑
n 

I =  X′Ω-1 -1
1 i i rri i  ′Ωi   X i  .

 i=1   
 
Under the GEE method, the variance components are estimated iteratively by updating regression  
residuals rij . In Step (1), OLS residuals are used to obtain the following consistent estimates for σ 2 

u and 
σ 2

e : 
 

(34) σ̂ 2
GEEs2

u , GEE = ρ̂ GEE and σ̂ 2	 s2
e , GEE = (1 − ρ̂GEE ) GEE , where  

2 1 ∑∑
n mi	 

2 2 1
	 

	 mi 

(35 ∑∑∑
n mi

) sGEE = rij and ρ̂GEE =	 ( rij rik / s
2

− m GEE ). M k i=1 j=1 ∑ i (mi −1)  − 2k i=1 j=1 k ≠ j i  
 

Variance Component Estimation for the Super-Population Model 21 



 

These estimates are then used to calculate α̂GLS  in (16). In Steps (2) to (4), new residuals are calculated, 

(34) and (35) are updated, and new estimates of α̂GLS  are obtained. Steps (2) to (4) are then continued 
until convergence is achieved. Table 3.1 displays statistical package routines that use this method that 
require the specification of an exchangeable working correlation matrix.  
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Chapter 6: Empirical Analysis 
This chapter presents ATE estimates and their standard errors using five published large-scale RCTs that 
were funded by the Institute of Education Sciences (IES) at the U.S. Department of Education (ED) and 
several foundations. These RCTs tested the effects of a wide range of education interventions, including 
mentoring programs for new teachers (Glazerman et al. 2008), early elementary school math curricula 
(Agodini et al. 2009), the use of selected computer software in the classroom (Dynarski et al. 2007), 
selected reading comprehension interventions (James-Burdumy et al. 2009), and Teach for America 
(Decker et al. 2004). Across the RCTs, random assignment was conducted at either the school or teacher 
(classroom) level primarily in low-performing school districts, and the key outcome measures were math 
or reading test scores of elementary school students. Appendix Table B.1 provides information for each 
study. 
 
All studies (except for the Reading Comprehension study) report impact findings using a SP framework 
(using HLM models with baseline covariates), although it cannot be determined which specific estimation 
and optimization methods were used for the analyses. This chapter discusses findings from a re-analysis 
of the RCT data using the estimation methods considered above for the FP and SP models. The focus is 
on models that include baseline covariates. Using study documentation, the choice of baseline covariates 
(including blocking indicators), the construction of the outcome measures, and the treatment of missing 
data were as similar as possible to those used by the authors of the study reports. For comparable models, 
the impact results reported below are similar to those presented in the published reports. 
 
SAS was used to estimate the GEE, balanced design, REML, and ML models, because research has 
shown that the statistical packages considered in this paper yield similar estimates for common model 
specifications and optimization routines (West et al. 2007, Shah 1998). To keep the presentation 
manageable, the ML and REML estimates were obtained using the Newton-Raphson algorithm. The SAS 
code that was used to estimate the models is displayed in the footnotes to Table 6.2 below. The 
permutation tests were conducted using SAS programs written by the author, where permutation 
distributions were estimated from 10,000 reallocations of cluster means to the pseudo-treatment and 
control groups (because the number of possible allocations was too large to delineate for these studies). 
The ANOVA estimates were also obtained using SAS programs written by the author.7   
 
In what follows, information is first presented for each study on cluster-level sample sizes and weights for 
the FP and SP models. This information is helpful for interpreting the impact findings, which are 
presented second. 

 
  

Weights for the Finite-Population and Super-Population Models 

As discussed, a key difference between the FP and SP models involves how clusters (schools or 
classrooms) are weighted in the analysis. In the FP models, clusters are either weighted by their sample 
sizes or equally, whereas in the SP model, clusters are weighted by the inverses of their variances. The 
extent to which ATE results differ across the weighting schemes will depend on the variability of cluster 
sample sizes, ICC values for the outcome variables, and the relationship between cluster-level impacts  
and cluster sample sizes. 

7The Proc Panel procedure in SAS does not perform the SA ANOVA method that was discussed above, but 
uses variants of this procedure (which produce results consistent to those presented in this paper). 
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The top panel of Table 6.1 shows that cluster sample sizes vary for all five studies, but more so for some 
studies than others. For example, the interquartile range of cluster sizes is about 7 students for the 
classroom-based Teach for America and Educational Technologies studies, but is 30 students for the 
school-based Reading Comprehension study. The finding that cluster sample sizes vary within each study 
suggests that cluster-level weights always differ for the two FP models. There are also differences across 
the studies in ICC values (Table 6.1). These intraclass correlations range from 0.06 to 0.12 for models  
that include baseline covariates and from 0.13 to 0.29 for models that exclude covariates.  
 
Finally, the variability of the weights for the SP models lies between the variability of the weights for the 
two FP models (Table 6.1). For instance, for the Math Curriculum study, the interquartile range for the SP 
weights for the REML model is 4 (bottom panel of Table 6.1), compared to 14 for the FP model where 
clusters are weighted by their sample sizes (top panel of Table 6.1), and 0 for the FP model where clusters 
are weighted equally. 
 
 
Impact Findings 

For all studies, the considered FP and SP estimators yield consistent findings concerning the statistical 
significance of the ATE estimates (Table 6.2). The estimators show that (1) elementary school students 
taught by Teach for America teachers performed significantly better on math achievement tests than those 
taught by traditional teachers, (2) the use of selected software products in the classroom did not improve 
first graders’ math test scores, (3) the offer of teacher induction programs for beginning teachers did not 
improve math test scores for second to sixth grade students, (4) the Saxon or Math Expressions math 
curriculum produced significantly higher fifth grade student math test scores than the other tested math 
curricula, and (5) the Reading for Knowledge reading curriculum produced significantly lower fifth grade 
student reading scores than the control (status quo) reading curriculum offered in the study schools.   
 
For each study, the ATE impact estimates vary by less than 0.02 or 0.03 standard deviations across the 
eight estimators (Table 6.2). For example, the impact estimates in effect size units range from 0.261 to 
0.273 for the Math Curriculum study, from 0.126 to 0.129 for the Teach for America study, and from 
-0.147 to -0.159 for the Reading Comprehension study.  
 
The estimated standard errors (and p-values), however, range somewhat more across the eight estimators 
than the ATE point estimates (Table 6.2). For example, standard errors range from 0.038 to 0.075 for the 
Reading Comprehension study, 0.035 to 0.050 for the Teacher Induction study, and 0.478 to 0.766 for the 
Educational Technologies study. The finding that the various consistent estimators yield more variable 
estimates of standard errors than regression coefficients is a pattern that has often been found in the 
literature for observational studies. 
 
Findings for the SP Estimators. On the basis of the empirical findings and the theory from above, the SP 
estimators can be divided into two main groups. The first group includes the ANOVA and REML 
estimators that both account for the loss in degrees of freedom in the variance estimates due to the 
regression parameters. Across the five studies, these two estimators yield identical ATE impact estimates, 
and standard errors that differ by at most .003 standard deviations (Table 6.2). The similarity of the 
ANOVA and REML findings is consistent with Baltagi and Chang (1994), who found using simulations 
that the ANOVA method performs well for random effects models. Thus, there is reason for education 
researchers to consider using the ANOVA estimator more often in RCTs. 
 
The second group of SP estimators includes the model-based and empirical sandwich GEE estimators and 
the ML estimator. Across the five studies, these three estimators yield ATE impact estimates that differ 
from each other by less than .002 standard deviations, and standard errors that typically differ from each 
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Table 6.1: Information on Weighting Schemes for the FP and SP Models, by Study 

Statistic 
Teach for 
America 

Educational 
Technologies 

Teacher 
Induction 

Math 
Curriculum 

Reading 
Comprehension 

Distribution of Cluster Sizes 
(Percentiles) 
10th 11 10 9 21 28 
25th 14 13 13 27 39 
50th 17 16 20 31 57 
75th 21 19 29 41 69 
90th 23 22 47 49 99 

ICCs for the SP REML Model 
No covariates 0.29 0.20 0.14 0.19 0.13 
Covariates 0.08 0.12 0.07 0.06 0.06 

Distribution of Cluster-Level 
Weights for the SP REML 
Model With Covariates 
(Percentiles)a 

10th 14 12 17 29 49 
25th 16 13 21 32 54 
50th 17 14 26 33 60 
75th 19 15 29 36 62 
90th 
Sample Sizes 

Clusters ( p=% treatment ) 
Students 

20 

95 (0.44) 
1,630 

16 

137 (0.57) 
2,176 

33 

173 (0.52) 
4,381 

38 

39 (0.46) 
1,309 

66 

39 (0.46) 
2,256 

Source: Data from studies listed in Appendix Table B.1. 

aThe weights sum to the total student sample size. 
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Table 6.2: Regression-Adjusted Impact Results, by Study 

Model and 
Estimator 

Teach for 
America 

Educational 
Technologies 

Teacher 
Induction 

Math 
Curriculum 

Reading 
Comprehension 

Finite Population Model 

1. GEE (Empirical) 
a. Clusters Weighted 

by Sample Sizes 
.126 (.048) 

(.008)* 
.032 (.046) 

(.478) 
-.022 (.037) 

(.548) 
.261 (.059) 

(.000)* 
-.147 (.052) 

(.005)* 

b. Clusters Weighted 
Equally 

Permutation Tests 

.126 (.047) 
(.007)* 
(.005)* 

.014 (.046) 
(.766) 
(.738) 

.013 (.045) 
(.782) 
(.737) 

.273 (.061) 
(.000)* 
(.000)* 

-.159 (.059) 
(.007)* 
(.000)* 

Super-Population Model 

2. Balanced Design .126 (.055) 
(.025)* 

.014 (.044) 
(.759) 

.013 (.050) 
(.802) 

.273 (.068) 
(.000)* 

-.159 (.075) 
(.051) 

3. ANOVA .129 (.055) 
(.023)* 

.019 (.045) 
(.663) 

-.001 (.043) 
(.976) 

.269 (.066) 
(.000)* 

-.159 (.069) 
(.038)* 

4. ML .128 (.048) 
(.007)* 

.020 (.042) 
(.637) 

-.005 (.036) 
(.888) 

.268 (.057) 
(.000)* 

-.153 (.039) 
(.000)* 

5. REML .129 (.055) 
(.020)* 

.019 (.044) 
(.661) 

-.001 (.043) 
(.981) 

.269 (.067) 
(.000)* 

-.159 (.072) 
(.027)* 

6. GEE 
a. Model-Based .128 (.049) 

(.008)* 
.020 (.043) 

(.648) 
-.006 (.035) 

(.859) 
.268 (.055) 

(.000)* 
-.151 (.038) 

(.000)* 

b. Empirical .128 (.047) 
(.007)* 

.020 (.045) 
(.661) 

-.006 (.040) 
(.874) 

.268 (.060) 
(.000)* 

-.151 (.053) 
(.004)* 

Source: Data from studies listed in Appendix Table B.1. See Table 6.1 for sample sizes. 

Notes: 	 From left to right, the figures in cells are the ATE impact estimates, estimated standard errors, p-values, 
and p-values for the permutation tests for Model 1b. Impact estimates are regression-adjusted using the 
covariates indicated in Appendix Table 1. 

SAS routines were used to estimate the models except for the ANOVA and permutation tests which were 
performed using SAS programs written by the author. Let CLUS denote the cluster codes, T the treatment 
dummy, Y the outcome, YC the cluster-level mean outcome, X the list of covariates centered at their 
cluster-level means, XC the cluster-level mean covariates, and D the input dataset. The following code was 
then used to estimate the models: 

Models 1a and 1b: proc genmod data=D; class CLUS; model Y=T X XC / dist=normal; 
repeated subject = CLUS / type = ind; (A weight statement was used for Model 1b to weight clusters equally)   

Model 2: proc reg data=D; model YC = T XC; 
Model 4: proc mixed data=D method=ml; class CLUS; model Y=T X XC/solution; random CLUS; 
Model 5: proc mixed data=D; class CLUS; model Y=T X XC/solution; random CLUS; 
Models 6a and 6b:  proc genmod data=D; class CLUS; model Y=T X XC/ dist=normal; 

repeated subject = CLUS / type = exch models; 

*The ATE impact estimate is significantly different from zero at the 0.05 level, two-tailed test. 
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other by less than .005 standard deviations (Table 6.2). The similarity of estimates for the two GEE 
estimators suggests that the exchangeable error structure is appropriate for the data. The GEE and ML 
methods produce smaller standard errors than the REML and ANOVA methods (Table 6.2). This finding 
is expected for the ML method, which does not adjust for the degrees of freedom loss due to the 
estimation of the regression parameters. 

Finally, the simple balanced design method produces impact and standard error estimates that are 
consistent with those from the other SP methods, even though this estimator does not account for 
unbalanced cluster sizes (Table 6.2). Thus, there is good reason to use this simple between-cluster 
estimator to check the robustness of study findings obtained using the other more complex methods.  

Findings for the FP Estimators. Empirical results for the two FP models are displayed in the top panels 
of Table 6.2 and labeled as “Model 1a” and “Model 1b.” Differences in the ATE impact estimates for 
these two FP models range from 0 to .035 standard deviations across the studies, because of differences in 
weighting schemes. The differences are most pronounced for the Educational Technologies and Teacher 
Induction studies where the estimated impacts are not statistically significant.  

The ATE point estimates for the FP and SP models typically differ by less .005 standard deviations for 
the three studies with statistically significant impact estimates (the Teach for America, Math Curriculum, 
and Reading Comprehension studies; Table 6.2). Furthermore, across all five studies, the standard error 
estimates for the FP models are similar to each other and to those for the empirical sandwich GEE 
estimator for the SP model (Table 6.2); the pairwise differences in standard errors are all less than .007 
standard deviations. However, as discussed, the standard error estimates for the FP models are 
conservative, because they ignore precision gains from the difficult-to-estimate Sτ 

2  terms in (6) and (12). 

Finally, for FP Model 1b, the permutation and parametric hypothesis tests yield similar p-values (Table 
6.2). For example, the respective p-values are .005 and .008 for the Teach for America study, .766 and 
.738 for the Educational Technologies study, and .000 and .007 for the Reading Comprehension study. 
Thus, the normality assumption underlying the parametric tests appears to be validated using the 
nonparametric methods, which are much more computationally burdensome. 
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Chapter 7: Summary and Conclusions 
This paper has examined the estimation of two-stage clustered RCT designs in education research using 
the Neyman causal inference framework that underlies experiments. The key distinction between the 
considered causal models is whether potential treatment and control group outcomes are considered to be 
fixed for the study population (the FP model) or randomly selected from a vaguely-defined super-
population (the SP model). 

In the FP model, the only source of randomness is treatment status, and a clustered design results only 
because students in the same cluster share the same treatment status. The relevant impact parameter for 
this model is the average treatment effect for those in the study sample; thus, the impact results are 
internally valid only. The asymptotic variance for the FP model (that was derived in this paper) can be 
estimated using a GEE estimator assuming an independent working correlation structure. Two weighting 
options for this model are (1) to weight each student equally (the OLS approach) or (2) to weight each 
cluster equally (to estimate ATEs for the average cluster in the sample). The FP variance estimators are 
likely to be conservative, however, because they ignore precision gains from difficult-to-estimate variance 
terms that represent the extent to which treatment effects vary and co-vary across students in the same 
cluster. Thus, in theory, the FP estimators could yield more precise ATE estimates than the SP estimators, 
but it is difficult to realize these precision gains in practice.    

In the SP model, cluster- and student-level potential outcomes are considered to be randomly sampled 
from respective super-population distributions. In this framework, the relevant ATE parameter is the 
intervention effect for the average cluster in the super-population. Thus, impact findings are assumed to 
generalize outside the study sample, although it is often difficult to precisely define the study universe. 
For estimating the SP model, the paper discussed key features of several feasible GLS estimators (ML, 
REML, ANOVA, and GEE estimators) assuming an exchangeable random effects error structure. For 
these estimators, clusters are weighted by the inverses of their variances, and the variability of these 
weights lies between the variability of the weights under the two FP weighting schemes.     

Using data from five recent large-scale clustered RCTs in the education area, the empirical analysis 
estimated ATEs and their standard errors using the considered estimators. For all five studies, the 
considered estimators yield consistent findings concerning statistical significance. However, although the 
estimated impacts are similar across the estimators, the standard errors (and hence, p-values) differ more 
across the estimators. This suggests that in particular studies, policy conclusions could differ using the 
various estimators. 

The choice of the primary estimation method and cluster-level weighting scheme should best fit 
evaluation research questions and objectives, and should be specified and justified in the analysis 
protocols. However, there might not always be a scientific basis for making these benchmark choices 
(that is, there might not be a “true” underlying statistical model for the study). Thus, a key 
recommendation from this paper is that education researchers consider testing the sensitivity of their 
benchmark impact findings using alternative estimation methods, rather than relying solely on the 
methods with which they are most comfortable. These sensitivity analyses could be important for ruling 
out the possibility that the impact findings are driven by specific distributional assumptions about the data 
and asymptotic results. Furthermore, it is recommended that findings from sensitivity analyses be 
reported in study appendixes, that attempts be made to explain discrepancies between sensitivity and 
benchmark analysis findings, and that the robustness of results be reflected in the study conclusions.     

Researchers currently most often report impact findings using the SP framework based on REML or ML 
methods. Results in this paper suggest that, in the sensitivity analysis, impact estimates could also be 
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estimated using other methods such as the balanced-design, GEE, and FP estimators. The ANOVA 
method is another approach that could be used more often in education research.  

Finally, the choice of whether to adopt the FP or the SP framework is a difficult philosophical issue. In 
practice, the two methods will tend to blur, however, because standard estimation procedures do not 
account for precision gains from the FP model, and the empirical results presented in this paper suggest 
that the FP and SP models yield similar impact findings. Furthermore, the two approaches blur under 
balanced designs. Nonetheless, researchers should understand the assumptions underlying the SP and FP 
approaches and their implications for generalizing and interpreting the impact findings. 
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Appendix A: Proofs 

Proof of Lemma 1 
 
Applying standard OLS methods to (3) yields β̂ 

1,SR = y T − y C . To calculate the asymptotic moments of

β̂ ˆ
1 , we express β1 as follows: 

 

∑∑
n mi n m i n m i 

(Ti p y  
	 

− ) ij  ∑∑ ( Ti − p)[  β0 + β1 (T	 i − p) +ηij  ] ∑∑ ( T i  − p)η ij  

 (A.1) β̂ = i=1 j=1 =	 i=1 j=1	 i=1 j=1
1,SR = β

d	 1 + ,
d d  

 

∑∑
n mi 

where d = (Ti − p)2 . Substituting for ηij using (3) yields: 
i=1 j=1 

 

∑∑
n mi		 n mi 

[ ( αij T i − p) +τ T 2
ij ( i − p) ]  ∑∑[ αij + (1  − 2 p)τ ij ]Ti 

(A.2) (β̂ − β ) =	 i=1 j=1 = i=1 j=1
1,SR 1 d	 d  

∑∑
n m

  
i 

l T ij i
 

= i=1 j=1
 ; lij = (1  − p  )(  Y  Tij −Y
d T ) + p  (Y  Cij −YC ).  

    

ˆ 
n m

− p) 
i

Note that E d  ( )  = nmp  (1   . Thus, (β1,SR −β 1	 ) → ∑∑l p  ij / nmp  (1  − p) = 0 because ∑∑ l  ij = 0.
i=1 j=1 i j  

Thus, β̂1,SR is asymptotically unbiased. 
 
 Using (A.2), the variance of β̂1,SR  is: 
 

∑∑
n mi	 	 n mi m i 1 n n mi m

Va  
i 

r ( lij  T i  ) p(1  − p)(  ∑∑∑ l ij il k  −	 ∑∑∑∑ l ij il ′ ′j  ) 
 Var(β̂ ) = i=1 j=1 (n −1)  

=	 i=1 j=1 k =1 i=1 i′=1 j=1 j′=1
1,SR d 2	 d 2

,  

 
where the last equality holds because Var ( )  Ti = p (1  − p ) and Cov( ,T i Ti ′ ) = − p(1  − p) /(  n −1)  . Because 

∑∑ lij = 0 , it follows that (∑∑ lij )
2 = 0 . Hence, 

i j i j 

 
n mi mi 

p(1− p) ∑∑∑ l l  
n	 

ij ik 
i=1 j=1 k =1 1

 (A.3) Var(β̂ ) =	 → [(1 − p) 22 S 2 2 2 
1,SR T + p SC + 2 p(1− p) S 2

n −1 d nmp(1− p) TC ],  
 

Appendix A 	 A-1 



  

]∑∑
n mi 

where S 2 
TC is the asymptote of [1/ nm ( Y Tij −Y T )( Y Cij −Y C
 ) , the covariance between the treatment

i=1 j=1
 

and control potential outcomes for students within the same schools. A more intuitive variance expression 
is obtained by writing S 2 S 2 2

τ = S 2
T C+ S − 2S 2 

τ  as TC  . Solving for S 2
TC  and substituting into (A.3) yields

the variance expression in (7). 
 
The asymptotic normality of β̂1,SR  follows by expressing (A.1) as 

nmp (1− p)( β̂1,SR −β1) = ∑∑(Ti − p)ηij / nm and using a central limit theorem for finite 
i j 

populations (see for example, Freedman 2008, Högland 1978, and Hájek 1960).      
 
 

Proof of Lemma 2 
 
The multiple regression estimator for β1 is as follows: 
 

( A .4) β̂ = [ % 1,MR T I  ′( −PQ )T% ] 
−1 T% / (I − P Q )Y,  

 
where Τ%  is an Mx1 vector containing T pi −  terms for the full sample, I  is the MxM  identity matrix,  
PQ = Q  ( Q′Q   )-1Q′ is the projection matrix where Q  is an Mxq matrix of covariates (that are centered 
around the grand means), and Y  is an Mx1 vector of student outcomes.  
 
If we substitute for Y  in (A.4) using the true model in (3), then β̂1,MR can be expressed as follows: 
 

⎡
−1

ˆ  1 ⎤ 1
(A.5) β 1, MR = T I% ′( −P % % / % 
⎢⎣nm Q )T⎥ T (I −P Q )[ Kβ +Tβ1 + ]


⎦ m 0 η
 n

  
⎡T I% ′(  −PQ )T% ⎤

−1 
⎡ T% ′η T% ′P   Q η ⎤


= β1 + ⎢ ⎥ ⎢ − ⎥ ,
 
⎣ nm ⎦ ⎣ nm nm ⎦ 

 
where K  is a column of 1s and η  is a vector of error terms in (3). This estimator is biased in finite 
samples. However, we show that the bias tends to zero as n approaches infinity by examining the limiting 
values of each bracketed term: 
 

⎡T I  % ′( - PQ )T% ⎤
−1 

p 1 
⎢ ⎥ ⎯⎯→ ,  

nm ⎦ p(1−⎣   p)

% ′ ∑∑
n mi n mi 

(T 2
i − p)α ij  ∑∑ (Ti − p) τ

T η 
ij 
  

 = i=1 j=1 + i=1 j=1 ⎯⎯p
→ +0 p (1  − p)(0)  = 0,   
nm nm nm 

 
so that T% and η are asymptotically uncorrelated, and: 
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∑∑
n mi n mi 

(Ti − p) f  ij  ∑∑ (Ti − p)2 h
T P% ′ ij  

 Q η 
= i=1 j =1 + i=1 j=1  ⎯⎯p→ 0,  

nm nm nm 
 
where ⎯⎯p→  denotes convergence in probability. Thus, β̂ 

1,MR is a consistent estimator.

To calculate the asymptotic variance of β̂1,MR , we apply an asymptotic expansion to (A.5): 
 

T% ′η T P% ′ α
 (A.6) β̂ Q

1,MR − β1 = − + o n 
nmp(1− p) nmp(1 p (1/ ), 

− p)  
 
where op(1/n) signifies terms of order 1/n. Note that the first term on the right-hand side of (A.6) pertains 
to the regression estimator without covariates. Note also that for the second term, T P% ′ Qα =T P/ Qα . 
Thus, (A.6) can be expressed as follows: 
 

1 
 (A.7) β̂

n mi 

 1,MR − β1 = ∑∑⎡α ij +⎣ (1 − 2 p ) τ ij −q Qij( ′Q  ) -1Q ′α ⎤⎦ T o  
 i + 

nmp (1− p) p (1/ n),  
i=1 j=1 

where qij is a row vector of covariates for student i.
 
The term inside the brackets in (A.7) sums to zero because ∑∑α ij = ∑∑τ ij = 0  , and 

i j i j 

∑∑q Q Q  )−1
ij ( ′ Q′α = ∑∑α ij = 0 because it is the sum of fitted values when α is regressed on Q .

i j i j 

Thus, if we define lij  as the bracketed term in (A.6), then ∑∑ lij = 0 , and we can use the same 
i j 

methods as for the regression estimator in Lemma 1 to derive the asymptotic variance of β̂1 in (10). The 

asymptotic normality of β̂ follows from (A.6) because both T% 1 ′η / nm and T P% ′ Qα / nm are 
asymptotically normal.  
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Table B.1: Summary of Data Sources 
Study 
(Authors; 

  Sponsor)a 
Description of 

Study 

Original and 
Current Study 

Populations 
Level of 

Clustering 
Outcome for 

Current Study 
Baseline 

Covariates 

Teach for 
America 
Evaluation 
(Decker et al. 
2004; SRF; HF, 
CC) 

Evaluation of 
Education 
Technologies 
(Dynarski et al. 
2007; IES) 

Study examined 
the impact of 
teachers from 
Teach for America, 
a highly selective 
alternative 
certification 
program, on the 
academic 
achievement of 
elementary school 
students. Students 
were randomly 
assigned to 
classrooms taught 
by Teach for 
America teachers 
or traditional 
teachers in the 
same grade and 
school. 

Study examined 
the effects of 16 
software products 
on students' 
academic 
achievement in 1st 
grade reading, 4th 
grade reading, 6th 
grade math, and 
algebra in 33 
school districts. 
Within each 
participating 
school, teachers 
were randomly 
assigned to use a 
study product or 
not. For the 
purposes of our 
report, outcomes in 
1st and 4th grades 
are used. 

1st to 5th graders in 
the 2001-2002 
school year; 17 
schools in 
Baltimore, Chicago, 
Los Angeles, 
Mississippi Delta, 
and New Orleans. 

Current study 
focuses on 1st 
graders. 

Students in 1st 
grade, 4th grade, 
6th grade, and 
algebra classes in 
the 2004-05 school 

 year in 33 districts. 

Current study 
focuses on 1st 
graders. 

Teacher 

Teacher 

Iowa Test of Basic 
Skills (ITBS) math 
score 

1st grade Stanford-9 
reading NCE score 

Baseline test 
scores in 
reading and 
math; grade 
level indicators; 
school 
indicators 

Baseline test 
scores; student's 
age and gender; 
teacher's 

 gender, 
experience, and 
highest degree; 
school's 
racial/ethnic 
composition; 
percent of 
school's 
students eligible 
for special 
education and 
subsidized 
lunch 
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Table B.1: Summary of Data Sources 
Study 
(Authors; 

  Sponsor)a 
Description of 

Study 

Original and 
Current Study 

Populations 
Level of 

Clustering 
Outcome for 

Current Study 
Baseline 

Covariates 

Evaluation of 
Comprehensive 
Teacher 
Induction 
Programs 
(Glazerman et 
al. 2008; IES) 

Achievement 
Effects of Four 
Early 
Elementary 
School Math 
Curricula: 
Findings from 
First Graders in 
39 Schools 

 (Agodini et al. 
 2009; IES) 

Study examined 
the effects of 
comprehensive 
teacher induction 
programs on 
teacher retention, 
teachers' classroom 
practices, and 
student outcomes. 
The programs 
provided beginning 
teachers with an 
orientation, 
mentoring sessions, 
and professional 
development. 
Random 
assignment of 
elementary schools 
took place within 
17 participating 
districts. 

Study examined 
the relative impacts 
of four math 
curricula on first-
grade mathematics 
achievement. The 
curricula were 
selected to 
represent diverse 
approaches to 
teaching 
elementary school 
math in the United 
States. The four 
curricula are 
Investigations in 
Number, Data, and 
Space; Math 
Expressions; Saxon 
Math; and Scott 
Foresman-Addison 
Wesley 

  Mathematics. 

Beginning teachers 
in elementary 
schools within 17 
low-income school 
districts across 13 
states in the 2005­
06 school year. 

Current study 
focuses on 2nd to 
6th graders 

 
 
 

First graders in 39 
Title I schools in 
four districts in four 
states for both the 
original and current 
study. For the 
current study, the 
treatment group was 
defined as those in 
schools receiving 
the Saxon and Math 
Expressions 
curricula, and the 
control group was 
defined as those 
receiving the 
remaining two 
curricula. 

School 

School 

District-specific 
administered test 
scores (Z-scores) 

ECLS-K total math 
assessment scale 
score in five math 
content areas 

Student pretest 
Z-scores, 

 gender, 
race/ethnicity, 
free/reduced 
price lunch 
status, special 
education 
status, grade 
level; teacher's 
age, gender, 
race/ethnicity, 
teaching and 
non-teaching 
experience, 
certification 
status, 
preparation 
type, 
educational 
attainment 

ECLS-K pretest 
score and seven 
strata (block) 
indicator 
variables. 



 

    

 

TABLE B.1 (continued) 

Table B.1: Summary of Data Sources 
Study 
(Authors; 

  Sponsor)a 
Description of 

Study 

Original and 
Current Study 

Populations 
Level of 

Clustering 
Outcome for 

Current Study 
Baseline 

Covariates 

Effectiveness of 
Selected 
Supplemental 
Reading 
Comprehension 
Interventions 
(James-
Burdumy et al. 
2009; IES) 

Study examined 
the impacts of four 
reading 
comprehension 
curricula for a first 
cohort of fifth 
graders. The 
curricula were 
Project CRISS, 
ReadAbout, Read 
for Real, and 
Reading for 
Knowledge and 
were selected 
based on public 
submissions and 
ratings by an expert 
review panel. 
Schools were 
randomly assigned 
to one of the four 
intervention groups 
or to a control 
group. 

5th grade students 
in the 2006-2007 
school year in 89 
schools in 10 
districts for both the 
original and current 
study. For the 
current study, the 
treatment group was 
defined as those in 
schools offering the 
Reading for 
Knowledge 
curriculum, and the 
control group 
includes those in 
schools that were 
assigned to the 
study control group. 

School Composite Z-Score 
from the Passage 
Comprehension 
Subtest of the Group 
Reading Assessment 
and Diagnostic 
Evaluation 
(GRADE) and the 
Science and Social 
Studies (SS) 
Reading 
Comprehension 
Assessments 

Indicators of 
school 
urban/rural 
status; teacher 
race/ethnicity 
indicators; 
district 
indicators; 
student pretest 
scores on the 
GRADE and SS 
tests; Student 
race/ethnicity 
indicators; 
missing value 
indicators 

aAcronyms are defined as follows: IES = Institute of Education Sciences at the U.S. Department of Education; SRF = Smith 
Richardson Foundation; HF= Hewlett Foundation; CC=Carnegie Corporation. 
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