Algebra I and College Preparatory Diploma Outcomes Among Virginia Students: Findings and Discussion

Deborah Jonas

REL Appalachia,
SRI International

Jill Neumayer DePiper
REL Appalachia,
Education Development Center

Ryoko Yamaguchi
REL Appalachia,
Plus Alpha Research \& Consulting

Institute of Education Sciences

Introductions

Deborah Jonas

Agenda

- Introductions
- The importance of algebraic reasoning and Algebra I
- Results from the study: Algebra I and College Preparatory Diploma Outcomes among Virginia Students Who Completed Algebra I in Grades 7-9
- Implications for policy and practice

The Regional Educational Laboratories

* The Pacific Region contains Havail pictured on the map and American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, \& Yap), Guam, the Republic of the Marshall Islands, \& the Republic of P alau not pictured on the map

The 10 RELs work in partnership with stakeholders to support a more evidence-based education system.
Administered by the U.S. Department of Education, Institute of Education Sciences (IES)
Find us on the web! https://ies.ed.gov/ncee/edlabs/regions/appalachia/

For more information about our work, visit: https://ies.ed.gov/ncee/edlabs/regions/appalachia/

Student Success in Mathematics partnership: Virginia school divisions

The Importance of Algebraic Reasoning and Algebra I

Importance of algebraic reasoning

Policy context

Skills are measured in multiple ways and at multiple points in time through formative and summative assessments.

State standards emphasize algebraic reasoning starting in elementary grades.

Importance of Algebra I

Algebra I

Passing Algebra I by grade
9 is associated with graduating high school college-ready.

Proficiency is measured at a single point in time on a summative state assessment.

Policy context

Algebra I is a gateway for higher-level mathematics courses and often required as a verified credit for high school graduation.

Mathematics coursetaking pathways

Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12
Algebraic reasoning	\longrightarrow	Algebra I			-	\longrightarrow	College prep diploma
Algebraic reasoning		\longrightarrow	Algebra I			\rightarrow	College prep diploma
Algebraic reasoning	,	-	\longrightarrow	Algebra I	\square	\longrightarrow	College prep diploma

Results from the study: Algebra I and College Preparatory Diploma Outcomes among Virginia Students Who Completed Algebra I in Grades 7-9

Ryoko Yamaguchi

Deborah Jonas

Goals of the study

- Goal 1: Understanding the characteristics of students in different math coursetaking pathways of Algebra I by grade 9 .
- Goal 2: Understanding the outcomes of students in different math coursetaking pathways of Algebra I by grade 9 .

Description of the study

Study population from the Virginia Longitudinal Data System

Graduating cohort of 2017

- All students: 61,200
- Economically disadvantaged (ED) students: 22,196 (36 percent)
- English learner (EL) students: 3,108 (5 percent)

Of the 61,200 students in the study, 62 percent scored Advanced Proficient in grade 5 mathematics.

Let's drill down and consider the students who scored Advanced

 Proficient in grade 5 mathematics.

Among students who scored Advanced Proficient in grade 5, 51 percent completed Algebra I in grade 8.

Among economically disadvantaged students who scored Advanced

 Proficient in grade 5, 45 percent completed Algebra I in grade 8 .

Among English learner students who scored Advanced Proficient in grade 5, 42 percent completed Algebra I in grade 8.

$2009 / 10$	$2010 / 11$	$2011 / 12$	$2012 / 13$	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$
Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12

Among students who scored Advanced Proficient in grade 5 and completed

 Algebra I in grade 7, 80 percent earned a college preparatory diploma.| $2009 / 10$ | $2010 / 11$ | $2011 / 12$ | $2012 / 13$ | $2013 / 14$ | $2014 / 15$ | $2015 / 16$ | 2016/17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 5 | Grade 6 | Grade 7 | Grade 8 | Grade 9 | Grade 10 | Grade 11 | Grade 12 |
| Completed Algebra I in grade 7 | | | | | | | |

Among students who scored Advanced Proficient in grade 5 and completed

 Algebra I in grade 8, 75 percent earned a college preparatory diploma.| $2009 / 10$ | $2010 / 11$ | $2011 / 12$ | 2012/13 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Grade 5 | Grade 6 | Grade 7 | Grade 8 | Grade 9 | Grade 10 | Grade 11 | Grade 12 |
| Completed Algebra I in grade 8 | | | | | | | |

Among students who scored Advanced Proficient in grade 5 and completed Algebra I in grade 9, 44 percent earned a college preparatory diploma.

$2009 / 10$	$2010 / 11$	$2011 / 12$	$2012 / 13$	$2013 / 14$	$2014 / 15$	2015/16	2016/17
Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12
Completed Algebra I in grade 9							

For more information

Access the full report, appendices that include results for additional student groups, and study snapshot on the U.S. Department of Education Institute of Education Sciences website:
https://ies.ed.gov/ncee/edlabs/projects/project.asp? projectID=4577

Implications for Policy and Practice

Deborah Jonas

Ryoko Yamaguchi

Improving policies and practices throughout each student's mathematics coursetaking pathway: Reflect on your context

2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17
Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12
Placement policies and practices	-"-"-".	Algebra I supports				"--"-"	
	Algebra I supports						
				Algebra I supports			

Share and discuss: Algebra I placement policies and practices

Share and discuss: Instructional supports before and during algebra

2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17
Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12
Placement policies and practices	-	Algebra I supports					
	Algebra I supports						
	Algebra I supports						

Share and discuss: Instructional supports after algebra to ensure college and career readiness at graduation

What is something that squared with your experience?

What are three points you want to remember?

What is a lingering question still going around in your mind?

Thank you!

https://ies.ed.gov/ncee/edlabs/regions/appalachia

Ryoko Yamaguchi

RYamaguchi@PlusAlphaResearch.com

Deborah Jonas
Deborah.Jonas@sri.com
Jill Neumayer DePiper JDePiper@edc.org

References

Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college. U.S. Department of Education, Office of Vocational and Adult Education. https://eric.ed.gov/?id=ED490195
Allensworth, E. M., Nomi, T., Montgomery, N., \& Lee, V. E. (2009). College preparatory curriculum for all: Academic consequences of requiring algebra and English I for ninth graders in Chicago. Educational Evaluation and Policy Analysis, 31(4), 367-391.
https://www.doi.org/10.3102/0162373709343471
Empson, S. B., Levi, L., \& Carpenter, T. P. (2011). The algebraic nature of factions: Developing relational thinking in elementary school. In J. Cai \& E. J. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 409-428). Springer.
Holian, L., \& Mokher, C. (2011). Estimating college enrollment rates for Virginia public high school graduates (Issues \& Answers Report, REL 2011- No. 104). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Appalachia.
Jonas, D., Garland, M. W., \& Yamaguchi, R. (2014). Following Virginia's career and technical education completers out of high school and into college: A study of high school graduates' college enrollment, persistence, and completion. Virginia Department of Education.
Matthews, M. S., \& Farmer, J. L. (2008). Factors affecting the algebra I achievement of academically talented learners. Journal of Advanced Academics, 19(3), 472-501.
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., \& Chen, M.(2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691-697.
Stein, M. K., Kaufman, J. H., Sherman, M., \& Hillen, A. F. (2011). A challenge at the crossroads of policy and practice. Review of Educational Research, 81(4), 453-492.
Tierney, W. G., Bailey, T., Constantine, J., Finkelstein, N. D., \& Hurd, N. F. (2009). Helping students navigate the path to college: What high schools can do. A practice guide (NCEE \#2009-4066). https://eric.ed.gov/?id=ED506465

