Appendix A1.1 Study characteristics: Peters, 1992 (randomized controlled trial with randomization problems)

Characteristic	Description
Study citation	Lincoln, K. G. (1992). Skill performance comparability of two algebra programs on an eighth-grade population. Unpublished doctoral dissertation, University of Nebraska,
Participants	The study included 36 eighth-grade students. All of the students were "math talented" based on teacher recommendations, prior academic achievement, and personal maturity. The students scored at the 87th percentile or above on the California Achievement Test total math battery.
Setting	The study took place in one junior high school in a rural suburban district abutting Lincoln, Nebraska. Students were randomly' intervention classroom and one comparison). The same teacher taught both the intervention and comparison groups.
Intervention ${ }^{2}$	Participants in the intervention group were taught the UCSMP Algebra curriculum. No information was provided about the fidelity of implementation.
Comparison (one	
Primary outcomes	Participants in the comparison group were taught using the Saxon Middle School Math curriculum for eighth-grade students (Algebra 1/2). Students in this group participated in daily sessions for one academic year. In each session, the teacher introduced a new concept incrementally, and students had opportunities to practice the new concept and past concepts during each session. Students were assessed every fifth lesson. The Saxon Math curriculum is designed to cover 120 lessons in one year.
and measurement	The primary outcome measures are the Orleans-Hanna Algebra Prognosis Test and the Understanding of Algebraic Components test. ${ }^{3}$ (See Appendix A2 for more detailed descriptions of outcome measures.)
Teacher training	The study noted that the teacher who taught both study groups did not have prior experience with the intervention or comparison curricula, but read extensively about both teaching formats. The teacher participated in a one-week summer workshop on UCSMP Algebra, and in two additional one-day workshops given by local consultants on the curricula used in this study. Further, agreed-upon components of both the intervention and comparison curricula were monitored on a weekly basis by the researcher to help maintain the integrity of implementation.

 baseline differences were controlled for in the statistical analysis.
 design was accepted for review.
 Algebra course. It was accepted for review because it assesses important mathematics knowledge and skills relevant to middle school math.

Appendix A1. 2
 Study characteristics: Thompson, Senk, Witonsky, Usiskin, \& Kaeley, 2006 (quasi-experimental design)

Characteristic	Description		
Study citation	Thompson, D. R., Senk, S. L., Witonsky, D., Usiskin, Z., \& Kaeley, G. (2006). An evaluation of the second edition of UCSMP Algebra. Chicago: University of Chicago School Mathematics Project.		
Participants	The study included 189 students (98 in the intervention group and 91 in the comparison group) in six matched pairs of classrooms. In some of the participating schools, classrooms were randomly assigned to conditions. About 85% of students were in ninth grade; the remaining students were enrolled in upper grade levels. A prerequisite for participation was a strong pre-algebra course or UCSMP Transition Mathematics in the preceding year. The sample consisted of a diverse student population, including ethnic minority students and students from low socioeconomic status. About half of the participants were female (53.1\% in the intervention group, 50.5\% in the comparison group).		
Setting	The study participants attended three high schools in the West, Northeast, and South. ${ }^{2}$ Two of the high schools were located in suburban districts, and the third school served inner-city and suburban populations.		
Ine intervention group used UCSMP Algebra 2nd edition, which was tested in this study and revised afterwards. Class time spent on instruction ranged 43-58 minutes, with			
a mean of 51.3 minutes and a standard deviation of 7.6 minutes. The intervention group teachers were expected to cover 12 chapters; one of the teachers was expected			
to cover only the first sections of those chapters. Based on teachers' reports, the study reported major differences in students' opportunity to learn different mathematic			
concepts. For example, UCSMP Algebra students studied application of the concepts in the algebra text, while comparison students in two schools had limited exposure to			
applications. Intervention group students had more access to calculators than comparison group students. Neither intervention nor comparison group students had access to			
computers.		\quad	The comparison group used the mathematics textbooks that were in place in the schools prior to the study-Algebra l: An Incremental Development (Saxon), Algebra: Struc-
:---			
ture and Method Book / (Houghton Mifflin), and Algebra 1 (Prentice Hall). Class time spent on instruction was similar to that reported for the intervention group. Comparison			
group teachers were expected to cover 10-11 of the chapters in the textbook; one teacher was expected to cover 12 of the 13 chapters.			

 son group.
 (for example, middle school, junior high school, or high school).
3. The algebra readiness test and the problem-solving and understanding test were developed by UCSMP.

Appendix A2

Outcome measures in the math achievement domain

Outcome measure	Description
Orleans-Hanna Algebra Prognosis Test	This nationally normed test consists of 60 multiple-choice items based on nine model lessons and five questionnaire items that require students to report their course grades and predict their final grade if they were to take algebra. In contrast to an achievement test, students are required to answer questions by following a procedure or set of operations using mathematical or verbal expressions parallel to but different from those contained in the model lessons. This test is often used to predict the ability to succeed in a first-year algebra course (as cited in Peters, 1992).
Understanding of Algebraic Components	Four unit tests designed to examine understanding of 12 algebraic components. The four units focus on algebraic terms and expressions, linear equations, exponents and polynomials, and systems, parabolas, and quadratic equations. Across units, this measure includes a total of 120 items (as cited in Peters, 1992). A performance average of the percentage of skills mastered by each of the students was used.
High School Subject Tests: Algebra	This test consists of 40 items (20 arithmetic skills items and 20 arithmetic uses items). The test was developed by Scott, Foresman, and Company (as cited in Thompson et al., 2006).
Algebra Readiness	This test consists of 11 multiple-choice items and 10 short constructed-response items. The test, constructed by UCSMP, was accepted for review based on description of its content (as cited in Thompson et al., 2006).
Problem-solving and Understanding	This open-ended problem-solving test was developed by UCSMP (as cited in Thompson et al., 2006). This test was administered in two different forms-"even form" and "odd form"-and each form examines different mathematics skills and knowledge (for example, probability, mean and median, decimals and fractions, and area and perimeter). The test was accepted for review based on description of its content. Half of the students in each class were randomly assigned each form type.

Outcome measure		Sample size (classrooms/ students)	Author's findings from the study		WWC calculations			
			Mean outcome (standard deviation ${ }^{2}$)					
	Study sample		UCSMP Algebra group	Comparison group	Mean difference ${ }^{3}$ (UCSMP Algebra comparison)	Effect size ${ }^{4}$	Statistical significance ${ }^{5}$ (at $\alpha=0.05$)	Improvement index ${ }^{6}$
Peters, 1992 (randomized controlled trial with randomization problems) ${ }^{7}$								
Orleans-Hanna Algebra Prognosis Test	Grade 8 (math talented)	2/36	$\begin{aligned} & 95.06 \\ & (4.09) \end{aligned}$	$\begin{aligned} & 95.63 \\ & (4.53) \end{aligned}$	-0.57	-0.13	ns	-5
Understanding of Algebraic Components ${ }^{8}$	Grade 8 (math talented)	2/36	$\begin{aligned} & 17.44 \\ & (4.16) \end{aligned}$	$\begin{aligned} & 16.09 \\ & (5.23) \end{aligned}$	1.35	0.28	ns	+11
Average ${ }^{9}$ for math achievement (Peters, 1992)						0.08	ns	+3
Thompson et al., 2006 (quasi-experimental design) ${ }^{7}$								
High School Subject Tests: Algebra	Grades 9-12	12/189	$\begin{gathered} 47.90 \\ (16.30) \end{gathered}$	$\begin{gathered} 46.00 \\ (14.90) \end{gathered}$	1.90	0.12	ns	+5
Algebra Readiness	Grades 9-12	12/189	$\begin{gathered} 49.50 \\ (16.30) \end{gathered}$	$\begin{gathered} 37.30 \\ (14.90) \end{gathered}$	12.20	0.78	Statistically significant	+28
Problem-solving and Understanding	Grades 9-12	12/189	$\begin{gathered} 6.23 \\ (3.69)^{10} \end{gathered}$	$\begin{gathered} 3.39 \\ (2.54) \end{gathered}$	2.84	0.89	Statistically significant	+31
Average ${ }^{9}$ for math achievement (Thompson et al., 2006)						0.60	Statistically significant	+22
Domain average ${ }^{9}$ for math achievement across all studies						0.34	na	+13

ns $=$ not statistically significant

na = not applicable

1. This appendix reports findings considered for the effectiveness rating and the improvement index.

2. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.
3. For an explanation of the effect size calculation, see Technical Details of WWC-Conducted Computations.
4. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
 between -50 and +50 , with positive numbers denoting results favorable to the intervention group.

5. Means and standard deviations for this student outcome were calculated by the WWC based on raw data presented in the appendices of the original study report.

 account the number of students who completed each type of form.

Appendix A4
 Summary of additional findings for the math achievement domain ${ }^{1}$

ns = not statistically significant
$\mathrm{nr}=$ not reported
 presented in Appendix A3.

3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group
4. For an explanation of the effect size calculation, see Technical Details of WWC-Conducted Computations.
5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
 between -50 and +50 , with positive numbers denoting results favorable to the intervention group.

 statistical significance. In the case of Thompson et al. (2005), a correction for clustering was needed.

Appendix A5

 UCSMP Algebra rating for the math achievement domainThe WWC rates an intervention's effects in a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative. ${ }^{1}$
For the outcome domain of math achievement, the WWC rated UCSMP Algebra as having potentially positive effects. It did not meet the criteria for positive effects because no studies met WWC evidence standards for a strong design. The other ratings (mixed effects, no discernible effects, potentially negative effects, and negative effects) were not considered because UCSMP Algebra was assigned the highest applicable rating.

Rating received

Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.

- Criterion 1: At least one study showing a statistically significant or substantively important positive effect.

Met. One study showed a statistically significant positive effect.

- Criterion 2: No studies showing a statistically significant or substantively important negative effect and fewer or the same number of studies showing indeterminate effects than showing statistically significant or substantively important positive effects.

Met. One study showed a statistically significant positive effect, and one study showed an indeterminate effect. No studies showed a statistically significant or substantively important negative effect.

Other ratings considered

Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.

- Criterion 1: Two or more studies showing statistically significant positive effects, at least one of which met WWC evidence standards for a strong design.

Not met. No studies met WWC evidence standards for a strong design, and only one study showed statistically significant positive effects.

- Criterion 2: No studies showing statistically significant or substantively important negative effects.

Met. No studies showed statistically significant or substantively important negative effects.

1. For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain level effect. The WWC also considers the size of the domain level effect for ratings of potentially positive or potentially negative effects. See the WWC Intervention Rating Scheme for a complete description.
