Appendix

Appendix A1.1 Study characteristics: Cabalo, Jaciw, \& Vu, 2007

Characteristic	Description
Study citation	Cabalo, J. V., Jaciw, A., \& Vu, M.-T. (2007). Comparative effectiveness of Carnegie Learning's Cognitive Tutor Algebra I curriculum: A report of a randomized experiment in the Maui School District. Palo Alto, CA: Empirical Education, Inc.
Participants	After an informational session with a group of teachers in the Maui School District, nine teachers volunteered to participate in a study of the effectiveness of the Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software Algebra I program. When possible, classes were paired based on class size and achievement level, with a coin toss determining which one of the pair would be assigned to the intervention group. Classes that were unable to be paired (when a teacher had an odd number of classes) were assigned to the intervention or comparison group by coin toss. Pre-intervention math achievement data were collected in fall 2005, and a posttest evaluation was administered in May 2006; only students with both tests were included in the analysis. Of the initial sample of 541 students (281 intervention and 260 comparison), 344 (182 intervention and 162 comparison) had both pre- and posttest scores. At the beginning of the study, students in grades 9-12 comprised 73% of the sample, with 19% in grade 8 and 7% enrolled at Maui Community College. ${ }^{1}$
Setting	The study took place in five schools within the Maui School District, and in Maui Community College, all located in Maui County, Hawaii. The Maui School District includes schools on two other islands, but only schools on Maui itself were part of this study. According to the authors, Maui County is a mixed suburban and rural community located on one of the seven islands of Hawaii. Nine teachers and 22 classrooms participated in the study. Within the participating Maui School District schools, students were 32% Filipino, 28% part-Hawaiian, 11% White, 8% Japanese, 5% Hawaiian, 3% Hispanic, and 14% other; the distribution of ethnicities at Maui Community College was similar. Approximately 27% of students participated in the National School Lunch Program, and approximately 6% were designated as limited English proficient.
Intervention	Classrooms selected for the intervention group implemented the Carnegie Learming Curricula and Cognitive Tutor ${ }^{\circledR}$ Software Algebra I program. Selected classrooms utilized the intervention for six months, from October/November through the end of the 2005-06 school year.
Comparison	For the comparison classrooms, teachers continued to follow the textbook program in use at the time of study implementation, one of several branded Algebra I textbooks.
Primary outcomes and measurement	Student math achievement was measured by the Northwest Evaluation Association (NWEA) Algebra End-of-Course Achievement Level Test (a paper test administered to participating students enrolled in the Maui School District) or Measure of Academic Progress (a computer-adapted version of the paper assessment administered to participating students enrolled at Maui Community College). For a more detailed description of these outcome measures, see Appendix A2. Results from both tests were combined by the authors and in the results presented in Appendix A3; the disaggregated results by subscale are presented in Appendix A4.
Staff/teacher training	Teachers utilizing the Carnegie Learning Curricula and Cognitive Tuto ${ }^{\circledR}$ Software Algebra I program received three days of professional development led by a consultant from the developer. Teachers were observed briefly in the classroom and given an opportunity to ask questions of a developer representative early in the implementation period. No ongoing technical assistance was provided.

[^0]
Appendix A1.2 Study characteristics: Campuzano, Dynarski, Agodini, \& Rall, 2009

| Characteristic | Description |
| :--- | :--- | :--- |
| Study citation | Campuzano, L., Dynarski, M., Agodini, R., \& Rall, K. (2009). Effectiveness of reading and mathematics software products: Findings from two student cohorts. Washington, DC:
 U.S. Department of Education, Institute of Education Sciences. |
| Participants | This national study of software products included an examination of algebra products. Schools were eligible to be in the study if they were in high-poverty areas, had no
 prior software product use, and had enough teachers in each grade. Teachers in the participating schools were randomly assigned to intervention and comparison groups,
 and students were allocated to classrooms based on conventional school methods. The fall and spring tests were administered to 276 students, who were age 14 on average
 and 51\% female. Eighteen percent of students were in 8th grade and 82\% were in 9th grade. |
| Setting | During the second year of the study (presented in this report), Carnegie Learning Curricula and Cognitive Tutor ® Software was implemented in nine schools in four districts;
 results from the first year were not disaggregated by intervention. Districts were located in urban and urban fringe areas, averaging 230 schools and 133,000 students. Nine
 teachers were randomly assigned to use the intervention, and nine were assigned to the comparison condition, with at least a pair of intervention and comparison teachers
 in each school. Teachers averaged 16 years of experience and 47\% had a master's degree. |
| Intervention | The intervention group consisted of nine teachers from nine schools in four school districts. The intervention was delivered as a full curriculum that included proportional
 reasoning; solving linear equations and inequalities; solving systems of linear equations; analyzing data; and using polynomial functions, powers, and exponents. |
| Comparison | The comparison group consisted of nine other teachers from the same nine schools in the four school districts. The students in these classes received traditional algebra
 instruction using standard district materials. |
| Primary outcomes | The study team administered the Educational Testing Service (ETS) Algebra I End-of-Course Assessment. For a more detailed description of this outcome measure,
 and measurement
 see Appendix A2. |
| Staff/teacher training | Teachers in the intervention group received four days of initial training in the summer of 2004, conducted by a qualified trainer at a school or district location. They were
 given information on classroom management and curriculum, along with opportunities to practice using the product. Phone and email support was available. |

[^1]
Appendix A1.3 Study characteristics: Shneyderman, 2001

Characteristic	Description
Study citation	Shneyderman, A. (2001). Evaluation of the Cognitive Tutor Algebra I program. Unpublished manuscript. Miami, FL: Miami-Dade County Public Schools, Office of Evaluation and Research.
Participants	For each of six schools, two teachers were randomly selected from all teachers participating in the program (excluding those working with classes of predominantly exceptional education students). One class for each teacher was randomly selected, creating an intervention sample of 12 classrooms with 325 students. The comparison sample was composed of 12 classrooms with 452 students, randomly selected from a pool of classrooms not implementing the program in the same six schools. Initial proportions of student recipients of free and reduced-price lunch were identical (54%) for the two groups, and ethnic (30% Black, 56% Hispanic, and 13% White for intervention; 27% Black, 62% Hispanic, and 10\% White for comparison) and gender (46% and 48% female for intervention and comparison, respectively) distributions were similar. Most of the students in both groups were in 9th and 10th grades: 79% and 18% for the intervention group and 88% and 11% for the comparison group. The analyses were conducted on 276 intervention and 382 comparison students in 9th and 10th grades.
Setting	Within Miami-Dade County Public Schools, nine senior high schools used the Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software Algebra I program during the 2000-01 school year. Of those, six schools that had a computer lab as of October 2000 were examined in the study.
Intervention	Carnegie Learning Curricula and Cognitive Tutor Software Algebra I program covering a full year Algebra I course.
Comparison	Comparison group students took Algebra I.
Primary outcomes and measurement	Algebra performance was measured using the Florida Comprehensive Assessment Test (FCAT) Norm-Referenced Component and the Educational Testing Service (ETS) Algebra I End-of-Course Assessment. However, based on data received by the WWC in response to a query, the intervention and comparison groups were too dissimilar at baseline on the ETS assessment (0.14), and the analysis did not adjust for the pretest differences, so only the FCAT is included in the findings presented in Appendix A3. For a more detailed description of this outcome measure, see Appendix A2.
Staff/teacher training	Nothing specified.

Appendix A1.4 Study characteristics: Smith, 2001

Characteristic	Description
Study citation	Smith, J. E. (2001). The effect of the Carnegie Algebra Tutor on student achievement and attitude in introductory high school algebra. Unpublished doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg.
Participants	The target population included all students who completed the Introduction to Algebra course during the 1999/2000 school year, and then finished their Algebra I requirement by passing Algebra X during the fall semester of the 2000/01 school year. These two courses are part of the district's core curriculum and cover the standard Algebra I material at a slower pace than the traditional math sequence; students are recommended for this sequence by previous math teachers because they have struggled with lower-level math courses. Thus, the sample population consisted of 445 students (229 intervention and 216 comparison) who followed this course progression in one of the seven schools included in the study. Students were randomly assigned to available classes through a computer-scheduling program. As the sample was limited to only those students who completed the three-semester sequence, the randomization process was compromised; therefore, the study is treated as a QED. It does demonstrate equivalence on a pretest and makes the necessary statistical adjustments, so it meets WWC evidence standards with reservations.
Setting	The study involved high schools in Virginia Beach City Public Schools, a large, urban, K-12 school district in Virginia. Of the 10 high schools, one opted not to participate in the program, and two did not keep students in the intervention program together for all three semesters of the study; therefore, seven schools were used for the analysis. The student population was 33.5% minority, including 25% Black.
Intervention	Each high school secured a volunteer mathematics teacher who was willing to implement the intervention rather than the traditional curriculum. Each teacher agreed to spend 40% of class time on the computer and 60% of class time receiving instruction outside the computer lab. The author uses the term Carnegie Algebra Tutor Software throughout the report.
Comparison	Comparison classes used traditional instruction based on the city curriculum and textbook, without use of computers or the tutoring software.
Primary outcomes and measurement	At the conclusion of Algebra X, students took the Virginia Standards of Learning (SOL) Assessment for Algebra I. For a more detailed description of this outcome measure, see Appendix A2.
Staff/teacher training	Each teacher participated in a three-day training program on how to implement the intervention. Two-thirds of the intervention group teachers were replaced in the second year, and the new teachers did not receive training.

Outcome measure	Description
Educational Testing Service (ETS) Algebra I End-ofCourse Assessment	This 50-question multiple-choice test is based on the Algebra I standards of the National Council of Teachers of Mathematics (as cited in Campuzano et al., 2009).
Florida Comprehensive Assessment Test (FCAT) Norm-Referenced Component	This 48-question multiple-choice test has questions ranging from problem solving to pre-calculus (as cited in Shneyderman, 2001).
Northwest Evaluation Association (NWEA) Algebra End-of-Course Achievement Level Test/Measures of Academic Progress	The two adaptive tests are scored on a Rasch unIT (RIT) scale, an equal-interval scale that yields a constant change in growth for a one-unit change, regardless of the numerical scale value. RIT scores range from about 150 to 300 and indicate a student's current achievement level along a curriculum scale for a particular subject. These results are combined by the authors (as cited in Cabalo, Jaciw, \& Vu, 2007).
Virginia Standards of Learning (SOL) Algebra Assessment	This high-stakes assessment, which students need to pass to graduate from high school, consists of 50 questions that contribute to the student's score: 12 on expressions and operations, 12 on relations and functions, 18 on equations and inequalities, and 8 on statistics (as cited in Smith, 2001).

Appendix A3 Summary of study findings included in the rating for the mathematics achievement domain ${ }^{1}$

			Authors' find	om the study				
			$\begin{aligned} & \text { Meal } \\ & \text { (standa } \end{aligned}$	ome viation) ${ }^{2}$			lations	
Outcome measure	Study sample	Sample size (schools/ students)	$C L C \& C T{ }^{\oplus} S$ group ${ }^{3}$	Comparison group	Mean difference ${ }^{4}$ (CLC \& CT ${ }^{\oplus} S$ - comparison)	$\begin{aligned} & \text { Effect } \\ & \text { size } \end{aligned}$	Statistical significance ${ }^{6}$ (at $\alpha=0.05$)	Improvement index ${ }^{7}$
			Cabalo	, \& Vu, $2007{ }^{\text {8 }}$				
NWEA	Grade 8+	6/344	$\begin{aligned} & 243.4 \\ & (7.67) \end{aligned}$	$\begin{aligned} & 244.7 \\ & (7.47) \end{aligned}$	-1.34	-0.18	ns	-7
Average for math	ment (Cabalo	\& Vu, 2007) ${ }^{9}$				-0.18	ns	-7
			Camp	et al., 2009 ${ }^{8}$				
ETS	Grade 8+	9/276	$\begin{gathered} 29.78 \\ (11.04) \end{gathered}$	$\begin{gathered} 31.88 \\ (14.52) \end{gathered}$	-2.10	-0.16	ns	-6
Average for mathe	ement (Campuz	et al., 2009) ${ }^{8}$				-0.16	ns	-6
				man, $2001{ }^{8}$				
FCAT	Grades 9 \& 10	6/658	$\begin{aligned} & 683.7 \\ & (29.8) \end{aligned}$	$\begin{aligned} & 682.5 \\ & (27.8) \end{aligned}$	1.19	0.04	ns	+2
Average for mathe	ement (Shneyd	n, 2001) ${ }^{8}$				0.04	ns	+2
				2001 ${ }^{8}$				
SOL	Grade 9+	6/445	$\begin{aligned} & 397.9 \\ & (32.9) \end{aligned}$	$\begin{aligned} & 400.0 \\ & (29.1) \end{aligned}$	-2.10	-0.07	ns	-3
Average for mathematics achievement (Smith, 2001) ${ }^{9}$						-0.07	ns	-3
Domain average for mathematics achievement across all studies ${ }^{9}$						-0.09	na	-4

ns $=$ not statistically significant
na $=$ not applicable
$C L C$ \& $C T^{\oplus} S=$ Carnegie Learning Curricula and Cognitive Tutor ${ }^{\otimes}$ Software
NWEA = Northwest Evaluation Association Algebra End-of-Course Achievement Level Test/Measures of Academic Progress
ETS = Educational Testing Service Algebra I End-of-Course Assessment
FCAT = Florida Comprehensive Assessment Test Norm-Referenced Component
SOL = Virginia Standards of Learning Algebra Assessment
(continued)

Appendix A3

1. This appendix reports findings considered for the effectiveness rating and the average improvement indices for the mathematics achievement domain. Subscale findings from the same studies are not included in these ratings but are reported in Appendix A4.
2. The standard deviation across all students in each group shows how dispersed the participants' outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes.
3. For Cabalo, Jaciw, and Vu (2007) and Campuzano et al. (2009), the intervention group value is the comparison score plus the program coefficient from the hierarchial linear modeling (HLM) analysis. For Campuzano et al. (2009), the standard deviations were obtained from the study authors. For Shneyderman (2001), means and standard deviations for both the intervention and comparison groups were computed using data on 9th- and 10th-grade samples obtained from the study author.
4. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.
5. For an explanation of the effect size calculation, see WWC Procedures and Standards Handbook, Appendix B.
6. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
7. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between -50 and +50 , with positive numbers denoting favorable results for the intervention group.
8. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. For the Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software studies summarized here, no corrections for clustering or multiple comparisons were needed.
9. The WWC-computed average effect sizes for each study and for the domain across studies are simple averages rounded to two decimal places. The average improvement indices are calculated from the average effect sizes.

Appendix A4 Summary of subscale findings for the mathematics achievement domain ${ }^{1}$

Outcome measure	Study sample	Sample size (schools/ students)	Authors' findings from the study Mean outcome (standard deviation) ${ }^{2}$		WWC calculations			
			$C L C \& C T{ }^{\circledR} S$ group ${ }^{3}$	Comparison group	Mean difference ${ }^{4}$ (CLC \& CT ${ }^{\oplus}$ S - comparison)	$\begin{aligned} & \text { Effect } \\ & \text { size } \end{aligned}$	Statistical significance ${ }^{6}$ (at $a=0.05$)	Improvement index ${ }^{7}$
Cabalo, Jaciw, \& Vu, $2007{ }^{\text {8 }}$								
NWEA—Quadratic Equations	Grade 8+	6/333	$\begin{aligned} & 238.96 \\ & (11.24) \end{aligned}$	$\begin{gathered} 242.40 \\ (9.98) \end{gathered}$	-3.44	-0.32	Statistically significant	-13
NWEA-Algebraic Operations	Grade 8+	6/345	$\begin{gathered} 241.03 \\ (9.99) \end{gathered}$	$\begin{aligned} & 243.50 \\ & (10.18) \end{aligned}$	-2.47	-0.24	ns	-10
NWEA-Linear Equations	Grade 8+	6/335	$\begin{gathered} 244.81 \\ (9.57) \end{gathered}$	$\begin{gathered} 245.24 \\ (7.94) \end{gathered}$	-0.43	-0.04	ns	-2
NWEA - Problem Solving	Grade 8+	6/338	$\begin{aligned} & 246.67 \\ & (11.90) \end{aligned}$	$\begin{aligned} & 246.38 \\ & (10.69) \end{aligned}$	0.29	0.03	ns	+1

ns $=$ not statistically significant

$C L C \& C T{ }^{\circledR} S=$ Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software
NWEA = Northwest Evaluation Association Algebra End-of-Course Achievement Level Test/Measures of Academic Progress

 had more similar outcomes.
3. For Cabalo, Jaciw, and Vu (2007), the intervention group value is the comparison score plus the program coefficient from the HLM analysis.
4. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.
5. For an explanation of the effect size calculation, see WWC Procedures and Standards Handbook, Appendix B.
6. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
 The improvement index can take on values between -50 and +50 , with positive numbers denoting results favorable to the intervention group.

 Handbook, Appendix D for multiple comparisons. In the case of Cabal, Jaciw, and Vu (2007), no corrections for clustering or multiple comparisons were needed.

Appendix A5 Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software rating for the mathematics achievement domain

The WWC rates an intervention's effects for a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative. ${ }^{1}$
For the outcome domain of mathematics achievement, the WWC rated Carnegie Learning Curricula and Cognitive Tutor ${ }^{\circledR}$ Software as having no discernible effects for high school students.

Rating received

No discernible effects: No affirmative evidence of effects.

- Criterion 1: None of the studies shows a statistically significant or substantively important effect, either positive or negative.

Met. None of the four studies showed a statistically significant or substantively important effect.

Other ratings considered

Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.

- Criterion 1: Two or more studies showing statistically significant positive effects, at least one of which met WWC evidence standards for a strong design.

Not met. No study showed a statistically significant positive effect.

AND

- Criterion 2: No studies showing statistically significant or substantively important negative effects.

Met. No studies showed a statistically significant or substantively important negative effect.
Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.

- Criterion 1: At least one study showing a statistically significant or substantively important positive effect.

Not met. No studies showed a statistically significant or substantively important positive effect.

AND

- Criterion 2: No studies showing a statistically significant or substantively important negative effect and fewer or the same number of studies showing indeterminate effects than showing statistically significant or substantively important positive effects.

Not met. All four studies showed an indeterminate effect.
Mixed effects: Evidence of inconsistent effects as demonstrated through either of the following criteria.

- Criterion 1: At least one study showing a statistically significant or substantively important positive effect, and at least one study showing a statistically significant or substantively important negative effect, but no more such studies than the number showing a statistically significant or substantively important positive effect.

Not met. No studies showed a statistically significant or substantively important positive effect.
OR

- Criterion 2: At least one study showing a statistically significant or substantively important effect, and more studies showing an indeterminate effect than showing a statistically significant or substantively important effect.

Not met. No study showed a statistically significant or substantively important effect.

Potentially negative effects: Evidence of a negative effect with no overriding contrary evidence.

- Criterion 1: One study showing a statistically significant or substantively important negative effect and no studies showing a statistically significant or substantively important positive effect.

Not met. No studies showed a statistically significant or substantively important negative effect.
OR

- Criterion 2: Two or more studies showing statistically significant or substantively important negative effects, at least one study showing a statistically significant or substantively important positive effect, and more studies showing statistically significant or substantively important negative effects than showing statistically significant or substantively important positive effects.

Not met. No studies showed a statistically significant or substantively important negative effect

Negative effects: Strong evidence of a negative effect with no overriding contrary evidence.

- Criterion 1: Two or more studies showing statistically significant negative effects, at least one of which met WWC evidence standards for a strong design.

Not met. No studies showed a statistically significant or substantively important negative effect.

AND

- Criterion 2: No studies showing statistically significant or substantively important positive effects.

Met. No studies showed a statistically significant or substantively important positive effect.

1. For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain-level effect. The WWC also considers the size of the domain-level effect for ratings of potentially positive or potentially negative effects. For a complete description, see the WWC Procedures and Standards Handbook, Appendix E.

		Sample size		
Outcome domain	Number of studies	Schools	Students	Extent of evidence ${ }^{1}$
Mathematics achievement	4	27	1,723	

1. A rating of "medium to large" requires at least two studies and two schools across studies in one domain and a total sample size across studies of at least 350 students or 14 classrooms. Otherwise, the rating is "small." For more details on the extent of evidence categorization, see the WWC Procedures and Standards Handbook, Appendix G.

[^0]:

[^1]:

