Reading Mastery, one of several curriculum components that constitute the Direct Instruction curriculum from SRA/McGraw-Hill, is designed to provide systematic instruction in reading to students in grades K–6. Reading Mastery, which can be used as an intervention program for struggling readers, as a supplement to a school's core reading program, or as a stand-alone reading program, is available in three versions:

1. **Reading Mastery Classic** (for use in grades pre-K–3) aims to help beginning readers identify letter sounds, segment words into sounds, blend sounds into words, develop vocabulary, and begin to learn comprehension strategies.

2. **Reading Mastery Plus** (for grades K–6) has a language-arts focus with an emphasis on reading, writing, spelling, and language.

3. **Reading Mastery Signature Edition** (for use in grades K–5) includes three strands: (a) the Reading strand addresses phonemic awareness, phonics, word analysis, fluency, vocabulary, comprehension, spelling, decoding, and word recognition skills; (b) the Oral Language/Language Arts strand addresses oral language, communication, and writing skills; and (c) the Literature strand is designed to provide students with opportunities to read a variety of different types of text and to develop their vocabulary.

During the implementation of Reading Mastery, students are grouped with other students at a similar reading level, based on program placement tests. The program includes a continuous monitoring component.

One study of Reading Mastery that falls within the scope of the Adolescent Literacy review protocol meets What Works Clearinghouse (WWC) evidence standards, and one study meets WWC evidence standards with reservations. The studies included 361 students in grades 4 and 5, who attended schools in the midwestern and northwestern United States.3

1. The descriptive information for this program was obtained from a publicly available source: the program’s website (http://www.mcgraw-hill.co.uk/sra/downloads/Reading%20Mastery/Reading%20Mastery%20Signature%20Edition%20Brochure.pdf, downloaded October 2009). The WWC requests developers to review the program description sections for accuracy from their perspective. Further verification of the accuracy of the descriptive information for this program is beyond the scope of this review. The literature search reflects documents publicly available by August 2009.

2. The studies in this report were reviewed using WWC Evidence Standards, Version 2.0 (see the WWC Procedures and Standards Handbook, Chapter III), as described in protocol Version 2.0.

3. The evidence presented in this report is based on available research. Findings and conclusions may change as new research becomes available.
Based on two studies, the WWC considers the extent of evidence for *Reading Mastery* on adolescent learners to be small for the reading fluency and comprehension domains. No studies that meet WWC evidence standards with or without reservations examined the effectiveness of *Reading Mastery* on adolescent learners in the alphabetic or general literacy achievement domains.

Effectiveness

Reading Mastery was found to have potentially positive effects on reading fluency and no discernible effects on comprehension for adolescent learners.

<table>
<thead>
<tr>
<th>Alphabets</th>
<th>Reading fluency</th>
<th>Comprehension</th>
<th>General literacy achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>Potentially positive effects</td>
<td>No discernible effects</td>
<td>na</td>
</tr>
</tbody>
</table>

Improvement index\(^4\)

<table>
<thead>
<tr>
<th>Rating of effectiveness</th>
<th>Improvement index (^4)</th>
<th>General literacy achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>+19 percentile points</td>
<td>na</td>
</tr>
<tr>
<td>na</td>
<td>Average: –7 percentile points</td>
<td>na</td>
</tr>
<tr>
<td>na</td>
<td>Range: –20 to +7 percentile points</td>
<td>na</td>
</tr>
</tbody>
</table>

\(^4\) These numbers show the average and range of student-level improvement indices for all findings across the study.

Additional program information

Reading Mastery was originally called DISTAR (*Direct Instruction System for Teaching Arithmetic and Reading*). Early versions of *Reading Mastery* were developed during the 1960s and 1970s by Dr. Siegfried Engelmann as part of the *Direct Instruction* teaching model.\(^5\) *Reading Mastery* is distributed by SRA/McGraw-Hill, 220 East Danieldale Road, DeSoto, TX 75115-2490. Web: www.sraonline.com. Email: SRA_CustomerService@mcgraw-hill.com. Telephone: (201) 512-0909.

Scope of use

Reading Mastery is appropriate for elementary-age children who are above, at, or below grade level in their reading performance. The program also can be used with English language learners and special education students.

Cost

Student materials include storybooks (grades pre-K–1) or textbooks (grades 2–6), workbooks, and test books. The cost per student ranges from $200 to $300 for the first year of implementation. A full set of teaching materials—a one-time purchase—costs between $650 and $1,000 for each grade level. Additional components include literature collections, Independent Readers, seatwork blackline masters, and Practice and Review CD-ROMs for student practice of skills taught in the program. SRA Teaching Tutor CD-ROMs supplement consultant-led professional development. Additional information on costs of training materials and workshops is available online.

\(^4\) This program is also known as *Direct Instruction using the Reading Mastery texts* or *SRA Direct Instruction—Reading Mastery*.
Teaching
A typical 30- to 45-minute Reading Mastery lesson includes seven to nine short activities that encompass multiple strands of content, such as phonemic awareness, letter-sound correspondence, sounding out words, word recognition, vocabulary, oral reading fluency, or comprehension. The teaching routine repeated throughout the curriculum is composed of the following steps: modeling new content, providing guided practice, and implementing individual practice and application. Lesson scripts act as a guide for teachers. Signals and group responses are used to keep students involved and on task, and to control lesson pacing. The program typically spans one academic year.

Research
A total of 175 studies reviewed by the WWC investigated the effects of Reading Mastery on adolescent learners. One study (Stockard, 2010) is a randomized controlled trial that meets WWC evidence standards, and one study (Yu & Rachor, 2000) is a quasi-experimental design that meets WWC evidence standards with reservations. The remaining 173 studies do not meet either WWC evidence standards or eligibility screens.

Meets evidence standards
Stockard (2010) conducted a randomized controlled study that examined the effects of Reading Mastery Signature Edition on 4th graders in an elementary school in the midwestern United States. General education students were randomly assigned to a treatment or control condition using alternative assignment with random start technique (see Appendix A1.1 for more details on the random assignment method). Two pairs of teachers were randomly assigned to a treatment or control condition via a coin flip. The WWC based its effectiveness ratings on findings from comparisons of the 29 students in two classrooms who received Reading Mastery Signature Edition and the 28 control students in two classrooms who received Scott Foresman Basal Reading Program. The study reported students’ outcomes after five months of program implementation.

Meets evidence standards with reservations
Yu and Rachor (2000) conducted a retrospective quasi-experimental study that examined the effects of Reading Mastery on students from three grades in six schools in the northwestern United States (three schools implemented Reading Mastery and three did not). Each of the three Reading Mastery schools was matched (based on poverty level and percentage of minority students) with a comparison school that was not using Reading Mastery. Then, Reading Mastery students were matched to comparison-group students within each grade level on the basis of reading scores and demographic characteristics. The WWC based its effectiveness rating on findings from students in two grades. The 4th-grade group consisted of 71 students who received Reading Mastery and 71 students in the comparison group who received standard reading instruction. The 5th-grade group consisted of 81 students in the Reading Mastery group and 81 students in the comparison group. The study reported students’ outcomes after one and two years of program implementation.

6. Findings for 3rd-grade students are outside the scope of the Adolescent Literacy review.
7. Two-year findings are considered for the effectiveness rating because these findings reflect the maximum exposure to the program. One-year findings are not included in this rating but are reported in Appendix A4.
Extent of evidence
The WWC categorizes the extent of evidence in each domain as small or medium to large (see the WWC Procedures and Standards Handbook, Appendix G). The extent of evidence takes into account the number of studies and the total sample size across the studies that meet WWC evidence standards with or without reservations.8

Effectiveness
Findings
The WWC review of Adolescent Literacy interventions addresses student outcomes in four domains: alphabetics, reading fluency, comprehension, and general literacy achievement. The studies included in this report cover two domains: reading fluency and comprehension. The findings below present the authors’ estimates and WWC-calculated estimates of the size and the statistical significance of the effects of Reading Mastery on adolescent learners.9

Reading fluency. Stockard (2010) found statistically significant positive effects of Reading Mastery on the AIMS Web Curriculum-Based Measurement Words Read Correct for 4th graders. According to WWC calculations, the effect was not statistically significant, but it was large enough to be considered substantively important (i.e., an effect size of at least 0.25). Thus, for the reading fluency domain, one study showed substantively important positive effects.

Comprehension. Yu and Rachor (2000) found a statistically significant positive effect of Reading Mastery on the Riverside Publishing Off Grade Reading Proficiency test for the grade 4 cohort, and statistically significant negative effects on the State Reading Proficiency test for the grade 5 cohort. According to WWC calculations, the effects were not statistically significant, and the average effect across two cohorts was not large enough to be considered substantively important.10 Thus, for the comprehension domain, one study showed indeterminate effects.

Rating of effectiveness
The WWC rates the effects of an intervention in a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative. The rating of effectiveness takes into account four factors: the quality of the research design, the statistical significance of the findings, the size of the difference between participants in the intervention and the comparison conditions, and the consistency in findings across studies (see the WWC Procedures and Standards Handbook, Appendix E).

8. The extent of evidence categorization was developed to tell readers how much evidence was used to determine the intervention rating, focusing on the number and size of studies. Additional factors associated with a related concept–external validity, such as the students' demographics and the types of settings in which studies took place–are not taken into account for the categorization. Information about how the extent of evidence rating was determined for Reading Mastery is in Appendix A6.

9. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Stockard (2010), no corrections for multiple comparisons were needed. For the Reading Mastery studies summarized here, corrections for clustering were needed, so the significance levels may differ from those reported in the original studies.

10. The WWC computes an average effect size as a simple average of the effect sizes across all individual findings within the study domain.
The WWC found *Reading Mastery* to have potentially positive effects on reading fluency and no discernible effects on comprehension for adolescent learners.

Improvement index

The WWC computes an improvement index for each individual finding. In addition, within each outcome domain, the WWC computes an average improvement index for each study and an average improvement index across studies (see WWC Procedures and Standards Handbook, Appendix F). The improvement index represents the difference between the percentile rank of the average student in the intervention condition and the percentile rank of the average student in the comparison condition. Unlike the rating of effectiveness, the improvement index is entirely based on the size of the effect, regardless of the statistical significance of the effect, the study design, or the analysis. The improvement index can take on values between −50 and +50, with positive numbers denoting favorable results for the intervention group.

The improvement index for reading fluency is +19 percentile points for a single finding from one study. The average improvement index for comprehension is −7 percentile points, with a range of −20 to +7 percentile points across findings from one study.

Summary

The WWC reviewed 175 studies on *Reading Mastery* for adolescent learners. One of these studies meets WWC evidence standards, and one study meets WWC evidence standards with reservations; the remaining 173 studies do not meet either WWC evidence standards or eligibility screens. Based on these studies, the WWC found potentially positive effects on reading fluency and no discernible effects on comprehension for adolescent learners. The conclusions presented in this report may change as new research emerges.

References

Meets WWC evidence standards

Meets WWC evidence standards with reservations

Studies that fall outside the Adolescent Literacy review protocol or do not meet WWC evidence standards

Adams, G. L., & Englemann, S. (1996). *Research on Direct Instruction: 25 years beyond DISTAR.* Seattle, WA: Educational Achievement Systems. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Altwerger, B., Arya, P., Jin, L., Jordan, N. L., Laster, B., Martens, P., … Wiltz, N. (2004). When research and mandates collide: The challenges and dilemmas of teacher education in the era of NCLB. *English Education, 36*(2), 119–133. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Altwerger, B., Arya, P., Jin, L., Lang, D., Laster, B., Martens, P., … Wilson, G. P. (2001, December). *The impact of reading programs on second graders’ reading.* Symposium conducted at the annual meeting of the National Reading Conference, Miami, FL. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
American Federation of Teachers. (1999). *Building on the best, learning from what works: Five promising remedial reading intervention programs.* Washington, DC: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Additional source:

American Institutes for Research. (1999). *An educators’ guide to schoolwide reform.* Washington, DC: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Ashworth, D. R. (1999). Effects of *Direct Instruction* and basal reading instruction programs on the reading achievement of second graders. *Reading Improvement, 36*(4), 150–156. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Banta, K. (2002). Direct Instruction Reading Mastery: *A small scale study focused on male students with specific learning disabilities. Does it really work?* Unpublished master’s thesis, Cardinal Stritch University, Milwaukee, WI. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Bateman, B. (1991). Teaching word recognition to slow-learning children. *Reading, Writing, and Learning Disabilities, 7,* 1–16. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Borman, G. D., Hewes, G. M., Overman, L. T., & Brown, S. (2002). *Comprehensive school reform and student achievement: A meta-analysis.* Baltimore, MD: CRESPAR/Johns Hopkins University. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Brattland, E. M. (1991). *Oral strategies to develop vocabulary in Reading Mastery III.* Unpublished master’s project, Weber State University, Ogden, UT. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Brent, G., & Diobilda, N. (1993). Effects of curriculum alignment versus direct instruction on urban children. *Journal of Educational Research, 86,* 333–338. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Briggs, K. L., & Clark, C. (1997). *Reading programs for students in the lower elementary grades: What does the research say?* Austin, TX: Texas Center for Educational Research. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Brooks, G. (1999). What works for slow readers? *Support for Learning, 14*(1), 27. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Butler, M. T. (2001). Comparison of the effects of direct instruction and basal instruction on the reading achievement of first-grade students identified as students with reading difficulties (Doctoral dissertation, University of Alabama, 2001). *Dissertation Abstracts International, 62*(09A), 203–3002. The study is ineligible for review because it does not use a sample aligned...
References (continued)

with the protocol—the sample is not within the specified age or grade range.

Butler, P. A. (2003). Achievement outcomes in Baltimore city schools. Journal of Education for Students Placed at Risk, 8(1), 33–60. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Calinescu, C. (1997). Outcomes of educational intervention with students with neurological disorders (Master’s thesis, University of Toronto [Canada]). Masters Abstracts International, 36(06), 75–1440. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Carlson, C. D., & Francis, D. J. (2002). Increasing the reading achievement of at-risk children through Direct Instruction: Evaluation of the Rodeo Institute for Teacher Excellence (RITE). Journal of Direct Instruction, 3(1), 29–50. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Cheung, A., & Slavin, R. E. (2005). Effective reading programs for English language learners and other language-minority students. Bilingual Research Journal, 29(2), 241–267. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Cross, R. W., Rebarber, T., & Wilson, S. F. (2002). Student gains in a privately managed network of charter schools using Direct Instruction. Journal of Direct Instruction, 2(1), 3–21. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Crowe, E. C., Connor, C. M., & Petscher, Y. (2009). Examining the core: Relations among reading curricula, poverty, and first through third grade reading achievement. Journal of School Psychology, 47(3), 187–214. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Dale, P. S., & Cole, K. N. (1988). Comparison of academic and cognitive programs for young handicapped children. Exceptional Children, 54(5), 439–447. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Additional sources:

Darch, C., Gersten, R., & Taylor, R. (1987). Evaluation of the Williamsburg County *Direct Instruction* program: Factors leading to success in rural elementary programs. *Research in Rural Education, 4*(3), 111–118. The study is ineligible for review because it does not occur within the time frame specified in the protocol.

Deyo, L. L. (2006). *No Child Left Behind according to script: The efficacy of Reading Mastery*. Unpublished master’s thesis, New Mexico Highlands University, Las Vegas, NM. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Dowdell, T. (1996). The effectiveness of *Direct Instruction* on the reading achievement of sixth graders (ERIC Reproduction Service no. ED396268). The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Dudley-Marling, C., & Paugh, P. (2005). The rich get richer; the poor get *Direct Instruction*. In B. Altwerger (Ed.), *Reading for profit: How the bottom line leaves kids behind* (pp. 156–171). Portsmouth, NH: Heinemann. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Duran, E. (2002). *Systematic instruction in reading for Spanish-speaking students*. Springfield, IL: Charles C. Thomas. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Durnin, S. L. (2008). *The Reading Mastery program: A deeper insight into students’ opinions regarding reading*. Unpublished master’s thesis, Western Oregon University, Monmouth, OR. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Earheart, L. S. (2002). The efficacy of the SRA reading program for disabled learners as measured by the Terra Nova achievement test (Doctoral dissertation, Tennessee State University, 2002). *Dissertation Abstracts International, 63*(08A), 57–2823. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Education Commission of the States. (1999). *Direct Instruction*. Denver, CO: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Ellis, L. A. (2005). *Balancing approaches: Revisiting the educational psychology research on teaching students with learning difficulties*. Victoria, Australia: Australian Council for Educational Research Press. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.
Francis, B. J. (1991). Matching reading programs to students’ needs: An examination of alternate programming using a direct instruction program in the regular classroom (Master’s thesis, Simon Fraser University [Canada]). *Masters Abstracts International, 31*(01), 144–61. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Fredrick, L. D., Keel, M. C., & Neel, J. H. (2002). Making the most of instructional time: Teaching reading at an accelerated rate to students at risk. *Journal of Direct Instruction, 2*(1), 57–63. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Funderburk, S. F. (2005). *A research-based, reading approach for severely emotionally disturbed children*. Unpublished doctoral dissertation, University of Georgia, Athens, GA. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Gervase, S. J. (2005). *Reading Mastery: A descriptive study of teachers’ attitudes and perceptions towards Direct Instruction*. Unpublished master’s thesis, Bowling Green State University, Bowling Green, OH. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Glang, A., Ylvisaker, M., Stein, M., Ehlihardt, L., Todis, B., & Tyler, J. (2008). Validated instructional practices: Application to students with traumatic brain injury. *Journal of Head Trauma Rehabilitation, 23*(4), 243–251. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Gunn, B., Biglan, A., Smolkowski, K., & Ary, D. (2000). The efficacy of supplemental instruction in decoding skills for Hispanic and non-Hispanic students in early elementary school. *The Journal of Special Education, 34*(2), 90–103. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Additional sources:

Hammond, L. (1998). *An examination of four reading programs: Letterland, the Spalding method (incorporating the Sound Way Program), Direct Instruction Reading, THRASS (Teaching Handwriting, Reading And Spelling Skills) to teach beginning literacy in the Kimberley education district*. Broome, W.A., Australia: Kimberley District Education Office. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

review because it does not occur within the time frame specified in the protocol.

Herb, M. H. (2005). *The effects of Reading Mastery for students with learning disabilities*. Unpublished master’s thesis, Pennsylvania State University, Philadelphia, PA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Herrington, M. S. (1999). A comparative analysis of the *Reading Mastery* and *Silver Burdett Reading* programs for elementary students (Doctoral dissertation, Mississippi State University, 1999). *Dissertation Abstracts International, 60*(05A), 98–1408. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Hogue, C. (2004). *Use of traditional and Reading Mastery instruction on students with behavioral and emotional disabilities*. Unpublished master’s thesis, Governors State University, University Park, IL. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Johnson, S. (1985). *The effects of using the Reading Mastery Direct Instruction program with average and above-average kindergarteners: A pilot study*. Unpublished master’s thesis, University of Washington, Seattle, WA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Jones, C. D. (2002). Effects of direct instruction programs on the phonemic awareness abilities of kindergarten students (Doctoral dissertation, University of Virginia, 2002). *Dissertation Abstracts International, 63*(03), 902A. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Kamps, D. M., & Greenwood, C. R. (2005). Formulating secondary-level reading interventions. *Journal of Learning Disabilities, 38*(6), 500–509. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Additional source:

Kamps, D., Abbott, M., Greenwood, C., Wills, H., Veerkamp, M., & Kaufman, J. (2008). Effects of small-group reading instruction and curriculum differences for students most at risk in kindergarten. *Journal of Learning Disabilities, 41*(2), 101–114. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Kinder, D., Kubina, R., & Marchand-Martella, N. E. (2005). Special education and Direct Instruction: An effective combination. *Journal of Direct Instruction, 5*(1), 1–36. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Kuder, S. J. (1990). Effectiveness of the DISTAR reading program for children with learning disabilities. *Journal of Learning Disabilities, 23*(1), 69–71. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Kuder, S. J. (1991). Language abilities and progress in a Direct Instruction reading program for students with learning disabilities. *Journal of Learning Disabilities, 24*(2), 122–127. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Leach, D., & Siddall, S. (1990). Parental involvement in the teaching of reading: A comparison of hearing reading, paired reading, pause, prompt, praise, and direct instruction methods. *British Journal of Educational Psychology, 60*, 349–355. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

League, M. B. (2001). The effect of the intensity of phonological awareness instruction on the acquisition of literacy skills (Doctoral dissertation, University of Florida, 2001). *Dissertation Abstracts International, 62*(10), 3299A. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

LeCapitaine, K. J. (2002). Does the use of a Direct Instruction reading program affect the early literacy skills in an urban five-year-old kindergarten class? Unpublished master’s thesis, Cardinal Stritch University, Milwaukee, WI. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
Ligas, M. R. (2002). Evaluation of Broward County Alliance of Quality Schools project. *Journal of Education for Students Placed at Risk, 7*(2), 117–139. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—the intervention was combined with another intervention.

Additional sources:

Lutz, A. R. (2004). *The effectiveness of the Reading Mastery reading program when teaching learning support students how to read*. Unpublished master’s thesis, Gratz College, Melrose Park, PA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Mac Iver, M. A., & Kemper, E. (2002). Guest editors’ introduction: Research on Direct Instruction in reading. *Journal of Education for Students Placed at Risk, 7*(2), 107–116. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Mac Iver, M. A., & Kemper, E. (2002). The impact of Direct Instruction on elementary students’ reading achievement in an urban school district. *Journal of Education for Students Placed at Risk, 7*(2), 197–220. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Additional source:

Marston, D., Deno, S. L., Kim, D., & Diment, K. (1995). Comparison of reading intervention approaches for students with mild disabilities. *Exceptional Children, 62*(1), 20–37. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

McGraw-Hill Education. (2002). Eshelman Avenue Elementary, Lomita, California. In *Results with Reading Mastery* (pp. 16–17). New York: McGraw-Hill. The study is ineligible for review because it does not use a comparison group design or a single-case design.

McGraw-Hill Education. (2002). Fort Worth Independent School District, Fort Worth, Texas. In *Results with Reading Mastery* (pp. 4–5). New York: McGraw-Hill. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

McGraw-Hill Education. (2002). Lebanon School District, Lebanon, Pennsylvania. In *Results with Reading Mastery* (pp. 8–9). New York: McGraw-Hill. The study is ineligible for review because it does not use a comparison group design or a single-case design.

McGraw-Hill Education. (2002). Portland Elementary School, Portland, Arkansas. In Results with Reading Mastery (pp. 2–3). New York: McGraw-Hill. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

McGraw-Hill Education. (2002). Roland Park Elementary/Middle School, Baltimore, Maryland. In Results with Reading Mastery (pp. 12–13). New York: McGraw-Hill. The study is ineligible for review because it does not use a comparison group design or a single-case design.

McGraw-Hill Education. (2002). Wilson Primary School, Phoenix, Arizona. In Results with Reading Mastery (pp. 6–7). New York: McGraw-Hill. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

McIntyre, E., Rightmyer, E. C., & Petrosko, J. P. (2008). Scripted and non-scripted reading instructional models: Effects on the phonics and reading achievement of first-grade struggling readers. Reading & Writing Quarterly, 24(4), 377–407. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Mitchell, D. R. (2008). What really works in special and inclusive education: Using evidence-based teaching strategies. New York: Routledge. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Morgenstern, B. D. (2002). A comparison of high- and low-frequency criteria on reading agility, retention, endurance and Direct Instruction Reading Mastery checkout performance of elementary students academically at-risk (Doctoral dissertation, The Ohio State University, 2002). Dissertation Abstracts International, 63(07A), 86–2464. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Mosley, A. M. (1997). The effectiveness of Direct Instruction on reading achievement. (ERIC Reproduction Service no. ED402553). The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Nealy-Maxwell, M. A. (2004). Investigating how the use of Direct Instruction can complement a balanced literacy program related to reading comprehension and decoding skills. Unpublished master’s thesis, Mount Mary College, Milwaukee, WI. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Neely, M. (1995). The multiple effects of whole language, precision teaching, and Direct Instruction on first-grade story-reading. Effective School Practices, 14(4), 33–42. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Nelson, L. H. (2008). Effective strategies a first grade teacher in a Direct Instruction setting can use to improve reading fluency in beginning readers. Unpublished master’s thesis, Hamline University, Saint Paul, MN. The study is ineligible for review because it
is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

O'Brien, D. M., & Ware, A. M. (2002). Implementing research-based reading programs in the Fort Worth Independent School District. *Journal of Education for Students Placed at Risk, 7*(2), 167–195. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Ocokoljich, E. D. (1997). *The effects of Reading Mastery I and II on the reading achievement of first and second grade students identified as having low phonological awareness skills*. Unpublished master's thesis, University of Wisconsin–Madison, Madison, WI. The study is ineligible for review because it does not use a comparison group design or a single-case design.

O'Connor, R. E., Jenkins, J. R., Cole, K. N., & Mills, P. E. (1993). Two approaches to reading instruction with children with disabilities: Does program design make a difference? *Exceptional Children, 59*(4), 312–323. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Additional source:

Paired Learning Project. (1989). Paired learning: Tutoring by non-teachers. *Paired Reading Bulletin, 5*. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Richardson, E. (1978). An assessment of two methods for remediating reading deficiencies. *Reading Improvement, 15*(2), 82–95. The study is ineligible for review because it does not occur within the time frame specified in the protocol.

Riepl, J., Marchand-Martella, N., & Martella, R. (2008). The effects of Reading Mastery Plus on the beginning reading skills of students with intellectual and developmental disabilities. *Journal of Direct Instruction, 8*(1), 29–39. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Rodman, M. L. (2008). A study of intensive, systematic Direct Instruction for an autistic child (autism). *Dissertation Abstracts International, 68*(7-A), 2896. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Rothenbusch, T. (1999). *The effects of a precision teaching/ Direct Instruction reading program on the reading achievement of elementary school students*. Unpublished master's thesis, University of Northern British Columbia, Prince George, BC, Canada. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Additional source:

Schieffer, C., Marchand-Martella, N., Martella, R., & Simonsen, F. (2002). *The research base for Reading Mastery.* DeSoto, TX: SRA/McGraw-Hill. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Schleider, M. J. (2006). Predicting responsiveness-to-intervention in reading from curriculum-based, social skill and problem behavior measurements (Doctoral dissertation, University of North Carolina at Charlotte, 2006). *Dissertation Abstracts International,* 68(01A), 130–151. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Schmidt, C. J. (2008). *The effects of Reading Recovery, Direct Instruction, and Literacy Collaborative on 2nd graders’ reading.* Unpublished master’s thesis, Carthage College, Kenosha, WI. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Sexton, C. W. (1989). Effectiveness of the *DISTAR Reading I* program in developing first graders’ language skills. *Journal of Educational Research,* 82(5), 289–293. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Shelton, N. R. (2005). First do no harm: Teachers’ reactions to mandated *Reading Mastery.* In B. Altwerger (Ed.), *Reading for profit: How the bottom line leaves kids behind* (pp. 184–198). Portsmouth, NH: Heinemann. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Shippen, M. E., Houchins, D. E., Calhoun, M. B., Furlow, C. F., & Sartor, D. L. (2006). The effects of comprehensive school reform models in reading for urban middle school students with disabilities. *Remedial and Special Education,* 27(6), 322–328. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Simmons, D. C., Coyne, M. D., Kwok, O., McDonagh, S., Harn, B. A., & Kame’enui, E. J. (2008). Indexing response to intervention. *Journal of Learning Disabilities,* 41(2), 158–173. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

for Data-Driven Reform in Education. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Smith, S. L. B. (2002). A cross-case study of teacher perceptions of program design and teaching efficacy: The Seaview Reading Support Program (California) (Doctoral dissertation, University of San Diego, 2002). Dissertation Abstracts International, 63(01A), 246–131. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Smolkowski, K., Biglan, A., Barrera, M., Taylor, T., Black, C., & Blair, J. (2005). Schools and Homes in Partnership (SHIP): Long-term effects of a preventive intervention focused on social behavior and reading skill in early elementary school. Prevention Science: The Official Journal of the Society for Prevention Research, 6(2), 113–125. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Snider, V. E. (1990). Direct Instruction with average first-graders. Reading Improvement, 27, 143–148. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Sprinkman, A. (2001). A comparison of reading achievement made by LD and low IQ students using a Direct Instruction reading program. Unpublished master’s thesis, Cardinal Stritch University, Milwaukee, WI. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2003). City Springs Elementary School, Baltimore, Maryland. DeSoto, TX: Author. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2005). All grade 3 students in two Monroe, Wisconsin elementary schools score proficient or advanced in reading. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/monroe_di.pdf. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2005). *Oregon Reading First project uses Reading Mastery Plus as core reading program*. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/MiltonFreewater_Di.pdf. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2005). *Reading Mastery Plus helps students with disabilities achieve significant academic growth*. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/Clover_DI.pdf. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

SRA/McGraw-Hill. (2006). *Reading proficiency more than doubles among Putnam County special education students*. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/PutnamCo.pdf. The study is ineligible for review because it does not use a comparison group design or a single-case design.

review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2007). Low-performing Kentucky school on its way to high-performing with Reading Mastery. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/Highland_DI_FNL.pdf. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2007). Reading Mastery helps special education students meet state reading standards. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/Marmarton_DI.pdf. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

SRA/McGraw-Hill. (2007). Title I schools in North Carolina district meet all-state reading targets with Direct Instruction. Retrieved from SRA website: https://www.sraonline.com/download/DI/EfficacyReports/Brunswick-ER_FNL.pdf. The study is ineligible for review because it does not use a comparison group design or a single-case design.

SRA/McGraw-Hill. (2009). A report on the effects of SRA/McGraw-Hill’s Reading Mastery, Signature Edition: A response to intervention solution. Desoto, TX: SRA/McGraw-Hill. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Stewart, R. M., Benner, G. J., Martella, R. C., & Marchand-Martella, N. E. (2007). Three-tier models of reading and behavior: A research review. Journal of Positive Behavior Interventions, 9(4), 239–253. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Stockard, J. (2008). Improving first grade reading achievement in a large urban district: The effects of NIFDI-supported implementation of Direct Instruction in the Baltimore City public school system (Technical report no. 2008-1). Eugene, OR: National Institute for Direct Instruction. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Stockard, J. (2008). Reading achievement in a direct instruction school and a “three tier” curriculum school (Technical report no. 2008-5). Eugene, OR: National Institute for Direct Instruction. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Stockard, J. (2008). The long-term impact of NIFDI-supported implementation of Direct Instruction on reading achievement: An analysis of fifth graders in the Baltimore City public school system. Eugene, OR: National Institute for Direct Instruction. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Stockard, J. (2009). Promoting reading achievement and countering the “fourth grade slump”: The impact of Direct
Instruction on reading achievement in fifth grade. Eugene, OR: National Institute for Direct Instruction. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Stockard, J., & Englemann, K. (2008). Academic kindergarten and later academic success: The impact of Direct Instruction (Technical report no. 2008-7). Eugene, OR: National Institute for Direct Instruction. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Sullivan, M. (2002). Reading Mastery versus word study instruction as it pertains to third graders’ reading achievement scores. Unpublished educational specialist’s thesis, Western Kentucky University, Bowling Green, KY. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Thames, D., Kazelskis, R., & Kazelskis, C. R. (2006, November). Reading performance of elementary students: Results of a five-year longitudinal study of direct reading instruction. Paper presented at the annual meeting of the Mid-South Educational Research Association, Birmingham, AL. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Thomson, B. (1991). Pilot study of the effectiveness of a Direct Instruction Model (Reading Mastery Fast Cycle) as a supplement to a literature based delivery model (Houghton-Mifflin Integrated Reading Program) in two regular first grade classrooms. Florida Educational Research Council Research Bulletin, 23(2), 3–23. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Tobin, K. (2000). A comparison between Horizons Fast Track A-B and Silver, Burdett, and Ginn reading curricula in first grade: June 2000 final report. Eugene, OR: National Institute for Direct Instruction. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Torgesen, J. K., & King, R. (2000). Improving the effectiveness of reading instruction in one elementary school: A description of the process (Technical report no. 3). Tallahassee, FL: Florida Center for Reading Research. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Valesano, L. (2000). *Advantages of using Direct Instruction to teach reading*. Unpublished starred paper, St. Cloud State University, St. Cloud, MN. The study is ineligible for review because it is not a primary analysis of an intervention, such as a meta-analysis or research literature review.

Valesano, L. (2000). *Reading Mastery: A phonemic reading program to teach reading*. Unpublished starred paper, St. Cloud State University, St. Cloud, MN. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Vitale, M., & Joseph, B. (2008). Broadening the institutional value of *Direct Instruction* implemented in a low-SES elementary school: Implications for scale-up and school reform. *Journal of Direct Instruction, 8*(1), 1–18. The study is ineligible for review because it does not use a comparison group design or a single-case design.

Weinstein, G., & Cooke, N. L. (1992). The effects of two repeated reading interventions on generalization of fluency. *Learning Disability Quarterly, 15*(1), 21–28. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Wilson, B. (2000). Educators’ views of implementing *Direct Instruction* curricula: Connections to students with disabilities (Doctoral dissertation, West Virginia University, 2000). *Dissertation Abstracts International, 62*(04A), 239–1318. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Wilson, P., Martens, P., & Arya, P. (2005). Accountability for reading and readers: What the numbers don’t tell. *Reading Teacher, 58*(7), 622–631. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Wiltz, N., & Wilson, G. P. (2005). An inquiry into children’s reading in one urban school using SRA *Reading Mastery (Direct Instruction)*. *Journal of Literacy Research, 37*(4), 493–528. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Wrobel, S. (1996). *The effectiveness of Direct Instruction on the various reading achievement categories*. (ERIC Reproduction Service no. ED395292). The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Ziech, A. (2005). *Improving the literacy skills of a struggling reader through Direct Instruction and guided reading*. Unpublished master’s thesis, Cardinal Stritch University, Milwaukee, WI. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
Appendix

Appendix A1.1 Study characteristics: Stockard, 2010

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>In this randomized study, 58 general education elementary students were assigned to a treatment or control condition, using alternative assignment with a random start technique. The author used a class list (arranged in alphabetical order) to conduct the assignment. First, the author used a random numbers table to determine where to begin in the class list. Second, the author used a coin flip to determine whether the assignment would start with the treatment or control group. Finally, after this initial assignment was determined, the author assigned each additional student in an alternating fashion to the treatment or control group. For example, in the first step, the author might have started the assignment with John Smith (based on a random numbers table). In the second step, the author might have assigned John Smith to the treatment group (based on the coin flip). Then, the author would have proceeded through the rest of the ordered class list (alternating between the control and treatment groups). Four classrooms participated in the study. Two pairs of teachers were formed and then—within these pairs—teachers were randomly assigned to the treatment or control group via a coin flip. Students were predominantly non-Hispanic whites from middle-income families. The analysis sample consisted of 29 fourth-grade students who received Reading Mastery and 28 fourth-grade students in the comparison group.</td>
</tr>
<tr>
<td>Setting</td>
<td>The study was conducted in a midwestern elementary school.</td>
</tr>
<tr>
<td>Intervention</td>
<td>Beginning in the fall of 2009, students in the treatment condition received instruction for 90 minutes a day in the SRA/McGraw-Hill program, Reading Mastery Signature Edition. Students were exposed to Reading Mastery over five months.</td>
</tr>
<tr>
<td>Comparison</td>
<td>The control group received instruction for 90 minutes a day in the Scott Foresman Basal Reading Program, which the school had been using in prior years.</td>
</tr>
<tr>
<td>Primary outcomes and measurement</td>
<td>Data on the AIMS Web Curriculum-Based Measurement Words Read Correct were gathered in the spring of 2009 before instruction began (for use as a baseline measure), in the fall of 2009 shortly after the start of the school year, and again in winter of 2010, approximately halfway through the school year. For a more detailed description of this outcome measure, see Appendix A2.1.</td>
</tr>
<tr>
<td>Staff or teacher training</td>
<td>No information about training was provided.</td>
</tr>
</tbody>
</table>

1. The study author did not describe how students assigned to the treatment group were assigned to the two treatment teachers or how students assigned to the control group were assigned to the two control teachers.
Study characteristics: Yu & Rachor, 2000

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>This retrospective quasi-experiment included students in three elementary schools that participated in Reading Mastery for two consecutive years. Each of the three Reading Mastery schools was matched with a school with a similar level of poverty and percentage of minority students. Then, Reading Mastery students were matched with comparison students in the same grade on the basis of race, gender, free lunch status, and reading achievement test scores. This review focuses on findings from students who were in grades 4 and 5 during the first year of program implementation (1997/98). The analysis sample for students who were in grade 4 in 1997/98 consisted of 71 students who received Reading Mastery and 71 matched comparison students. The analysis sample for students who were in grade 5 in 1997/98 consisted of 81 students in the Reading Mastery group and 81 matched comparison students. Of the students, more than 96% were African-American, and about 80% were eligible for free or reduced-price lunch. The study reported students’ outcomes after two years of program implementation; these findings were used in the intervention ratings and can be found in Appendix A3.2. Additional findings reflecting students’ outcomes after one year of program implementation can be found in Appendix A4.</td>
</tr>
<tr>
<td>Setting</td>
<td>The study was conducted in six elementary schools in a northwestern urban public school system.</td>
</tr>
<tr>
<td>Intervention</td>
<td>The complete Reading Mastery program was adopted, including all materials and teacher training. The program provided scripted, carefully sequenced lessons; rapid pacing; and responses of the students in unison as well as in individual turns. Students were exposed to Reading Mastery over two school years.</td>
</tr>
<tr>
<td>Comparison</td>
<td>The comparison group received the standard instruction provided in the regular school curriculum.</td>
</tr>
<tr>
<td>Primary outcomes and measurement</td>
<td>For both the pretest and posttest, students took the State Reading Proficiency Test and the Riverside Publishing Off Grade Reading Proficiency Test. The State Reading Proficiency Test provided data at pretest and after two years of intervention implementation for the 5th-grade group and data after one year of intervention implementation for the 4th-grade group. The Riverside Publishing Off Grade Reading Proficiency Test provided data at pretest and after two years of intervention implementation for the 4th-grade group, and data after one year of intervention implementation for the 5th-grade group. For a more detailed description of these outcome measures, see Appendix A2.2.</td>
</tr>
<tr>
<td>Staff or teacher training</td>
<td>Teachers participated in training prior to implementation and were provided with ongoing consultations from the provider for the program duration. No additional details about training were provided.</td>
</tr>
</tbody>
</table>

1. Findings for 3rd grade are outside the scope of the Adolescent Literacy review.
Appendix A2.1 Outcome measures for the reading fluency domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMS Web Curriculum-Based Measurement Words Read Correct</td>
<td>When a child reads graded passages aloud for one minute, this curriculum-based AIMS web assessment gathers data on reading fluency in the form of number of words read correctly. The assessment has well-established validity and reliability. AIMS Web is a benchmark and progress-monitoring system based on direct, frequent, and continuous student assessment (as cited in Stockard, 2010).</td>
</tr>
</tbody>
</table>

Appendix A2.2 Outcome measures for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside Publishing Off Grade Reading Proficiency Test</td>
<td>This test for 3rd- and 5th-grade students is designed to measure students’ reading proficiency. Test items, which are based on fiction, nonfiction, and poetry reading passages, are designed to capture four strands of learning outcomes defined by the publisher as (1) examining meaning given a fiction or poetry text (examining meaning indicates that students are able to comprehend the overall meaning of what they have read), (2) extending meaning given a fiction or poetry text (extending meaning indicates that students can interpret what they have read and infer beyond the text), (3) examining meaning given a nonfiction text, and (4) extending meaning given a nonfiction text (as cited in Yu & Rachor, 2000).</td>
</tr>
<tr>
<td>State Reading Proficiency Test</td>
<td>This state annual reading test is administered to 4th- and 6th-grade students (as cited in Yu & Rachor, 2000). No additional information on the test was provided.</td>
</tr>
</tbody>
</table>
Appendix A3.1 Summary of study findings included in the rating for the reading fluency domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Study sample</th>
<th>Sample size (classrooms/students)</th>
<th>Reading Mastery group</th>
<th>Comparison group</th>
<th>Mean difference (Reading Mastery – comparison)</th>
<th>Effect size</th>
<th>Statistical significance (at α = 0.05)</th>
<th>Improvement index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMS Web</td>
<td></td>
<td>Grade 4</td>
<td>4/57</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td>+19</td>
</tr>
<tr>
<td>CBM Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain average for reading fluency (Stockard, 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.49</td>
<td>ns</td>
<td>+19</td>
</tr>
</tbody>
</table>

ns = not statistically significant

AIMS Web CBM = AIMS Web Curriculum-Based Measurement

1. This appendix reports findings considered for the effectiveness rating and the average improvement indices for the reading fluency domain.
2. The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes.
3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.
4. For an explanation of the effect-size calculation, see WWC Procedures and Standards Handbook, Appendix B.
5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
6. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between –50 and +50, with positive numbers denoting favorable results for the intervention group.
7. The Reading Mastery group mean outcome values for Stockard (2010) are the unadjusted control group posttest means plus the difference in mean gains between the intervention and control groups. Control group means are unadjusted.
8. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Stockard (2010), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.
9. This row provides the study average, which, in this instance, is also the domain average. The WWC-computed domain average effect size is a simple average rounded to two decimal places. The domain improvement index is calculated from the average effect size.
Appendix A3.2 Summary of study findings included in the rating for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Authors’ findings from the study</th>
<th>WWC calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean outcome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(standard deviation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reading Mastery group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean difference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reading Mastery –comparison)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistical significance (at (\alpha = 0.05))</td>
<td>Improvement index</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study sample</th>
<th>Sample size (schools/students)</th>
<th>Reading Mastery group</th>
<th>Comparison group</th>
<th>Mean difference</th>
<th>Effect size</th>
<th>Statistical significance</th>
<th>Improvement index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside Publishing Off Grade Reading Proficiency Test</td>
<td>Grade 4</td>
<td>6/142</td>
<td>209.01 (20.16)</td>
<td>205.46 (18.42)</td>
<td>3.55</td>
<td>0.18</td>
<td>ns</td>
</tr>
<tr>
<td>State Reading Proficiency Test</td>
<td>Grade 5</td>
<td>6/162</td>
<td>201.15 (25.30)</td>
<td>213.80 (23.42)</td>
<td>12.65</td>
<td>-0.52</td>
<td>ns</td>
</tr>
</tbody>
</table>

Domain average for comprehension (Yu & Rachor, 2000)

-0.17 na -7

Notes:

- ns = not statistically significant
- na = not applicable

1. This appendix reports two-year findings considered for the effectiveness rating and the average improvement indices for the comprehension domain. One-year findings from Yu and Rachor (2000) are not included in these ratings but are reported in Appendix A4.

2. The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes.

3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.

4. For an explanation of the effect-size calculation, see WWC Procedures and Standards Handbook, Appendix B.

5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.

6. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between –50 and +50, with positive numbers denoting favorable results for the intervention group.

7. The *Reading Mastery* group mean outcome values for Yu and Rachor (2000) differ from those presented in the paper. The WWC calculated the program group mean using a difference-in-differences approach (see WWC Handbook)—calculating the program means by adding the impact of the program (i.e., difference in mean gains between the intervention and control groups) to the unadjusted control group posttest means.

8. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Yu and Rachor (2000), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.

9. This row provides the study average, which, in this instance, is also the domain average. The WWC-computed domain average effect size is a simple average rounded to two decimal places. The domain improvement index is calculated from the average effect size.
Summary of one-year implementation findings for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Study sample</th>
<th>Sample size (schools/students)</th>
<th>Reading Mastery group</th>
<th>Comparison group</th>
<th>Mean difference(^3) (Reading Mastery – comparison)</th>
<th>Effect size(^4)</th>
<th>Statistical significance(^5) (at (\alpha = 0.05))</th>
<th>Improvement index(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Reading Proficiency Test Grade 4</td>
<td>Grade 4</td>
<td>6/142</td>
<td>207.13 (12.28)</td>
<td>200.92 (12.18)</td>
<td>6.21</td>
<td>0.51</td>
<td>ns</td>
<td>+19</td>
</tr>
<tr>
<td>Riverside Publishing Off Grade Reading Proficiency Test Grade 5</td>
<td>Grade 5</td>
<td>6/162</td>
<td>207.42 (21.33)</td>
<td>204.95 (24.86)</td>
<td>2.47</td>
<td>0.11</td>
<td>ns</td>
<td>+4</td>
</tr>
</tbody>
</table>

\(\text{ns} = \text{not statistically significant}\)

1. This appendix presents one-year findings for measures that fall in the comprehension domain. Two-year findings were used for rating purposes and are presented in Appendix A3.2.
2. The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes.
3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.
4. For an explanation of the effect-size calculation, see WWC Procedures and Standards Handbook, Appendix B.
5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.
6. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between –50 and +50, with positive numbers denoting results favorable to the intervention group.
7. The Reading Mastery group and control group mean outcome values for Yu and Rachor (2000) are the unadjusted one-year posttest means.
8. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Yu and Rachor (2000), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.
Appendix A5.1

Reading Mastery rating for the reading fluency domain

The WWC rates an intervention’s effects for a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative.¹

For the reading fluency outcome domain, the WWC rated Reading Mastery as having potentially positive effects for adolescent learners. The remaining ratings (mixed effects, no discernible effects, potentially negative effects, or negative effects) were not considered, as Reading Mastery was assigned the highest applicable rating.

Rating received

Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.

- **Criterion 1:** At least one study showing a statistically significant or substantively important positive effect.
 - **Met.** One study showed substantively important positive effects.

AND

- **Criterion 2:** No studies showing a statistically significant or substantively important negative effect and fewer or the same number of studies showing indeterminate effects than showing statistically significant or substantively important positive effects.
 - **Met.** No studies showed statistically significant or substantively important negative effects. No studies showed indeterminate effects.

Other ratings considered

Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.

- **Criterion 1:** Two or more studies showing statistically significant positive effects, at least one of which met WWC evidence standards for a strong design.
 - **Not met.** No studies showed statistically significant positive effects.

AND

- **Criterion 2:** No studies showing statistically significant or substantively important negative effects.
 - **Met.** No studies showed statistically significant or substantively important negative effects.

¹ For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain-level effect. The WWC also considers the size of the domain-level effect for ratings of potentially positive or potentially negative effects. For a complete description, see the WWC Procedures and Standards Handbook, Appendix E.
Appendix A5.2 Reading Mastery rating for the comprehension domain

The WWC rates an intervention’s effects for a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative.1 For the comprehension outcome domain, the WWC rated *Reading Mastery* as having no discernible effects for adolescent learners.

Rating received

No discernible effects: No affirmative evidence of effects.
- **Criterion 1:** No studies showing a statistically significant or substantively important effect, either *positive* or *negative*.
 - **Met.** No studies showed a statistically significant or substantively important effect, either positive or negative.

Other ratings considered

Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.
- **Criterion 1:** Two or more studies showing statistically significant *positive* effects, at least one of which met WWC evidence standards for a *strong* design.
 - **Not met.** No studies showed a statistically significant positive effect.

AND
- **Criterion 2:** No studies showing statistically significant or substantively important *negative* effects.
 - **Met.** No studies showed a statistically significant or substantively important negative effect.

Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.
- **Criterion 1:** At least one study showing a statistically significant or substantively important *positive* effect.
 - **Not met.** No studies showed a statistically significant or substantively important positive effect.

AND
- **Criterion 2:** No studies showing a statistically significant or substantively important *negative* effect and fewer or the same number of studies showing *indeterminate* effects than showing statistically significant or substantively important *positive* effects.
 - **Not met.** No studies showed a statistically significant or substantively important negative effect. One study showed indeterminate effects.

Mixed effects: Evidence of inconsistent effects as demonstrated through either of the following criteria.
- **Criterion 1:** At least one study showing a statistically significant or substantively important *positive* effect, and at least one study showing a statistically significant or substantively important *negative* effect, but no more such studies than the number showing a statistically significant or substantively important *positive* effect.
 - **Not met.** No studies showed a statistically significant or substantively important positive effect, and no studies showed a statistically significant or substantively important negative effect.

OR
- **Criterion 2:** At least one study showing a statistically significant or substantively important effect, and more studies showing an *indeterminate* effect than showing a statistically significant or substantively important effect.
 - **Not met.** No studies showed a statistically significant or substantively important effect. One study showed indeterminate effects.

1. For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain-level effect. The WWC also considers the size of the domain-level effect for ratings of potentially positive or potentially negative effects. For a complete description, see the WWC Procedures and Standards Handbook, Appendix E.

(continued)
Appendix A5.2 Reading Mastery rating for the comprehension domain *(continued)*

<table>
<thead>
<tr>
<th>Potentially negative effects: Evidence of a negative effect with no overriding contrary evidence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: One study showing a statistically significant or substantively important negative effect and no studies showing a statistically significant or substantively important positive effect.</td>
</tr>
<tr>
<td>Not met. No studies showed a statistically significant or substantively important effect, either positive or negative.</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>• Criterion 2: Two or more studies showing statistically significant or substantively important negative effects, at least one study showing a statistically significant or substantively important positive effect, and more studies showing statistically significant or substantively important negative effects than showing statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>Not met. No studies showed a statistically significant or substantively important effect, either positive or negative.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative effects: Strong evidence of a negative effect with no overriding contrary evidence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: Two or more studies showing statistically significant negative effects, at least one of which met WWC evidence standards for a strong design.</td>
</tr>
<tr>
<td>Not met. No studies showed a statistically significant negative effect.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>• Criterion 2: No studies showing statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>Met. No studies showed a statistically significant or substantively important positive effect.</td>
</tr>
</tbody>
</table>
Appendix A6 Extent of evidence by domain

<table>
<thead>
<tr>
<th>Outcome domain</th>
<th>Number of studies</th>
<th>Schools</th>
<th>Students</th>
<th>Extent of evidence¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabets</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Reading fluency</td>
<td>1</td>
<td>1</td>
<td>57</td>
<td>Small</td>
</tr>
<tr>
<td>Comprehension</td>
<td>1</td>
<td>6</td>
<td>304</td>
<td>Small</td>
</tr>
<tr>
<td>General literacy achievement</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

*na = not applicable/not studied

1. A rating of “medium to large” requires at least two studies and two schools across studies in one domain and a total sample size across studies of at least 350 students or 14 classrooms. Otherwise, the rating is “small.” For more details on the extent of evidence categorization, see the WWC Procedures and Standards Handbook, Appendix G.