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I. INTRODUCTION 

It is critical that education decision makers have access to the best evidence about the 
effectiveness of education products, programs, policies, and practices. However, it can be 
difficult, time-consuming, and costly for decision makers to access and draw conclusions from 
relevant studies about the effectiveness of these interventions. The What Works Clearinghouse 
(WWC) addresses the need for credible, succinct information by identifying existing research on 
education interventions, assessing the quality of this research, and summarizing and 
disseminating the evidence from studies that meet WWC standards. 

The WWC is an initiative of the U.S. Department of Education’s Institute of Education 
Sciences (IES), which was established under the Education Sciences Reform Act of 2002. It is an 
important part of IES’s strategy to use rigorous and relevant research, evaluation, and statistics to 
improve our nation’s education system. The mission of the WWC is to be a central and trusted 
source of scientific evidence for what works in education. The WWC examines research about 
interventions that focus on improving educationally relevant outcomes, including those for 
students and educators.  

The WWC systematic review process is the basis of many of its products, enabling the 
WWC to use consistent, objective, and transparent standards and procedures in its reviews, while 
also ensuring comprehensive coverage of the relevant literature. The WWC systematic review 
process consists of five steps: 

1. Developing the review protocol. A formal review protocol is developed for each review 
effort, including one for each WWC topic area (e.g., adolescent literacy, primary 
mathematics, or charter schools), to define the parameters for the research to be included 
within the scope of the review (e.g., population characteristics and types of interventions); 
the literature search (e.g., search terms and databases); and any topic-specific applications of 
the standards (e.g., acceptable thresholds for sample attrition and characteristics for group 
equivalence). 

2. Identifying relevant literature. Studies are gathered through a comprehensive search of 
published and unpublished publicly available research literature. The search uses electronic 
databases, outreach efforts, and public submissions. 

3. Screening studies. Manuscripts are initially screened for eligibility to determine whether 
they report on original research, provide potentially credible evidence of an intervention’s 
effectiveness, and fall within the scope of the review protocol.  

4. Reviewing studies. Every eligible study is reviewed against WWC standards. The WWC 
uses a structured review process to assess the causal validity of findings reported in 
education effectiveness research. The WWC standards focus on the causal validity within 
the study sample (internal validity) rather than the extent to which the findings might be 
replicated in other settings (external validity).  

5. Reporting on findings. The details of the review and its findings are summarized on the 
WWC website, and often in a WWC publication. For many of its products, the WWC 
combines findings from individual studies into summary measures of effectiveness, 
including the magnitude of findings and the extent of evidence. 

1 
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In addition, the WWC reviews some studies outside of the systematic review process. These 
reviews are also guided by a review protocol, and use the same WWC standards and reporting 
procedures. 

This What Works Clearinghouse Standards Handbook (Version 4.0) provides a detailed 
description of the standards used by the WWC to review studies (Step 4 above). Steps 1–3 and 
Step 5 are described in a separate What Works Clearinghouse Procedures Handbook. Taken 
together, these two documents replace the single document used since March 2014, the What 
Works Clearinghouse Procedures and Standards Handbook (Version 3.0). 

This Standards Handbook provides a detailed description of the standards used by the WWC 
when reviewing studies that have met eligibility screens, including using one of the following 
eligible designs: randomized controlled trial, quasi-experimental design, regression discontinuity 
design, and single-case design. The WWC refers to randomized controlled trials and quasi-
experimental designs collectively as group design studies. Studies reviewed against WWC 
standards receive one of the following three study ratings indicating the credibility of evidence 
from the study: Meets WWC Design Standards Without Reservations, Meets WWC Design 
Standards With Reservations, or Does Not Meet WWC Design Standards.  

The substantive differences between this version of the standards (4.0) and the previous 
version (3.0) include the following: 

• The regression discontinuity design standards have been revised. The substantive 
changes to the regression discontinuity standards are a new set of procedures for the 
review of “fuzzy” regression discontinuity designs, expanded procedures for the review 
of multi-site and multiple assignment variable regression discontinuity designs, and a 
preference for local bandwidth impact estimation over global impact regression with 
flexible functional forms. 

• The standards for cluster-level assignment studies have been revised. There are 
three substantive changes to the cluster standards. First, the language that study authors 
use to describe their inferences will have no bearing on the review process. The WWC 
will review for evidence of an effect on individuals, and if that evidence does not meet 
standards, the WWC will review for evidence of an effect on clusters. In addition to any 
effects of the intervention on individuals, effects on clusters may include effects of the 
intervention on the composition of individuals within clusters. Second, cluster 
randomized controlled trials with individuals who entered clusters after random 
assignment may be eligible for the highest rating. Third, studies that can only provide 
credible evidence of an intervention’s effects on clusters are not eligible for the highest 
rating, and the WWC will need to assess whether the individuals represented in the data 
used to estimate impacts are representative of the population in the clusters. 

• The standards for studies with missing data have been revised. A group design study 
that analyzes a sample with missing data for baseline or outcome measures is eligible to 
meet WWC group design standards if it uses an acceptable method to address the 
missing data and limits the potential bias from using imputed data instead of actual data. 
Additionally, the standards provide new procedures for assessing baseline equivalence 
in a quasi-experimental design or high-attrition randomized controlled trial with some 
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missing or imputed baseline data in the analytic sample. Previously, only low-attrition 
randomized controlled trials could analyze imputed data and be eligible to meet WWC 
group design standards.  

• The Standards Handbook includes standards for randomized controlled trials that 
present complier average causal effects. Studies may estimate the complier average 
causal effect to examine the effects of intervention participation rather than intervention 
assignment. 

• Additional methods of statistical adjustment can be used to satisfy the baseline 
equivalence requirement. When the outcome and baseline measure are closely related 
and are measured using the same units, the WWC considers difference-in-differences 
adjustments, simple gain scores, and fixed effects for the unit of assignment as 
acceptable statistical adjustments.  

• The Standards Handbook includes additional clarification of existing standards. The 
additional clarification of the standards is intended to support consistency across 
reviews, and includes guidance on applying standards to analyses in which subjects are 
observed in multiple time periods and propensity score analyses, and examples of 
confounding factors.  

The remainder of the document is organized as follows. Chapter II provides standards for 
randomized controlled trials and quasi-experimental designs. This chapter also provides 
additional standards for randomized controlled trials that present complier average causal effects 
(with supplemental technical detail in Appendix D). Chapter III provides standards for studies 
that use regression discontinuity designs. Chapter IV provides information on outcome eligibility 
and confounding factors that applies broadly across designs. Pilot standards for studies that use 
single-case designs are presented in Appendix A. 

As the WWC uses and applies the standards in this Standards Handbook, reviewers may 
occasionally need additional guidance. If necessary, the WWC will produce guidance documents 
for reviewers that provide clarification and interpretation of standards and support consistency 
across reviews. This WWC reviewer guidance will clarify how these standards should be 
implemented in situations where the current Standards Handbook is not sufficiently specific to 
ensure consistent reviews. 

As the WWC continues to refine and develop standards, the Standards Handbook will be 
revised to reflect these changes. Readers who want to provide feedback on the Standards 
Handbook, or the WWC more generally, may contact us at http://ies.ed.gov/ncee/wwc/help. 

3 
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II. RANDOMIZED CONTROLLED TRIALS AND QUASI-EXPERIMENTAL 
DESIGNS 

This chapter describes the core elements for the review of two major categories of group 
designs for intervention studies: randomized controlled trials (RCTs) and quasi-experimental 
designs (QEDs). While RCTs rely on random assignment to form intervention and comparison 
groups, QEDs form these groups using methods other than random assignment. Standards are 
presented separately for studies that assign individuals (such as students) to a condition and 
studies that assign clusters (such as classrooms or schools) to a condition. The chapter concludes 
with specific guidance for reviews of studies that use a variety of common analytical approaches.  

Although regression discontinuity designs (RDDs) are sometimes considered a type of group 
design, the WWC applies separate standards to review eligible RDDs. If a cutoff value on a 
known measure is used to assign subjects to the intervention and comparison groups, then the 
study may be eligible to be reviewed as an RDD. The WWC eligibility criteria and standards for 
reviewing RDDs are described in Chapter III.  

A. Individual-Level Assignment 
In this section, we describe the three steps for reviewing RCTs and QEDs that assign 

individual subjects to the intervention or comparison condition: (1) assessing the study design, 
(2) assessing sample attrition, and (3) assessing equivalence of the intervention and comparison 
groups at baseline (prior to the intervention). To be eligible for the WWC’s highest rating for 
group design studies, Meets WWC Group Design Standards Without Reservations, the study 
must be an RCT with low levels of sample attrition. A QED or high-attrition RCT is eligible for 
the rating Meets WWC Group Design Standards With Reservations if it satisfies the WWC’s 
baseline equivalence requirement that the analytic intervention and comparison groups appear 
similar at baseline. A QED or high-attrition RCT that does not satisfy the baseline equivalence 
requirement receives the rating Does Not Meet WWC Group Design Standards (Figure II.1). 
After describing each step in the review process, we conclude with a set of possible results, 
pointing readers to the appropriate next step in the review process. 

However, individual-level assignment studies that satisfy the requirements outlined in Steps 
1–3 must also satisfy two additional requirements to be rated Meets WWC Group Design 
Standards Without Reservations or Meets WWC Group Design Standards With Reservations. 
These additional requirements, described in Chapter IV, are that the study must examine at least 
one outcome measure that meets review requirements and be free of confounding factors. 

Additionally, when studies use certain analytic approaches, including propensity score 
analyses, analyses in which subjects are observed in multiple time periods, methods to address 
missing data, or include endogenous covariates, additional guidance and standards may apply as 
described in Section C. In particular, when an analysis uses methods to address missing data 
such as regression imputation, maximum likelihood, or non-response weights, the review process 
outlined in Figure II.5 should be followed instead, which includes an assessment of potential bias 
from using imputed data instead of actual data. Additionally, standards for reviewing studies that 
report complier average causal effects are described in Section D. 
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Figure II.1. Study Ratings for Individual-Level RCTs and QEDs 
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Note:  To receive a rating of Meets WWC Group Design Standards Without Reservations or Meets WWC Group Design 
Standards With Reservations, the study must also satisfy the requirements in Chapter IV, including that the study 
must examine at least one outcome measure that meets review requirements and be free of confounding factors. 

Step 1. Study Design: Is intervention and comparison group membership determined 
through a random process? 

Randomized controlled trials 
The distinguishing characteristic of an RCT is that study subjects are randomly assigned to 

one of two groups that are differentiated by whether they receive the intervention. Acceptable 
methods of random assignment include blocking the sample into groups before random 
assignment, using random subsampling, assigning individuals to groups with different 
probabilities, and forming groups of different size. 

To be valid random assignment, subjects must be assigned entirely by chance and have a 
nonzero probability of being assigned to each group. Subjects do not need to have an equal 
chance of being assigned to each group, and the chance of being assigned to a particular group 
can differ across subjects. However, if subjects are assigned to a group with different 
probabilities (i.e., if the chance of being assigned to a group differs for subjects within the same 
assigned condition), then the findings must be based on an analysis that adjusts for the different 
assignment probabilities (see discussion of the third type of compromised RCTs in the next 
subsection). This requirement also applies if the probability of assignment to a group varies 
across blocks in a stratified random assignment framework.  
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Compromised RCTs 
When the validity of a random assignment process or the analysis of an otherwise well-

executed random assignment process is compromised, the study is reviewed using the process for 
QEDs. There are four ways in which an RCT that assigns individual subjects to the intervention 
or comparison condition can be compromised.  

• First, the RCT is compromised when it includes subjects in the sample used to estimate 
findings (analytic sample) who were not randomly assigned.  

• Second, the RCT is compromised if subjects are randomly assigned to a group with 
different probabilities, but the findings are based on an analysis that does not account for 
the different assignment probabilities. Consider a study that conducts random 
assignment separately within two blocks of students. The study includes the same 
number of students in both blocks, but students in block A are high performing at 
baseline, while students in block B are low performing at baseline. The study assigns 70 
percent of block A students to the intervention condition, but assigns only 30 percent of 
block B students to the intervention condition. In this case, the intervention group 
includes 70 percent high-performing students, while the comparison group includes 70 
percent low-performing students. If the data are analyzed without accounting for the 
different assignment probabilities, the dissimilar groups may cause the intervention to 
appear to have a positive impact, even if it has none. The three WWC-accepted methods 
of accounting for different assignment probabilities within a group are: 

o Estimating a regression model in which the covariate set includes dummy 
variables that differentiate subsamples with different assignment probabilities,  

o Estimating impacts separately for subsamples with different assignment 
probabilities and averaging the subsample-specific impacts (weighted or 
unweighted), and  

o Using inverse probability weights, formed using the known probabilities of 
assignment for each subject, as weights in the analysis.  

If study authors describe a random assignment process that suggests varying 
probabilities of assignment but do not make one of these adjustments, the RCT is 
compromised and the study is reviewed using the process for QEDs. 

• Third, the RCT is compromised when the investigator changes a subject’s group 
membership after random assignment. Consider a study in which some subjects assigned 
to the intervention condition did not receive the intervention, but remained in the study. 
For example, some students initially assigned to a classroom implementing the 
intervention condition may actually attend a different classroom that implemented the 
comparison condition. If the study authors analyze these subjects as members of the 
comparison group, based on not receiving the intervention, random assignment is 
compromised. However, if the study authors analyze these subjects as members of the 
intervention group, based on their original assignment (an intent-to-treat [ITT] analysis), 
the integrity of random assignment would be maintained. Put another way, not all 
subjects must actually receive their assigned condition, but all subjects must be analyzed 
according to the subject’s originally assigned condition. Note that studies that address 
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non-compliance by reporting complier average causal effects (CACE) may be eligible 
for review using the standards described in Section D of this chapter. 

• Fourth, the RCT is compromised when a study author manipulates the analytic sample to 
exclude certain subjects based on events that occurred after the introduction of the 
intervention when there is a clear link between the intervention and the reason for the 
exclusion. A clear link is present when the exclusion is based on a measure the 
intervention may have affected. Not all sample exclusions performed by the author will 
meet this condition, as illustrated in the following examples. Together, these examples 
illustrate the three ways in which the WWC treats sample exclusions, summarized in 
Figure II.3: (1) as a compromised RCT, (2) as attrition, or (3) as ignorable (i.e., not 
counted as attrition and not compromising): 

o Compromised RCT. If an intervention could affect student attendance and study 
authors exclude from the analysis students with high levels of absenteeism, the 
RCT is compromised. This outcome is represented by the red box in Figure II.3. 

o Attrition. Suppose study authors grouped students into pairs and randomly 
assigned one student in each pair to the intervention condition. If either student in 
the pair was missing outcome data, the exclusion of both students in the pair (or 
any other larger randomization block) from the analysis would not compromise 
random assignment because there is no clear link between the intervention and 
attrition of the pair. In this example, the excluded pair counts as attrition, which 
does not compromise an RCT and is discussed in detail in Step 2 below. This 
outcome is represented by the yellow box in Figure II.3. 

o Ignorable (not counted as attrition and not compromising). Some sample 
exclusions are considered neither attrition nor compromising. For example, if 
study authors excluded students at random from follow-up data collection, or left 
out of the analytic sample students who had individualized education programs 
prior to the study, these exclusions do not compromise random assignment. 
Furthermore, the excluded subjects may be removed from the attrition calculation 
because they were based on a pre-intervention characteristic. A full discussion of 
the criteria for when a sample exclusion is considered ignorable is below in the 
subsection on sample loss that is not considered attrition. This outcome is 
represented by the green box in Figure II.3, and the distinction between this 
outcome and exclusions that are counted as attrition is discussed further in Step 2 
under the subsection on sample loss that is not considered attrition. 

The WWC considers an RCT to be compromised only when the researcher analyzes data 
subject to one of these four concerns. Some valid randomization procedures can produce 
intervention and comparison groups that appear dissimilar based on chance. The WWC does not 
consider these chance differences to compromise the RCT, and such studies are reviewed using 
the usual review process for valid RCTs. Also, if a study reports multiple findings, only some of 
which the WWC determines to be compromised RCTs, the findings that maintain the integrity of 
the random assignment can be reviewed using the process for valid RCTs. 

7 
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Quasi-experimental designs 
A study is eligible to be reviewed as a QED if it compares outcomes for subjects in an 

intervention group with outcomes for subjects in a comparison group, but does not rely on 
random assignment to determine membership in the two groups. Groups can be identified 
through a variety of processes and be eligible for WWC review as long as the groups are 
exclusive, meaning a subject can belong to only a single group. Assignment to the intervention 
may depend on both observed and unobserved characteristics. For example, a group of students 
may be eligible for an afterschool program, but only some may choose to participate. The 
students who did not choose to participate are designated as the comparison group. In this case, 
the characteristics of intervention and comparison groups differ. The two groups may differ on 
characteristics researchers were able to measure, such as test scores, or on characteristics that 
researchers were not able to measure, such as motivation. Even with equivalence on measured 
characteristics, there may be differences in unmeasured characteristics that could introduce bias 
into an estimate of the effect of the intervention. Bias is a systematic difference between the true 
impact of the intervention and the estimated impact, which can lead to incorrect conclusions 
about the effect of the intervention. For this reason, QEDs cannot receive the highest WWC 
rating, but can receive the rating Meets WWC Group Design Standards With Reservations. 

WWC Review Process for Step 1 of the Review of Individual-Level Assignment Studies 
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 If individuals have been placed into each study condition through a valid random 
assignment process, and the RCT has not been compromised, then continue to Step 2. 

 If the study meets the eligibility criteria for review as an RDD study described in 
Chapter III, then review under the RDD standards in Chapter III. 

 If individuals have not been placed into each study condition through a valid random 
assignment process, and the study is not eligible for review as an RDD, then continue 
to Step 3. 

Step 2. Sample Attrition: Is the combination of overall and differential attrition high? 
Attrition occurs when an outcome variable is not available for all subjects initially assigned 

to the intervention and comparison groups. Even well-designed RCTs may experience rates and 
patterns of sample attrition that compromise the initial comparability of the intervention and 
comparison groups and potentially lead to biased estimates of the intervention’s effectiveness. 
Attrition leads to bias when it is related to the outcome of interest. For RCTs, the WWC is 
concerned about both overall attrition (i.e., the rate of attrition for the entire sample, measured as 
the percentage of the randomized sample that has been lost) and differential attrition (i.e., the 
percentage point difference in the rates of attrition for the intervention and comparison groups), 
because both types of attrition contribute to the potential bias of the estimated effect. 

High and low attrition 
The WWC’s attrition standard is based on a theoretical model for attrition bias and 

empirically based assumptions. The model depicts potential bias as a function of the rates of 
overall and differential attrition and the relationship between attrition and outcomes. To 
determine reasonable values to use in assessing the extent of potential attrition bias in a study, 
the WWC made assumptions about the relationship between attrition and outcomes that are 
consistent with findings from several randomized trials in education. More information on the 
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model and the development of the attrition standard can be found in the WWC Technical Paper 
on Assessing Attrition Bias, available on the WWC website, whatworks.ed.gov. 

Based on more optimistic or more cautious sets of assumptions about the relationship 
between attrition and outcomes, Figure II.2 illustrates an approximation of the combinations of 
overall and differential attrition rates that generate tolerable (green region), potentially tolerable 
(yellow region), and unacceptable (red region) levels of expected bias. In this figure, a tolerable 
level of bias is defined as an effect size of 0.05 standard deviations or smaller on the outcome 
which represents about 2 percentile points for a student scoring at the 50th percentile. For 
example, if the results reported in a study suggest the intervention will move the student from the 
50th percentile to the 60th percentile (an effect size of 0.25 standard deviations), the actual 
impact of the intervention may move the student only to the 58th percentile (an effect size of 
0.20 standard deviations). The WWC’s threshold for the tolerable level of bias was based on 
extensive consultation with experts. 

• The red region shows combinations of overall and differential attrition that result in 
unacceptable levels of potential bias for both sets of assumptions.  

• The green region shows combinations of overall and differential attrition that result in 
tolerable levels of potential bias for both sets of assumptions.  

Figure II.2. Attrition and Potential Bias 
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Note:  Not every combination of differential and overall attrition is possible for any given study. The 
review protocol will specify which set of attrition boundary values applies. 

http://ies.ed.gov/ncee/wwc/documentsum.aspx?sid=243
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Within the yellow region of the figure, whether the potential bias exceeds 0.05 standard 
deviations depends on the set of assumptions used. In developing the review protocol, the review 
team leadership considers the types of samples and the likely relationship between attrition and 
outcomes for studies in the area to guide their choice (WWC review team staff are described in 
Appendix C of the Procedures Handbook). Either the optimistic or cautious assumptions are 
chosen and specified in the review protocol to be applied consistently for all studies within the 
review. 

• If the review team leadership has reason to believe that much of the attrition is 
exogenous to the interventions reviewed—that is, unrelated to the intervention—more 
optimistic assumptions regarding the relationship between attrition and the outcome may 
be appropriate for a review. For example, the review team leadership may choose the 
optimistic standard if it believes attrition most likely arises from the movement of young 
children in and out of school districts due to family mobility or from typical absences on 
the days that assessments are conducted. In this case, the yellow region shows 
combinations that result in tolerable levels of potential bias, along with green. 

• If the review team leadership has reason to believe that much of the attrition is 
endogenous—that is, related to the intervention—more cautious assumptions may be 
appropriate for a review. For example, the review team leadership may choose the 
cautious standard for reviews of dropout prevention programs that rely on voluntary 
participation. In this case, the yellow region shows combinations that result in 
unacceptable levels of potential bias, along with red. 

When the combination of overall and differential rates of attrition results in unacceptable 
levels of potential bias—the red region, along with the yellow region if making more cautious 
assumptions—the WWC labels this high attrition. When the combination of overall and 
differential rates of attrition result in tolerable levels of potential bias—the green region, along 
with the yellow region if making more optimistic assumptions—the WWC labels this low 
attrition. Therefore, the choice of optimistic or cautious assumptions results in a specific set of 
combinations of overall and differential rates of attrition that defines high and low attrition to be 
applied consistently for all studies in an area. 

For each overall attrition rate, Table II.1 shows the highest differential attrition rate 
allowable to still be considered low attrition under the two possible assumptions: cautious and 
optimistic. 

Sample loss that is not considered attrition 
Not all loss of sample after random assignment is included in attrition calculations: 

• Losing sample members after random assignment because of acts of nature, such as 
hurricanes or earthquakes, is not considered attrition when the loss is likely to affect 
intervention and comparison group members in the same manner. However, when 
sample loss due to an act of nature was concentrated in one group, the loss will be 
considered attrition. 

• The excluded sample when analyzing outcome data for only a subset of the initial 
sample is not considered attrition if (1) the subsample of the intervention or comparison 
group was randomly selected, or (2) the subsampling was based on characteristics that 

10 
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were clearly determined prior to the introduction of the intervention (e.g., race, gender) 
and applied consistently across the intervention and comparison groups. For example, 
students who were excluded for having individualized education programs prior to the 
study would not be counted as attrition. However, if the researcher measured 
individualized education program status after the introduction of the intervention, the 
excluded sample would be counted as attrition because some students’ statuses may 
have been determined after the introduction of the intervention. 

The WWC presumes that sample loss arising from sources other than those described above 
could be related to outcomes, and includes this sample loss in attrition calculations. The WWC’s 
rules for how sample exclusions can affect the rating of an RCT are summarized in Figure II.3. 
This includes sample exclusions that can compromise the RCT described under Step 1 above 
(red box), sample exclusions that are not considered attrition based on the criteria above (green 
box), and all other sample exclusions that are counted as attrition (yellow box). Note that a 
characteristic can be determined after random assignment but not affected by the intervention, so 
the answer to the questions in Boxes 1 and 3 can both be “no.”  

Figure II.3. How the WWC Treats Sample Exclusions in RCTs 
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Measuring attrition when there is imputed outcome data 
When a study is missing outcome data, researchers may replace the unobserved data with 

data that have been imputed in some way, rather than exclude subjects with missing outcome 
data from the analytic sample. Sample members with missing and then imputed data are 
considered to be missing when computing attrition. Using this approach, the result of the attrition 
calculation is the same regardless of how authors address the missing data. For example, if a 
study analyzes data from 100 subjects, including 90 with measured outcome data and the 
remaining 10 with outcome data imputed by the researchers, then the overall attrition rate is 
10%. See Section C of this chapter for more information on how the WWC reviews studies with 
missing or imputed baseline or outcome data. 
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Table II.1. Highest Differential Attrition Rate for a Sample to Maintain Low Attrition, by Overall 
Attrition Rate, Under “Optimistic” and “Cautious” Assumptions 

 Differential Attrition   Differential Attrition   Differential Attrition 
Overall 
Attrition 

Cautious 
Boundary 

Optimistic 
Boundary  Overall 

Attrition 
Cautious 
Boundary 

Optimistic 
Boundary  Overall 

Attrition 
Cautious 
Boundary 

Optimistic 
Boundary 

0 5.7 10.0  22 5.2 9.7  44 2.0 5.1 
1 5.8 10.1  23 5.1 9.5  45 1.8 4.9 
2 5.9 10.2  24 4.9 9.4  46 1.6 4.6 
3 5.9 10.3  25 4.8 9.2  47 1.5 4.4 
4 6.0 10.4  26 4.7 9.0  48 1.3 4.2 
5 6.1 10.5  27 4.5 8.8  49 1.2 3.9 
6 6.2 10.7  28 4.4 8.6  50 1.0 3.7 
7 6.3 10.8  29 4.3 8.4  51 0.9 3.5 
8 6.3 10.9  30 4.1 8.2  52 0.7 3.2 
9 6.3 10.9  31 4.0 8.0  53 0.6 3.0 
10 6.3 10.9  32 3.8 7.8  54 0.4 2.8 
11 6.2 10.9  33 3.6 7.6  55 0.3 2.6 
12 6.2 10.9  34 3.5 7.4  56 0.2 2.3 
13 6.1 10.8  35 3.3 7.2  57 0.0 2.1 
14 6.0 10.8  36 3.2 7.0  58 - 1.9 
15 5.9 10.7  37 3.1 6.7  59 - 1.6 
16 5.9 10.6  38 2.9 6.5  60 - 1.4 
17 5.8 10.5  39 2.8 6.3  61 - 1.1 
18 5.7 10.3  40 2.6 6.0  62 - 0.9 
19 5.5 10.2  41 2.5 5.8  63 - 0.7 
20 5.4 10.0  42 2.3 5.6  64 - 0.5 
21 5.3 9.9  43 2.1 5.3  65 - 0.3 

Source: WWC Technical Paper on Assessing Attrition Bias. 

Note:  Overall attrition rates are given as percentages. Differential attrition rates are given as percentage points. Not every 
combination of differential and overall attrition is possible for any given study. The review protocol will specify which 
set of attrition boundary values applies. 

 

 If the RCT has low levels of overall and differential sample attrition, then the study is 
eligible to Meet WWC Group Design Standards Without Reservations. 

 If the RCT has unknown or high levels of sample attrition, then continue to Step 3. 

Step 3. Baseline Equivalence: Is equivalence established at baseline for the groups in the 
analytic sample? 
RCTs with high attrition, compromised RCTs, and all QEDs are ineligible to receive the 

highest WWC rating because of uncertainty about intervention and comparison group similarity 
prior to the introduction of the intervention. For these studies, equivalence of the intervention 
and comparison groups on specified characteristics measured at baseline (i.e., prior to the 
introduction of the intervention) must be assessed for the analytic sample (i.e., the subjects from 

WWC Review Process for Step 2 of the Review of Individual-Level Assignment Studies 
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the intervention and comparison groups used to estimate findings). The characteristics on which 
the WWC must assess baseline equivalence are specified in the review protocol. 

If the reported difference of a specified baseline characteristic is greater than 0.25 standard 
deviations in absolute value, based on the variation of that characteristic in the pooled sample of 
intervention and comparison group members, the WWC considers the intervention and 
comparison groups to be non-equivalent. For differences in the specified baseline characteristics 
that are between 0.05 and 0.25 standard deviations, the analysis must include an acceptable 
statistical adjustment for the baseline characteristics to meet the baseline equivalence 
requirement. Differences of less than or equal to 0.05 standard deviations require no statistical 
adjustment (Table II.2). Chapter IV of the WWC Procedures Handbook describes the formulas 
the WWC uses to calculate these standard deviation differences, or effect sizes, for both 
continuous and dichotomous measures.  

Table II.2. Absolute Effect Size (ES) at Baseline 

0.00 ≤ |Baseline ES| ≤ 0.05 0.05 < |Baseline ES| ≤ 0.25 |Baseline ES| > 0.25 

Satisfies the baseline equivalence 
requirement 

Requires statistical adjustment to 
satisfy the baseline equivalence 

requirement 

Does not satisfy the 
baseline equivalence requirement 

 
The statistical adjustments the WWC considers acceptable depend on the relationship 

between the baseline characteristic and the outcome. In general, when the WWC requires an 
analysis to include a statistical adjustment for a baseline characteristic specified in the review 
protocol, the characteristic must be included in the analysis at the subject level such that it 
accounts for the correlation between the baseline measure and the outcome. Several techniques 
are acceptable to meet this requirement, including regression adjustment and analysis of 
covariance.  

However, when the baseline characteristic is the same as the outcome, additional approaches 
that do not estimate a correlation are also acceptable. These methods include using simple gain 
scores, applying a difference-in-differences adjustment, or including individual-level fixed 
effects.1 If the authors do not perform the adjustment themselves, the WWC can perform its own 
difference-in-differences adjustment to allow the study to satisfy the statistical adjustment 
requirements (see Appendix E of the Procedures Handbook). The WWC will consider these 
additional approaches as acceptable statistical adjustments if two conditions are met: (1) the 
baseline characteristic must be measured using the same units as the outcome, and (2) the 
baseline characteristic must have a correlation of 0.6 or higher with the outcome. In general, the 
correlation must be estimated using the study data. However, topic areas may waive this 
requirement for a measure or outcome domain if the protocol documents evidence that the 
correlations between pretests and posttests of the measure typically exceed 0.6, and the exception 
is applied consistently for all studies within the review. The review protocol can also specify a 
maximum elapsed time between the assessment of the baseline and outcome measures used in 
these approaches. Importantly, these requirements must only be met when the approach is used 

1 A difference-in-differences adjustment involves subtracting the baseline difference from the difference in 
outcomes measured at follow-up.  
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to satisfy the WWC’s statistical adjustment requirement in a study with a baseline difference 
between 0.05 and 0.25 standard deviations.   

The approaches the WWC considers acceptable are summarized in Table II.3. Additional 
considerations for statistical adjustments in some common analytic approaches, including 
propensity score analyses and analyses in which subjects are observed in multiple time periods, 
are described in Section C of this chapter. 

When the WWC does not require a statistical adjustment (because the study is a low-
attrition RCT or has baseline differences less than or equal to 0.05 standard deviations), authors 
can adjust their analyses using approaches besides those that the WWC considers acceptable for 
the purpose of satisfying the statistical adjustment requirement. Furthermore, although the WWC 
standards require statistical adjustments in limited circumstances and only for certain specified 
characteristics, authors may adjust for all available baseline data in their analyses.  

Table II.3. Examples of Acceptable Approaches for Satisfying the WWC Statistical Adjustment 
Requirement 

 

 

Acceptable methods for any baseline measure

•Regression covariate adjustments in ordinary least squares models
•Regression covariate adjustments in hierarchical linear models
•Analysis of covariance 
•Other approaches to regression covariate adjustments, including nonlinear regression 
analysis, such as logistic or probit models

Acceptable methods when the baseline measure and the outcome are the samea

14 

•Simple gain scores
•Difference-in-differences adjustment
•Fixed effects for individuals

a Two conditions must hold for the WWC to consider the baseline and outcome measures the same: (1) the baseline characteristic 
is measured using the same units as the outcome, and (2) the baseline characteristic has a correlation of 0.6 or higher 
with the outcome. 

There are a number of additional considerations regarding assessing and satisfying the 
baseline equivalence requirement: 

• Baseline equivalence must be assessed separately for each analytic sample. Satisfying 
the baseline equivalence requirement on one analytic sample does not positively or 
negatively affect the requirement for other analytic samples, even for outcome measures 
in the same domain. For example, consider a QED that measured impacts using both the 
full sample and a sample that excluded one student. In this example, it is necessary to 
assess baseline equivalence on each sample separately.      

• Pre-intervention measures used to assess baseline equivalence must satisfy the same 
reliability criteria specified for outcomes, as described in Chapter IV. If reliability 
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information is required, but unavailable, for a pre-intervention measure, or the reliability 
is below the acceptable level, the measure cannot be used to assess baseline equivalence. 

• A baseline measure assessed after the start of the intervention can be used to satisfy the 
baseline equivalence requirement. However, if a significant portion of the intervention 
occurred prior to the assessment of a baseline measure used to satisfy the baseline 
equivalence requirement, the WWC will note in its reporting that the study measures the 
effect of the portion of the intervention that occurred after the measure was assessed and 
until the time of the follow-up assessment. 

• When the WWC requires a statistical adjustment to satisfy the baseline equivalence 
requirement, and the authors perform an acceptable adjustment, but cannot calculate an 
appropriately adjusted effect size based on data reported in the study or obtained from 
the author, the study is still eligible to be rated Meets WWC Group Design Standards 
With Reservations. However, to be eligible for this rating, a study must report the 
direction of the impact estimate from the analysis that includes the required statistical 
adjustment. If the authors do not provide any information about the direction of the 
impact estimate, then the study is rated Does Not Meet WWC Group Design Standards 
because there is no finding that meets standards. 

• If an analytic sample includes missing or imputed data for a specified pre-intervention 
measure, it must satisfy the baseline equivalence requirement using the largest baseline 
difference under different assumptions about how the missing data are related to 
measured or unmeasured factors, as described in Section C of this chapter. While all 
QEDs must satisfy the baseline equivalence requirement, high-attrition RCTs that 
impute outcome data and analyze the full sample that was randomized to conditions do 
not need to satisfy the baseline equivalence requirement. All studies must use acceptable 
approaches (listed in Section C) to address missing data in the analytic sample to be 
eligible to be rated Meets WWC Group Design Standards With or Without Reservations. 

• If the study used weights in the analysis, the baseline means must also be calculated 
using the same weights. 

• If the study conducted random assignment within blocks or matching within strata, and 
the analysis includes dummy variables that differentiate these blocks or strata, then the 
baseline means may also be adjusted using these same dummy variables (Wolf, Price & 
Boulay, 2017). 

Some additional considerations provide reviews with discretion in how the baseline 
equivalence requirement is satisfied. Discretion is needed because the outcome measures and 
outcome domains—sets of closely related outcomes—used in different reviews can vary 
substantially. When the review team leadership exercises discretion, the approach must be 
specified in the review protocol and applied consistently for all studies within the review. These 
additional considerations include the following: 

• Baseline equivalence must be assessed separately for each outcome domain. The review 
protocol will describe eligible outcome domains and specify which pre-intervention 
measures can or must be used to satisfy the baseline equivalence requirement for each. 
Satisfying the baseline equivalence requirement in one domain does not positively or 
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negatively affect the requirement in other domains. For example, equivalence for 
literacy outcomes does not imply equivalence for math outcomes. 

• When the outcome measure is a test of academic achievement, the review protocol often
specifies that baseline equivalence must be assessed using a pre-intervention measure of
academic achievement. However, for outcome measures that cannot be measured at
baseline (e.g., completed high school), the review protocol will instead specify
background characteristics (such as measures of disadvantage including free and
reduced-price lunch status) or other measures that are related to the outcome of interest
on which baseline equivalence must be assessed (such as academic achievement).

• When specifying the pre-intervention measures used to satisfy the baseline equivalence
requirement within a domain, the protocol can list those in the same or different domain
from the outcome measure. For example, free or reduced-price lunch status might be
required for satisfying baseline equivalence in a domain for measures of staying in
school. Additionally, pre-intervention measures that are related to, but different from the
outcome are typically allowed. For example, a study might examine impacts on a state-
administered standardized test at the end of third grade, but report on a researcher-
developed measure that covers similar content at the beginning of third grade.
Depending on the protocol, the researcher-developed measure could be used to satisfy
the baseline equivalence requirement.

• When pre-intervention measures in a particular domain are thought to have strong
relationships with outcome measures in all domains within a topic area, review protocols
may specify domains on which baseline equivalence must be assessed even when the
study does not report on findings for outcomes in the domain. For example, a review
protocol for a behavior-focused topic area might require baseline equivalence on a pre-
intervention measure of behavior even for academic achievement outcomes.

• A difference larger than 0.25 standard deviations for any specified pre-intervention
measure in a domain means that all of the outcomes in the domain fail to satisfy the
baseline equivalence requirement, because domains are typically defined to include
outcomes that are thought to be highly correlated. However, review protocols with
eligible domains that include a broader set of outcomes may require instead that
equivalence be assessed outcome-by-outcome rather than domain-by-domain. In the
outcome-by-outcome approach to baseline equivalence, baseline equivalence for each
outcome measure is assessed using a pretest of the outcome, and that pretest does not
positively or negatively affect the requirement for other outcome measures in the same
domain. However, the review protocol using the outcome-by-outcome approach for a
domain must specify whether it is possible to satisfy the baseline equivalence
requirement for an outcome measure when a pretest is not available, but a different
related measure was assessed at baseline.

• When a study reports findings for multiple outcome measures within a domain, the
WWC requires that analyses of all outcomes in that domain include statistical
adjustments for all pre-intervention measures that require adjustment. For example, if A,
B, and C are available as pre-intervention measures and outcomes for the same analytic
sample, and the pre-intervention difference for B requires statistical adjustment, then the
pre-intervention measure of B must be included for each of the analyses of A, B, and C.
In the case of a review protocol with eligible domains that include a broad set of
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outcomes, the protocol may instead require that the adjustment for a pre-intervention 
measure of an outcome measure be included only for that outcome measure. 

WWC Review Process for Step 3 of the Review of Individual-Level Assignment Studies 
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 If the study satisfies the baseline equivalence requirement for the analytic intervention
and comparison groups on the characteristics specified in the review protocol
(including acceptable statistical adjustments, if necessary), then the study is eligible to
receive the rating Meets WWC Group Design Standards With Reservations.

 If the study does not satisfy the baseline equivalence requirement for the analytic
intervention and comparison groups on the characteristics specified in the review
protocol, then the study is rated Does Not Meet WWC Group Design Standards.

B. Cluster-Level Assignment
Research studies in which individuals (such as students) are assigned to the intervention or

comparison condition as groups known as clusters have become more common in education 
research. This cluster-level assignment can take a number of forms, including students grouped 
within teachers, students grouped within classrooms, students grouped within schools, teachers 
grouped within schools, or classrooms grouped within schools.  

Studies may involve random assignment of clusters, but use individual-level information 
within those clusters to estimate impacts. In these studies, the observed effects of the intervention 
can be influenced both by the effects of the intervention on individuals and by changes in the 
composition of individuals within clusters. For example, a highly attractive intervention may 
draw students from other classrooms or schools between the time of random assignment and 
when outcomes are measured. The WWC reviews cluster-level assignment studies to determine 
whether the observed effects of the intervention can be credibly said to be due solely to the 
intervention’s effects on individuals, or whether changes in the composition of individuals may 
also have affected the findings. If compositional changes cannot be ruled out, the study may still 
provide credible evidence of the intervention’s effects on clusters, but cannot achieve the highest 
WWC rating.  

Some cluster-level assignment studies analyze individual-level outcomes and others analyze 
cluster-level outcomes (individual-level outcomes that have been aggregated to the cluster level), 
but the distinction between an intervention’s effects on clusters and its effects on individuals is 
not based on the unit of analysis. It is possible for an analysis of cluster-level data to provide 
credible evidence of effects on individuals, and similarly possible for an analysis of individual-
level data to provide credible evidence of effects on clusters. 

This section presents criteria under which estimates of effects from cluster-level assignment 
studies can be rated Meets WWC Group Design Standards Without Reservations, Meets WWC 
Group Design Standards With Reservations, or Does Not Meet WWC Group Design Standards. 
The WWC initially reviews the evidence of an intervention’s effect on individuals (Steps 1–4). If 
an effect on individuals cannot be credibly demonstrated, the WWC reviews the evidence of an 
intervention’s effect on clusters (Steps 5–7), where changes in the composition of individuals 
within the clusters may influence the observed effect. Each step involves addressing a question 
about the study’s research design. The answer to each question leads to subsequent steps that 
should be taken as part of the review process (Figure II.4). In the steps below, assessments of 
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attrition and baseline equivalence will use the same standards described above in Section A of 
this chapter, with some noted exceptions.  

Cluster-level assignment studies that satisfy the requirements outlined in Steps 1 to 7 are 
eligible to be rated Meets WWC Group Design Standards Without Reservations or Meets WWC 
Group Design Standards With Reservations. However, to receive one of these ratings, the study 
must also satisfy the requirements in Chapter IV, including that the study must examine at least 
one outcome measure that meets review requirements and be free of confounding factors. 

Screening criteria to determine whether the study is a cluster-level assignment study 
A study should be reviewed using the standards for cluster-level assignment studies when it 

satisfies two conditions: (1) individuals are assigned to the intervention or comparison condition 
as groups, and (2) outcomes are measured for individuals within those clusters, and may be 
analyzed as individual-level data or as cluster-level averages.  

Based on these two criteria, neither the method of impact estimation nor the level of 
aggregation of data determines whether the study should be considered an individual-level or 
cluster-level assignment study. Consider a study that randomly assigns schools to condition, the 
outcome of interest is student achievement, but the data are aggregated to the school level (e.g., 
average achievement levels of students for a given school) for analysis. The study meets the first 
condition because it assigned schools to conditions. The study meets the second condition 
because the outcome measure was assessed for individuals within schools, and it does not matter 
that the study aggregated the data to the school level. Put another way, this study would still be 
considered a cluster-level assignment study, even though the unit of analysis (achievement data 
aggregated to the school) is aligned with the unit of assignment (school), because the aggregated 
data actually represent outcomes measured at the individual level.  

We provide three additional examples of the application of these screening criteria in RCTs: 

• If a study randomly assigns teachers to a condition, and the outcome of interest is a
student outcome (such as achievement), then the study should be characterized as a
cluster-level assignment study. The unit of assignment is the teacher, and the
outcome was measured for individual students, whether aggregated to the teacher
level for analysis or not.

• If a study randomly assigns teachers to a condition, and the outcome of interest is a
teacher outcome (such as retention), then the study should be characterized as an
individual-level assignment study. The unit of assignment is the teacher, and the
outcome was measured for teachers.

• If a study randomizes both clusters and individuals, the study is an individual-level
assignment study. For example, a study might randomize classrooms to a condition,
and also randomize students to classrooms (in either order). In this case, the unit of
assignment is the student.

The two screening criteria also apply to QEDs, and the study description may provide 
guidance regarding the appropriate unit of assignment. For example, “schools using the 
intervention were compared against schools not using the intervention” illustrates a situation in 
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which the cluster (the school) is the unit of assignment. Review protocols may also clarify how 
to identify the unit of assignment in scenarios common to a topic area. Otherwise, the WWC 
identifies the largest study unit that contains only members of one condition. For example, if a 
study examines the effect of an intervention on student achievement within a school, and each 
classroom has only intervention students or only comparison students, then the unit of 
assignment is the cluster. On the other hand, if some classrooms have both intervention and 
comparison students, then the unit of assignment is the individual. Similarly, a study that 
examined the effect of a dropout prevention program by comparing school-level dropout rates in 
intervention schools to the rates in comparison schools is a cluster-level assignment study. The 
unit of assignment is the school, and the outcome was measured for students. 

Findings in a study that meet these two screening criteria could be influenced by changes in 
the composition of individuals within clusters, and should be considered a cluster-level 
assignment study and reviewed using the following steps. If a group design study does not meet 
both criteria, it should be reviewed as an individual-level assignment study.   
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Figure II.4. Review Process for Cluster-Level assignment Studies 
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Note:  To receive a rating of Meets WWC Group Design Standards Without Reservations or Meets WWC Group Design Standards With Reservations, the study must 
also satisfy the requirements in Chapter IV, including that the study must examine at least one outcome measure that meets review requirements and be free of 
confounding factors.
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Process for Reviewing Evidence of an Intervention’s Effect on Individuals (Steps 1–4)  
The following four steps describe the review process to assess the credibility of the evidence 

in a study for understanding the effects of an intervention on individuals. To be eligible to be 
rated Meets WWC Standards Without Reservations, a cluster RCT must limit potential bias from 
changes in the composition of clusters and individuals within clusters after random assignment. 
Cluster RCTs that have a risk of bias from these compositional changes, and all cluster QEDs, 
can still be eligible to be rated Meets WWC Standards With Reservations in the review for 
credible evidence of effects on individuals if the study satisfies a requirement for the baseline 
equivalence of individuals in the analytic intervention and comparison groups. A study can 
provide credible effects on individuals regardless of the level of aggregation of data used in the 
analysis. In particular, findings based on an analysis of student achievement data aggregated to 
the school level can provide credible evidence of the effects of an intervention on students if it 
satisfies the requirements in Steps 1 to 4. 

Step 1. Is the study a cluster RCT with low cluster-level attrition? 
In order to receive the highest rating, the study must be an RCT that assigned clusters to a 

condition and has low cluster-level attrition, as defined by the boundaries specified in the 
applicable review protocol and displayed in Figure II.2 and Table II.1. Cluster-level attrition 
measures the loss of entire clusters from the randomized sample. A cluster is lost when it 
contributes no outcome data to the analytic sample. The loss of individuals from within clusters 
is assessed in a separate step below (Step 3).  

 
WWC Review Process for Step 1 of the Review of Cluster-Level Assignment Studies 
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 If the study is an RCT with low cluster-level attrition, then continue to Step 2. 
 If the study is an RCT with high or unknown cluster-level attrition, a compromised 

RCT, or a QED, then continue to Step 4. 

Step 2. Is there a risk of bias due to individuals entering clusters? 
In order to receive the highest rating, a cluster RCT must limit the risk of bias due to 

individuals entering the cluster after the time of random assignment (joiners). If the study 
includes joiners in the analytic sample, the estimate of the effect of the intervention on individual 
outcomes could be biased if the individuals who entered intervention clusters differ 
systematically from those who entered comparison clusters. This risk of bias may vary across 
substantive areas and interventions, and also based on how long after random assignment the 
joining occurred. Therefore, the review protocol will identify groups of joiners who would pose a 
risk of bias if included in the analytic sample for a cluster RCT (the WWC never considers 
joiners to pose a risk of bias when they are excluded from the analytic sample), based on when 
they joined clusters, features of the intervention, and the unit of assignment. The approach must 
be specified in the review protocol and applied consistently for all studies within the review. 

Some joiners may enter clusters after random assignment, but before the individuals knew 
the randomly assigned conditions of the clusters. The WWC never considers these joiners to 
pose a risk of bias because the decisions that led these individuals to join clusters could not have 
been affected by the intervention. The burden for demonstrating that individuals could not have 
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known about the intervention rests with the study authors. For example, random assignment of 
schools might occur over the summer prior to the start of a school year, but the intervention was 
not announced to families in the district until after the school year began. A study with an 
analytic sample that included students who joined schools prior to the announcement would not 
pose a risk of bias. A study with an analytic sample that included students who joined schools 
after the announcement might pose a risk of bias, depending on which of the following three 
options is specified in the review protocol: 

• When all joiners who enter clusters after the results of random assignment are known 
pose a risk of bias. Some reviews may include studies of programs or policies that are 
likely to affect enrollment or placement decisions, such as school turnaround 
interventions that close or combine schools, or a policy that allows students to leave 
neighborhood schools for choices throughout the district. In these types of studies, 
joiners who enter intervention schools at any time after the results of random assignment 
are known may be different than joiners who enter comparison schools because they 
may choose the school for a specific reason. For example, if high-performing students 
view the intervention schools as better suited for them and switch into those schools 
after the study begins, the observed effect may be biased by differences in the types of 
joiners who entered the schools. In this case, including any joiners in the analytic sample 
who enter schools after the results of random assignment are known would pose a risk of 
bias, because students or their families may choose the intervention schools for reasons 
specifically related to the intervention. Other cases when all joiners may pose a risk of 
bias include when classrooms or teachers are assigned to conditions but students are 
non-randomly assigned to classrooms later by the principal or other school personnel. If 
those responsible for assigning students to classrooms exercise discretion for reasons 
specifically related to the intervention, the observed effect may be biased by differences 
in students assigned to the intervention and comparison groups.    

• When only late joiners pose a risk of bias. Some reviews may include studies in which 
students who enter a school soon after the study begins (early joiners) are not likely to 
be a source of bias, but students entering later (late joiners) may be. For example, 
schools may be randomly assigned to implement a reading supplement or professional 
development program prior to or at the beginning of a school year. Some students may 
enter a school as the school year begins or shortly after because they have just moved to 
the neighborhood, which is common in many school settings. These early joiners are 
unlikely to have chosen the school for reasons related to the intervention, because the 
intervention is just beginning in the school and little may be known about it. Therefore, 
those early joiners may not differ from students who enter comparison schools early in 
the school year. However, students who enter schools later in the school year may be 
more likely to do so because of the intervention, and therefore differ from those who 
enter comparison schools later. As a default, early joining is defined as occurring within 
the first 6 weeks of the school year, but a different length for this initial period that 
differentiates between early or late joiners can be specified in the review protocol. 

• When no joiners pose a risk of bias. Some reviews might focus on settings in which 
there is little or no risk of bias from individuals who enter clusters at any point after 
initial random assignment. For example, interventions that have a very low profile, such 
as a change to recess programming or a low-profile teacher mentoring program, would 
not be expected to represent a significant draw for students, so individuals who join 
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intervention clusters are likely to be similar to those who join comparison clusters. In 
these instances, the review protocol may specify that individuals who enter clusters after 
the results of random assignment are known may be included in the analytic sample 
without a risk of bias. 

The review protocol may select different options for which joiners pose a risk of bias for 
different groups of interventions and for different units of assignment. For example, the review 
protocol might indicate that no joiners pose a risk of bias when the unit of assignment is the 
school, but all joiners pose a risk of bias when the unit of assignment is the classroom, teacher, 
or smaller unit.   

Table II.4 summarizes the categories of interventions that fall into each of these three 
categories. 

Table II.4. Three Categories of Joiner Risk Specified in Review Protocols

 

  

All joiners after the results of random assignment are known pose a risk of bias

•Appropriate for interventions that are likely to influence placement or enrollment
•Joiners who enter intervention clusters are likely different from those who enter 
comparison clusters

Late joiners pose a risk of bias

•Appropriate for studies in which joiners who enter soon after the study begins are not 
likely to be a threat, but later joiners may be

•Early joiners are as good as randomly assigned, but late joiners are a concern

No joiners pose a risk of bias
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•Appropriate for interventions with a very low profile
•Both early and late joiners are as good as randomly assigned

A study that excludes all joiners from the analytic sample, or only includes joiners who do 
not pose a risk of bias is said to limit the risk of bias from joiners and is eligible to be rated Meets 
WWC Group Design Standards Without Reservations if the study also has low levels of 
individual-level non-response (Step 3). However, if a study includes any joiners in the analytic 
sample who pose a risk of bias according to the review protocol, then the highest rating the study 
can receive is Meets WWC Group Design Standards With Reservations, and to receive that rating 
in the review for evidence of effects on individuals, the study must satisfy the baseline 
equivalence requirement on the characteristics specified in the review protocol for the 
individuals in the analytic intervention and comparison groups (Step 4).  
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WWC Review Process for Step 2 of the Review of Cluster-Level Assignment Studies 

 If the study either (1) excludes all joiners from the analytic sample, or (2) includes 
joiners in the analytic sample who do not pose a risk of bias, in accordance with the 
review protocol, then the study limits the risk of bias from joiners. Continue to Step 3. 

 If the study includes joiners who entered after the introduction of the intervention and, 
in accordance with the review protocol, pose a risk of bias, then continue to Step 4. 

Step 3. Is there a risk of bias due to non-response of individuals? 
In order to receive the highest rating, a cluster RCT with a limited risk of bias due to joiners 

must have low individual-level non-response as well as low cluster-level attrition (assessed 
above, in Step 1). Non-response at the individual level for cluster-level assignment studies is the 
difference between the individuals present in a reference sample (described below) and those 
present in the analytic sample at the time the outcome is assessed. For studies that analyze 
outcomes aggregated to the cluster level, the individuals present in the analytic sample consist of 
those who contribute data to the outcome measure. The reference sample—the benchmark 
sample from which non-response is measured—can differ depending on the risk of bias 
associated with joiners. When the reference sample is the original randomized sample, this step 
measures individual-level attrition. Because the reference sample can differ from the randomized 
sample, the WWC refers to this step as measuring individual-level non-response. 

Individual-level non-response is always measured within the sample of non-attriting 
clusters. Individuals in clusters not represented in the analytic sample do not contribute to the 
reference sample used in the denominator of the individual-level non-response calculation.  

Table II.5. Allowable Reference Samples for Calculating Individual Non-response 

Joiners associated with a risk of bias 
as specified in protocol Allowable reference samples 

All joiners after the results of random 
assignment are known pose a risk of 
bias 

(1) Individuals present in non-attriting clusters prior to the announcement of the 
intervention 

Only late joiners pose a risk of bias 
Either (1), or  
(2) Individuals present in non-attriting clusters in early period 

No joiners pose a risk of bias 
Either (1), (2), or 
(3) Individuals in non-attriting clusters at follow-up 

 
An acceptable reference sample must be defined at a point in time after all joiners included 

in the analytic sample had already joined clusters, but before the time period associated with 
joiners that pose a risk of bias according to the review protocol (Table II.5). The first part of this 
requirement ensures that the reference sample includes all individuals contributing to the analytic 
sample. The second part of this requirement is based on the type of joiners that the review 
protocol specifies as posing a risk of bias:  

• When all joiners pose a risk of bias (except those who enter clusters before the results of 
random assignment are known), the only acceptable reference sample is (1) the sample 
of individuals who were present in non-attriting clusters at a point in time prior to the 
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announcement of the intervention (e.g., students in clusters at or before the time of 
random assignment).  

• When only late joiners pose a risk of bias, the reference sample can be (1) or (2) the 
sample of individuals present in non-attriting clusters at a point in time within an initial 
early joiner period defined in the review protocol (e.g., the rosters of students obtained 
from a school early in the first school year when the intervention was implemented).  

• When no joiners pose a risk of bias, the reference sample can be (1), (2), or (3) the 
sample of individuals in non-attriting clusters at follow-up (e.g., the number of students 
enrolled in study schools on the day the posttest was given).  

If a study provides information for multiple acceptable reference samples for assessing 
individual-level non-response, the WWC will base its calculations on the earliest sample. Like 
the assessment of cluster-level attrition, the assessment of individual-level non-response will 
follow the boundaries specified in the applicable review protocol and displayed in Figure II.2 
and Table II.1. 

 

 

WWC Review Process for Step 3 of the Review of Cluster-Level Assignment Studies 

 If the study has low levels of individual-level non-response, then it is eligible to be 
rated Meets WWC Group Design Standards Without Reservations.  

 If the study has high levels of individual-level non-response, then continue to Step 4. 

Step 4. Does the study establish equivalence of individuals at baseline for groups in the 
analytic sample? 
Cluster RCTs with a high risk of bias (from attrition of clusters, joiners in the analytic 

sample, or individual-level non-response) and cluster QEDs that satisfy the baseline equivalence 
requirement for the analytic sample of individuals are eligible to be rated Meets WWC Group 
Design Standards With Reservations. The individuals in the analytic intervention and 
comparison groups must satisfy the same requirements specified in the baseline equivalence step 
of the review of individual-level assignment studies described in Step 3 of Section A. For studies 
that analyze outcomes aggregated to the cluster level, the individuals contributing data to the 
outcome measure must satisfy this requirement. Regardless of the level of analysis, this baseline 
equivalence requirement must be satisfied using individual-level standard deviations. Means 
calculated using either cluster- or individual-level data are acceptable as long as the weighting is 
consistent with the weighting used in the analysis. Any required statistical adjustments must be 
made using individual-level data. 

WWC Review Process for Step 4 of the Review of Cluster-Level Assignment Studies 
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 If the study satisfies the baseline equivalence requirement for the analytic sample of 
individuals on the characteristics specified in the review protocol, then it is eligible to 
be rated Meets WWC Group Design Standards With Reservations.  

 If the study does not satisfy the baseline equivalence requirement for the analytic 
sample of individuals, then it will be reviewed to determine if it can provide credible 
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evidence of the intervention’s effect on clusters. This review process is described in the 
following section, beginning with Step 5.  

Process for Reviewing Evidence of an Intervention’s Effect on Clusters (Steps 5–7) 
The following three steps describe the review process to assess the credibility of the 

evidence in a study for understanding the effects of an intervention on clusters. In these studies, 
the observed impact estimate potentially represents a combination of (1) the effect of the 
intervention on individuals and (2) a composition effect due to different types of individuals 
entering intervention and comparison clusters. Therefore, evidence reviewed in this section is 
only eligible to be rated Meets WWC Group Design Standards With Reservations. To receive this 
rating, a study that did not receive a rating of Meets WWC Group Design Standards With or 
Without Reservations under the review for evidence of credible effects on individuals must 
analyze individuals who are representative of the clusters in the analytic sample, and either be a 
cluster RCT with low cluster-level attrition, or satisfy a requirement for the baseline equivalence 
of clusters in the analytic intervention and comparison groups. A study can provide credible 
effects on clusters regardless of the level of aggregation of data used in the analysis. In 
particular, findings based on an analysis of individual-level student achievement data can 
provide credible evidence of the effects of an intervention on clusters if it satisfies the 
requirements in Steps 5 to 7. 

Step 5. Is the analytic sample of individuals representative of the clusters? 
If a study has poor response rates at follow-up, or sufficiently differential response rates 

among individuals in the intervention and comparison clusters, the observed impact would not 
credibly estimate the effect of the intervention on clusters. Therefore, the WWC assesses the 
degree to which the individuals within clusters included in the analytic sample are representative 
of all individuals present in the clusters at follow-up.  

The WWC will assess representativeness using the attrition boundaries specified in the 
applicable review protocol and displayed in Figure II.2 and Table II.1 and, like the calculation 
for individual non-response, only individuals in non-attriting clusters are counted. The numerator 
for this attrition calculation will be the number of individuals present in non-attriting clusters at 
follow-up (i.e., at the approximate time when outcomes were measured) who do not contribute to 
the impact estimate (i.e., those present, but not included in the analytic sample). The 
denominator for the attrition calculation will be the total number of individuals in non-attriting 
clusters at follow-up. Unlike the measurement of individual-level non-response in Step 3, the 
reference sample in the denominator for measuring representativeness is always taken at follow-
up. However, the timing of the reference sample count need not be precisely aligned with the 
measurement of outcomes. For example, in a school-level assignment study that measured 
outcomes at the end of the school year, the reference sample might be the administrative school 
enrollment count taken at some point during the school year. 

For studies that analyze outcomes aggregated to the cluster level, the individuals present in 
the analytic sample consist of those who contribute data to the outcome measure. The 
representativeness requirement is assessed using counts of individuals pooled across all clusters 
in the intervention or comparison group (not for each cluster individually). 
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WWC Review Process for Step 5 of the Review of Cluster-Level Assignment Studies 

 If the study has low individual-level non-response for this representativeness 
assessment, then continue to Step 6.  

 If the study has high or unknown individual-level non-response for this 
representativeness assessment, then it is rated Does Not Meet WWC Group Design 
Standards.  

Step 6. Is the study an RCT with low cluster-level attrition? 
This is the same assessment of cluster-level attrition from Step 1. This step is repeated 

because it is possible for RCTs with low cluster-level attrition, RCTs with high cluster-level 
attrition, and QEDs to arrive at Step 6.   

WWC Review Process for Step 6 of the Review of Cluster-Level Assignment Studies 
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 If the study is an RCT with low levels of cluster attrition, then it is eligible to be rated 
Meets WWC Group Design Standards With Reservations.  

 If the study is an RCT with high or unknown cluster attrition or a QED, then move to 
Step 7. 

Step 7. Does the study establish equivalence of clusters at baseline for groups in the analytic 
sample? 
Among studies that did not receive a rating of Meets WWC Group Design Standards With or 

Without Reservations under the review for evidence of credible effects on students, those that are 
cluster RCTs with high or unknown cluster-level attrition and cluster QEDs must satisfy the 
baseline equivalence requirement for the analytic sample of intervention and comparison group 
clusters for the study to be eligible to be rated Meets WWC Group Design Standards With 
Reservations. The analytic sample of clusters consists of the clusters represented in the sample 
used to estimate findings.  

The characteristics on which the WWC must assess baseline equivalence of clusters are 
specified in the review protocol, and may differ from those used to assess baseline equivalence 
of individuals. Examples of characteristics include student achievement levels, grade levels, 
demographics of teachers or students in schools, and school setting (urban or rural). The review 
protocol will also specify whether individuals contributing baseline data in the clusters used to 
assess baseline equivalence of clusters must be the same individuals contributing outcome data 
to the analysis. In particular, the review protocol will determine the following parameters for 
satisfying the baseline equivalence requirement: 

• Whether the baseline equivalence requirement can be met using data from an earlier 
assessment of the same cohort of individuals in the analytic sample within the same 
clusters. For example, for school-level assignment studies, a protocol may allow the 
requirement to be satisfied for an analytic sample of grade 4 students in 2015 using the same 
cohort in third grade in 2014. Although the same schools contribute outcome and baseline 
data, the students contributing baseline and outcome data will overlap, but may not be 
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identical because some students will transfer into or out of the schools between the 2 school 
years. 

• Whether the baseline equivalence requirement can be met using data from an earlier 
cohort of students within the same clusters. For example, for school-level assignment 
studies, a protocol may allow the requirement to be satisfied for an analytic sample of grade 
4 students in 2015 using grade 4 students in 2014 within the same schools. Aside from 
students who may have repeated the fourth grade, the students contributing baseline data are 
not the same as those contributing outcome data. 

• The maximum elapsed time that is allowed between the collection of baseline and 
outcome data when the individuals contributing baseline and outcome data are not 
identical. As more time elapses between the collection of baseline and outcome data, the 
relevance of the baseline data may become weaker. For example, if outcomes are measured 
for grade 5 students in 2015, but baseline data are collected for the same cohort in first grade 
in 2011, there may be less overlap in the samples than if the baseline data were collected in 
fourth grade in 2014.  

Regardless of the level of analysis, the baseline equivalence requirement for clusters can be 
satisfied using individual- or cluster-level means and individual- or cluster-level standard 
deviations (in any combination), as long as the weighting of the means is consistent with the 
weighting used in the analysis. The WWC will use individual-level standard deviations when 
possible. Any required statistical adjustments must be made using data at the same level as those 
used to assess baseline equivalence. 

Additionally, as part of the baseline equivalence requirement for the analytic sample of 
clusters, the individuals with baseline data must be representative of the clusters contributing to 
the impact analysis, assessed by comparing the number of individuals contributing baseline data 
relative to the number of students in the clusters at the time of the baseline equivalence 
assessment. This representativeness assessment for baseline data is analogous to the 
representativeness assessment for follow-up data described in Step 5 and assessed using the same 
thresholds for attrition in individual-level assignment studies from Section A. For example, if a 
school-level assignment study measuring outcomes of fourth graders in 2015 uses fourth graders 
from the same schools in 2014 to assess equivalence, baseline representativeness would be 
assessed by comparing the number of fourth-grade students enrolled in the schools in 2014 who 
did not contribute baseline data to the total number enrolled (those who did and did not 
contribute data). The timing of the reference sample count need not be precisely aligned with the 
collection of the baseline measure. For example, in a school-level assignment study that 
collected baseline data at the end of a school year and measured outcomes during the following 
school year, the reference sample might be the administrative school enrollment count taken at 
some point during the school year in which the baseline data were collected. 
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WWC Review Process for Step 7 of the Review of Cluster-Level Assignment Studies 
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 If the study satisfies the baseline equivalence requirement for the analytic sample of 
clusters, including that the baseline data are representative, then the study is eligible to 
be rated Meets WWC Group Design Standards With Reservations.  

 If the study does not satisfy the baseline equivalence requirement for the analytic 
sample of clusters, then the study is rated Does Not Meet WWC Group Design 
Standards. 

Exclusion of Sample Members in Cluster-Level Assignment Studies  
Some sample exclusions can be excluded from attrition, non-response, and 

representativeness calculations in cluster RCTs and from representativeness calculations in 
QEDs. The same criteria about sample loss that is not considered attrition and described for 
individual-level assignment studies in Section A apply to cluster-level assignment studies. In 
particular, when authors analyze outcome data for only a subset of individuals or clusters, the 
excluded data do not count as attrition, if (1) the subsample of the intervention or comparison 
group was randomly selected, or (2) the subsampling was based on characteristics that were 
clearly determined prior to the introduction of the intervention (e.g., race, gender) and applied 
consistently across the intervention and comparison groups.  

A cluster RCT is compromised when the study authors do one or more of the following: 

1. Include clusters in the analytic sample not subject to random assignment (individuals in 
the analytic sample who were not subject to random assignment are joiners and are 
addressed in Step 2 above), 

2. Randomly assign clusters to a group with different probabilities, but do not use one of 
the acceptable approaches to account for the different assignment probabilities described 
in Section A, 

3. Analyze data for clusters or individuals in a way that changes group membership to be 
different from the originally assigned conditions, or 

4. Exclude certain clusters or individuals based on events that occurred after the 
introduction of the intervention.  

When the cluster RCT is compromised for one of these reasons, the study is reviewed using the 
process for cluster QEDs (i.e., the study is not considered a cluster RCT with low cluster-level 
attrition in Steps 1 or 6). 

C. Other Analytic Approaches 
Authors of group design studies may use a variety of analytic approaches to measure an 

intervention’s effectiveness or to satisfy the baseline equivalence requirement. Below, the WWC 
provides guidance on how these different types of analytic approaches, which may be used in 
individual-level or cluster-level assignment studies, can affect study ratings and reporting of 
effect sizes and p-values (the WWC Procedures Handbook provides general information about 
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how the WWC reports study findings). Specifically, this section provides guidance on the 
following types of analyses: (1) analyses from propensity score models, (2) analyses in which 
subjects are observed in multiple time periods, (3) analyses with endogenous covariates, and (4) 
analyses with missing data.  

1. Propensity Score Analyses 
A propensity score is the probability that an observation would appear in the intervention 

group given a set of measured characteristics. The scores can be used to identify subjects from a 
pool of potential comparison group members and match them to intervention group members 
who have similar characteristics. Alternatively, the scores can be used as weights in a regression 
analysis designed to make the weighted intervention and comparison groups more similar.  

When a study employs propensity-scoring approaches, the WWC will review the study 
using the same framework as any other QED, requiring that the analytic intervention and 
comparison groups satisfy the baseline equivalence requirement, including statistical adjustments 
if necessary. However, for a propensity score analysis to credibly satisfy baseline equivalence for 
the analytic sample, there are two key considerations that WWC reviewers must assess. 

a. Only exogenous covariates have been used to create the propensity scores. If potentially 
endogenous covariates or outcomes are used in the creation of the propensity scores, the 
scores may ultimately lead to biased impact estimates. See Section 3 below for how the 
WWC identifies endogenous covariates.  

b. The analytic approach used to satisfy the baseline equivalence requirement is 
appropriate. If the study analysis used propensity score weights, the baseline means 
should also be calculated using the same weights. Equivalence must be assessed on the 
variables specified in the review protocol; it is not sufficient to establish equivalence on 
the propensity scores. Furthermore, any required statistical adjustments must use the 
actual specified variables and not only the propensity scores. 

Additionally, for the WWC to report the statistical significance of the findings from a 
propensity score analysis, significance levels must not be artificially inflated due to matching 
with replacement. Propensity score analyses that use either weighting or matching techniques are 
acceptable, including matching with replacement. However, if the study used matching with 
replacement, reviewers should examine whether the study authors took reasonable precautions in 
the calculation of standard errors to ensure that the repeated observations of subjects do not 
contribute to artificially precise estimates. For example, a study might appropriately address this 
concern by applying a clustering correction to account for the repeated observations. 

2. Analyses in Which Subjects Are Observed in Multiple Time Periods 
This section provides guidance on two types of analyses in which subjects are observed in 

multiple time periods (sometimes referred to as repeated measures analyses): analyses of simple 
gain scores, and analyses in which the dependent variable includes data from multiple time 
points. In contrast, the additional considerations for these analyses described below do not apply 
to analyses in which pre-intervention measures of the outcome are instead included as covariates 
in the analytical model. Regardless of the approach used to analyze the repeated measures, the 
baseline equivalence requirement, if applicable, must still be satisfied on the measures specified 
in the review protocol. In the case that the baseline difference falls between 0.05 and 0.25 
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standard deviations, in addition to regression adjustment and analysis of covariance, the WWC 
considers analyzing simple gain scores, difference-in differences adjustments, and individual 
fixed effects as acceptable statistical adjustments, but only when there is evidence that the 
baseline and outcome measures are strongly related based on the requirements described in 
Section A of this chapter (see Table II.3).2 

Analyses of simple gain scores 
Simple gain scores can be calculated by subtracting a pretest from the posttest. Some authors 

use the resulting difference as the dependent variable in an impact analysis. The analyses of 
simple gain scores are eligible to meet WWC group design standards. However, to be reported 
by the WWC, effect sizes from gain score analyses must be based on standard deviations of the 
outcome measure collected at the follow-up time point without adjustment for the baseline 
measure (see the gain scores subsection of Appendix E of the Procedures Handbook). When the 
unadjusted standard deviations are not reported, but are needed to calculate and report an effect 
size, the WWC will request the unadjusted posttest standard deviations from the study author(s). 
If the WWC cannot calculate an effect size based on acceptable standard deviations, the study is 
still eligible to be rated Meets WWC Group Design Standards With Reservations. However, to be 
eligible for this rating, a study must report the direction of the impact estimate (for example, 
whether the difference in means is positive or negative). If the authors do not provide any 
information about the direction of the impact estimate, then the study is rated Does Not Meet 
WWC Group Design Standards because there is no finding that meets standards. 

Analyses in which the dependent variable includes data from multiple time points 
In these repeated measures analyses, the analysis includes multiple observations for each 

student, and the dependent variable includes data from all time points. For example, students are 
observed in two or more periods (at least one pre-intervention and one post-intervention), and the 
analysis includes multiple observations for each student, one at each point in time. Subjects are 
analyzed in distinct intervention and comparison groups. These include difference-in-differences 
analyses, comparative interrupted time series analyses, and most growth curve models.  

The WWC separately reviews impact findings at each point in time included in these 
analyses. Each impact estimate (or an average of impacts) is eligible to be rated Meets WWC 
Group Design Standards Without Reservations if the groups were formed in a low-attrition RCT, 
and otherwise is eligible to be rated Meets WWC Group Design Standards With Reservations. 
Growth curve analyses do not typically provide point-in-time impact estimates. However, the 
WWC will request the data needed from authors to calculate effect sizes at each point in time. If 
the WWC cannot calculate an effect size, the study is still eligible to be rated Meets WWC Group 
Design Standards With Reservations. However, to be eligible for this rating, a study must report 
the direction of the impact estimate at the specific point in time. If the authors do not provide any 
information about the direction of the impact estimate, then the study is rated Does Not Meet 
WWC Group Design Standards because there is no finding that meets standards. 

2 The repeated measures analyses discussed in this section (simple gain scores and analyses in which the dependent 
variable includes data from multiple time points) would rarely use regression adjustment or analysis of covariance to 
adjust for a pre-intervention measure of the outcome. However, a repeated measures analysis may use these 
adjustment approaches to account for other pre-intervention measures that might be specified in the review protocol. 

31 

                                                           



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

To be eligible to meet WWC group design standards, the analysis must adequately account 
for the time periods associated with the intervention and pre-intervention conditions. In a 
difference-in-differences analysis, which includes just two time periods (pre- and post-
intervention), this means including indicators for the intervention condition, the time period 
associated with the intervention, and an interaction between these two indicators. In such an 
analysis, the coefficient on the interaction term provides the difference-in-differences estimate of 
the impact of the intervention (and the p-value of this estimate is used to assess the statistical 
significance of the impact). A mixed design analysis of variance with one between-groups factor 
(distinguishing the intervention and comparison groups) and at least one within-groups factor 
(distinguishing time period) typically satisfies this requirement (and studies may sometimes refer 
to this as a repeated measures analysis of variance), as can an ordinary least squares (OLS) 
analysis that includes the indicators as independent variables. 

A study that instead reports the coefficient on the intervention indicator and excludes the 
interaction provides a biased estimate of the effect of the intervention, because doing so 
measures the average difference in the outcome between the intervention and comparison groups 
across both the pre- and post-intervention periods. Such an analysis does not provide a credible 
estimate of the effectiveness of the intervention, and if the authors do not provide the WWC with 
findings from a credible analysis, the study will be rated Does Not Meet WWC Group Design 
Standards. 

Analyses with more than two time periods, including most comparative interrupted time 
series and growth curve analyses, must also account for the pre- and post-intervention periods 
(including an interaction with the intervention indicator), but can also account for additional time 
periods. Adjusted or unadjusted means and unadjusted standard deviations of the outcome at 
each post-intervention time point can also be used to satisfy this requirement. In analyses that 
include multiple periods of pre-intervention data, baseline equivalence must be assessed using 
data from a single period so that the intervention period can be defined as the time from the 
baseline assessment to follow-up. The WWC will use the pre-intervention time point closest to 
the introduction of the intervention to assess baseline equivalence, when possible. 

3. Analyses with Potentially Endogenous Covariates 
Reviewers should examine model specifications and descriptions of analytic procedures to 

ensure that the estimates of intervention effects from study-reported analyses are credible, given 
the proposed analytic procedure. In some impact evaluations, researchers will estimate 
regression models (e.g., ordinary least squares or hierarchical linear modeling) in which the 
outcome of interest is regressed on an indicator for the intervention and a series of covariates.  

Reviewers should determine whether a study includes covariates in its impact analyses that 
were assessed or obtained after baseline. If such variables are included and were potentially 
influenced by the intervention (i.e., endogenous), the impact analysis will produce a biased test of 
the effect of the intervention. On the other hand, if a covariate is obtained after baseline and is 
considered time invariant (e.g., demographics such as gender and race), then there is no concern 
that the variable has been influenced by the intervention. 

For example, a study that examines the impact of an intervention on student achievement 
outcomes may collect data on (1) student attendance during the intervention or (2) the quality of 
teacher–student interactions. These variables associated with intervention dose, quality, or 
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fidelity may have been affected by the intervention. If the impact analysis includes either student 
attendance during the intervention or quality of teacher–student interactions as covariates, the 
correlation between the intervention indicator and these variables will produce bias in the impact 
estimate. Therefore, the WWC cannot use the results of the regression model as a credible source 
of information about an intervention’s effects.  

A measure assessed shortly after the start of the intervention is not considered to be a 
potentially endogenous covariate (Schochet, 2008). A measure assessed later, after the 
intervention may have plausibly affected the measure in the judgement of the review team 
leadership and content expert, is a potentially endogenous covariate. However, if the potentially 
endogenous measure is used to satisfy the baseline equivalence requirement (Step 3 in Section 
A), then the WWC will note in its reporting that the study measures the effect of the portion of 
the intervention that occurred after the measure was assessed and until the time of the follow-up 
assessment. Even though the baseline measure may have been influenced by the intervention, it 
can be used to satisfy the baseline equivalence requirement. It is not necessary to include the 
same reporting note for a baseline measure assessed shortly after the start of the intervention that 
was included as a covariate in the analysis, but not used to satisfy the baseline equivalence 
requirement. 

When one or more potentially endogenous covariates are included in the analysis, the WWC 
can either use alternate model specifications reported in the study that do not include these 
endogenous covariates or request unadjusted means (or adjusted based on only the non-
endogenous covariates) and unadjusted standard deviations from the authors. However, to be 
eligible to meet WWC group design standards, a study must report the direction of the impact 
estimate from a credible analysis. If the authors do not provide any information about the 
direction of the impact estimate from a credible analysis, then the study is rated Does Not Meet 
WWC Group Design Standards because there is no finding that meets standards. 

4. Analyses with Missing Data3 
Despite the best efforts of researchers, sometimes it is not possible to collect data for all 

subjects in a study sample. Authors might use a variety of analytical approaches to address 
missing data for baseline or outcome measures. For example, a study might focus on the analytic 
sample of subjects for which all data were collected, or the authors may impute values for the 
missing data so that more subjects can be included in the analysis. The review process for a study 
with missing data depends on the study design, the method used to address the missing data, and 
whether the study has missing baseline data, outcome data, or both.  

The steps in the review process for studies with missing data are outlined in Figure II.5. 
Steps 1 and 2 must be performed for any study with missing data, Steps 3 and 4 relate to studies 
with imputed outcome data in the analytic sample, and Step 5 relates to studies with imputed or 
missing baseline data in the analytic sample. We describe each of these steps in detail below. 

3 Roderick Little, Rob Olsen, Terri Pigott, and Elizabeth Stuart made important contributions to the content of this 
section. 
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Figure II.5. Study Ratings for RCTs and QEDs with Missing Outcome or Baseline Data 
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Note:  To receive a rating of Meets WWC Group Design Standards Without Reservations or Meets WWC Group Design 
Standards With Reservations, the study must also satisfy the requirements in Chapter IV, including that the study 
must examine at least one outcome measure that meets review requirements and be free of confounding factors. 

Step 1. Does the study use an acceptable approach to address all missing data in the 
analytic sample? 

The first step in the review process for studies with missing data is to determine whether any 
imputed data used in the analysis were generated using an acceptable imputation method. To be 
eligible to be rated Meets WWC Group Design Standards With or Without Reservations, an 
analysis must use one of the methods described in Table II.6 to address the missing data. This 
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requirement applies to all data used in the analysis, whether for an outcome measure or a 
baseline measure. More specifically, the requirement applies both to baseline measures specified 
in the review protocol as required for assessing baseline equivalence and those not specified. 
Analyses that include any imputed outcome or baseline data based on other approaches not listed 
in Table II.6 are rated Does Not Meet WWC Group Design Standards.  

When an analysis uses one or more of these methods and satisfies all other requirements to 
receive a rating of Meets WWC Group Design Standards With or Without Reservations, the 
WWC will report findings, including effect sizes, according to the general approach to WWC 
reporting outlined in the Procedures Handbook. However, the WWC will not report statistical 
significance for methods that do not provide accurate standard error estimates. For some other 
methods, the WWC will report statistical significance provided certain requirements are met, 
described in the last column.  

All but one of the acceptable approaches in Table II.6 can provide unbiased estimates of the 
effectiveness of an intervention based on the assumption that the missing data do not depend on 
unmeasured factors. The exception is complete case analysis, which requires a more restrictive 
assumption that the missing data also do not depend on measured factors. Because of this, many 
researchers have recommended against using complete case analysis to address missing data 
(e.g., Peugh & Enders, 2004; Little et al., 2012). Nevertheless, the WWC considers complete 
case analysis to be an acceptable approach for addressing missing data, because possible bias due 
to measured factors can be assessed through the attrition standard and WWC’s baseline 
equivalence requirement (see Steps 2 and 3 of Section A). 

Additionally, Jones (1996) and Allison (2002) raise concerns about using the approach in 
the last row of the table, imputation to a constant combined with including a missing data 
indicator, outside of RCTs. Consequently, the WWC considers this approach acceptable for any 
baseline data in RCTs (both low- and high-attrition). However, in a QED or compromised RCT, 
the approach is acceptable only when applied to baseline measures not specified in the review 
protocol as required for assessing baseline equivalence. 

To obtain appropriate estimates of statistical significance in cluster-level assignment studies 
that analyze individual-level data (see discussion of cluster assignment in the Procedures 
Handbook), approaches to address missing outcome data must account for the correlation of 
outcomes within clusters. This can be done using standard approaches in complete case analyses. 
However, as noted in the last column of Table II.6, for the WWC to confirm statistical 
significance in a study with cluster-level assignment that uses regression imputation, maximum 
likelihood, or non-response weights to address missing outcome data, and analyzes individual-
level data, the study must provide evidence that the approach appropriately adjusts the standard 
errors for clustering by citing a peer-reviewed journal article or textbook that describes the 
procedure and demonstrates its effectiveness. In analyses using these three approaches that do 
not include an acceptable adjustment, the WWC will not apply its adjustment for clustering, 
described in the Procedures Handbook, because it may not be accurate for analyses using these 
methods. The WWC does not currently have a recommended method of calculating standard 
errors in these analyses of cluster-level assignment studies, and the burden for demonstrating that 
the approach is appropriate rests with the study authors.  
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WWC reviewers do not receive training on the approaches listed in Table  II.6, but their  
application can be technically involved. Reviewers should bring questions  about whether  a study  
appropriately  applied any of these methods to the review team leadership.  

Finally, if  a study uses  an approach not listed in Table  II.6 that is  supported with a  citation to  
a peer-reviewed journal article or textbook that  describes the procedure and  demonstrates  that it  
can produce unbiased estimates under an assumption that the missing data are unrelated to 
unmeasured factors,  the WWC may consider it an acceptable approach  after review by  experts. If  
so, the WWC will release guidance that updates the list of acceptable approaches.  

Table II.6.  Acceptable Approaches for  Addressing  Missing Baseline or Outcome Data  

Approach  Description  WWC requirements   Statistical significance  
Complete case   Exclusion of observations  None. The WWC has no 

 analysis   with missing outcome  additional requirements 
  and/or baseline data from for reporting statistical 

the analysis.   significance from analyses 
 that use this method. 

Regression  A regression model to   The imputation regression model must:   Standard errors must be 
 imputation  predict imputed values for 

 the missing data. This  
 includes estimating 

imputed values from a 
single regression model,  

 a)  Be conducted separately for the 
 intervention and comparison groups or 

 include an indicator variable for 
intervention status,   

computed using a method 
 that reflects the missing 

 information, such as a 
 bootstrap method, or 

  multiple imputation. For  
 and multiple imputation, 

 which involves generating 
multiple data sets that 

 contain imputed values for 
 missing data through the 

 repeated application of an  
 imputation algorithm 

 (such as chained 
 equations). 

 b)  Include all of the covariates that are  
 used for statistical adjustment in the 

 impact estimation model, and 

 c)     Include the outcome when imputing 
  missing baseline data. 

 multiple imputation, the 
 statistical significance 

 calculation must: 

 a) Be based on at least 5  
 sets of imputations, 

 and 

 b)  Account for (1) the 
 within-imputation 

variance component,  
 (2) the between-

imputation variance 
component, and (3)  

 the number of 
  imputations. Most 

 established multiple 
 imputation routines 

 satisfy this 
requirement.  

Additionally, a cluster-
 level assignment study 

 with missing outcome 
 data, analyzed using 
 individual-level data, must  

provide evidence that the 
 approach appropriately 

 adjusts the standard errors 
 for clustering by citing a 

peer-reviewed journal  
 article or textbook that 

describes the procedure 
 and demonstrates it 

effectiveness.  
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Maximum 
likelihood  

An iterative routine to 
estimate model parameters 
and impute values for the 
missing data. Some 
examples are the 
expectation-maximization 
algorithm and full 
information maximum 
likelihood. 

The procedure must use a standard statistical 
package or be supported with a citation to a 
peer-reviewed methodological journal article 
or textbook. 

Standard errors must be 
computed using a method 
that reflects the missing 
information, such as a 
bootstrap method, or 
estimates based on the 
information matrix. 
 
Additionally, a cluster-
level assignment study 
with missing outcome 
data, analyzed using 
individual-level data, must 
provide evidence that the 
approach appropriately 
adjusts the standard errors 
for clustering by citing a 
peer-reviewed journal 
article or textbook that 
describes the procedure 
and demonstrates it 
effectiveness. 

Non-response 
weights 

Use of weights based on 
estimated probabilities of 
having a non-missing 
outcome, yielding greater 
weight for subjects with a 
higher probability of 
having missing outcome 
data. For example, the 
probabilities may be 
estimated from a logit or 
probit model.  

Acceptable only for missing outcome data, 
not for missing baseline data. 

The estimated probabilities used to construct 
the weights must: 

a) Be estimated separately for the 
intervention and comparison groups or 
include an indicator variable for 
intervention status, and 

b) Include all baseline measures that are 
specified in the review protocol as 
required for baseline equivalence within 
the outcome domain. Including 
additional covariates is acceptable, but 
not required because doing so may lead 
to less precise impact estimates without 
providing a substantial reduction in bias.  

The analysis must 
properly account for the 
stratified sampling 
associated with the 
weights (as discussed in 
Wooldridge, 2002, p. 
594). 
Additionally, a cluster-
level assignment study 
with missing outcome 
data, analyzed using 
individual-level data, must 
provide evidence that the 
approach appropriately 
adjusts the standard errors 
for clustering by citing a 
peer-reviewed journal 
article or textbook that 
describes the procedure 
and demonstrates it 
effectiveness. 

Replacing 
missing data with 
a constant 
combined with 
including a 
missing data 
indicator 

Setting all missing values 
for a baseline measure to a 
single value, and including 
an indicator variable for 
records missing data on 
the measure in the impact 
estimation model.  

Acceptable only for missing baseline data, 
not for missing outcome data. When applied 
to baseline measure specified in the review 
protocol as required for assessing baseline 
equivalence, the method is acceptable only in 
RCTs (both low- and high-attrition), not in 
QEDs or compromised RCTs. 

The WWC has no 
additional requirements 
for reporting statistical 
significance from analyses 
that use this method. 

Note:  Requirements in this table are based on recommendations in several sources, including Allison (2002), Azur, 
Stuart, Frangakis, & Leaf (2011), Little & Rubin (2002), Puma, Olsen, Bell, & Price (2009), Rubin (1987), 
Schafer (1999), and Wooldridge (2002). 
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WWC Review Process for Step 1 of the Review of Studies with Missing Data 

 If the study uses an acceptable approach to address all missing data in the analytic 
sample, then continue to Step 2. 

 If the study does not use an acceptable approach to address all missing data in the 
analytic sample, then the study is rated Does Not Meet WWC Group Design Standards. 

Step 2. Is the study a low-attrition RCT (counting imputed outcomes as attrition)? 
The second step in the review process for studies with missing data is to determine if the 

study is a low-attrition RCT as described in Step 2 of Section A. When calculating overall and 
differential attrition rates, sample members with imputed outcome data are counted as missing 
because both missing and imputed data represent a potential threat of bias. The use of imputed 
data can mitigate that bias if the missing data do not depend on unmeasured factors, but 
otherwise may not. When attrition is low, the WWC will ignore the potential bias from imputed 
data because the amount of missing or imputed data is unlikely to lead to bias that exceeds the 
WWC’s tolerable level of potential bias. A low-attrition RCT is eligible to be rated Meets WWC 
Group Design Standards Without Reservations as long as the study used an acceptable method to 
address missing data. 

WWC Review Process for Step 2 of the Review of Studies with Missing Data 
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 If the study is a low-attrition RCT, then the study is eligible to receive the rating Meets 
WWC Group Design Standards Without Reservations. 

 If the study is a QED, high-attrition RCT, or compromised RCT, then continue to Step 
3 of the review process for studies with missing data. 

Step 3. Does the study limit potential bias from imputed outcome data, if present? 
Imputed outcome data can affect the rating of a QED, high-attrition RCT, or compromised 

RCT in two ways. The first of these is addressed in Step 3. To be eligible for a rating of Meets 
WWC Group Design Standards With Reservations, QEDs, high-attrition RCTs, and 
compromised RCTs with imputed outcome data in the analytic sample must satisfy an additional 
requirement designed to limit potential bias from using imputed outcome data instead of actual 
outcome data.  

The imputation methods the WWC considers acceptable are based on an assumption that the 
missing data depend on measured factors, but not unmeasured factors. If that assumption does 
not hold, impact estimates may be biased. Therefore, group design studies besides low-attrition 
RCTs that use acceptable approaches to impute outcome data must demonstrate that they limit 
the potential bias from using imputed data to measure impacts to less than 0.05 standard 
deviations as described in this step.  

An analysis of a sample with imputed outcome data can produce biased estimates of the 
effect of the intervention if the subjects with observed data differ from the subjects with missing 
data, and some of the differences are unmeasured. In this case, if outcomes could be obtained for 
all sample members, the average for subjects in the intervention or comparison condition with 
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observed outcome data would differ from the average for subjects whose outcome data were not 
observed. Comparing the differences in these means for the intervention and comparison groups, 
if known, would indicate the magnitude of possible bias, but because the missing outcomes are 
not observed, the WWC instead assesses the bias using baseline data.   

The WWC estimates the potential bias from missing outcome data due to unmeasured 
factors by comparing means of the baseline measure specified in the review protocol as required 
for assessing baseline equivalence, separately for the intervention and comparison groups, for 
two samples: (1) the complete analytic sample and (2) the analytic sample restricted to cases 
with observed outcome data. A smaller difference in these two means within one or both 
conditions lowers the likelihood that the missing data are related to factors that could lead to bias 
in the impact estimate.  

To translate the intervention and comparison group differences in baseline means into an 
estimate of bias in the outcome effect size, the WWC uses the pooled standard deviation of the 
baseline measure and the correlation between the baseline and outcome measure. Appendix B 
provides the formulas the WWC uses to estimate the potential bias (Equations B1, B2, B3). 
Appendix B also describes the approach used when a review protocol specifies that baseline 
equivalence must be assessed on multiple baseline measures. The formulas used to assess the 
bias also differ depending on whether the baseline measure is observed for all subjects in the 
analytic sample (Equations B1*, B2*, and B3*). 

• When the baseline measure is observed for all subjects in the analytic sample, the 
WWC requires the following data from the authors: (a) the means and standard 
deviations of the baseline measure for the analytic sample, separately for the 
intervention and comparison groups—these are the same data used to assess baseline 
equivalence; (b) the means of the baseline measure for the subjects in the analytic 
sample with observed outcome data, separately for the intervention and comparison 
groups; and (c) the correlation between the baseline and the outcome measures. The 
correlation can be estimated on a sample other than the analytic sample (e.g., the 
complete case sample), or from data from outside the study if a content expert judges the 
settings to be similar. However, the correlation must not be estimated using imputed 
data. 

• When the baseline measure is imputed or missing for some subjects in the analytic 
sample, in addition to (c), the following data are required: (d) the means of the baseline 
measure for the subjects in the analytic sample with observed baseline data, separately 
for the intervention and comparison groups; (e) the means of the baseline measure for 
the subjects in the analytic sample with observed baseline and outcome data, separately 
for the intervention and comparison groups; (f) the standard deviations of the baseline 
measure for either the sample of subjects in the analytic sample with observed baseline 
data or the sample with observed baseline and outcome data; and (g) the number of 
subjects with observed baseline data in the analytic sample by condition.  

If these data are not reported in the study, the WWC will request them from the authors. 

There are two special considerations for applying the requirement in Step 3 when an 
analysis uses non-response weights or complete case analyses: 
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• An analysis that uses non-response weights to address missing outcome data must also 
satisfy the requirement to limit the potential bias from using imputed data. For these 
analyses, separately for the intervention and comparison groups, the WWC compares a 
different pair of means of the baseline measure. Instead of the complete analytic sample 
(which for a non-response weighted analysis would be restricted to cases with observed 
outcome data), the WWC uses the sample used to estimate the weights, including cases 
with missing outcome data. The second mean remains the sample with observed 
outcome data. 

• A complete case analysis that addresses missing data by excluding cases with missing 
outcome data, rather than imputing it, does not need to satisfy this requirement. The 
exclusion of complete case analyses from this requirement is not intended to imply that 
complete case analyses are believed to be a stronger approach for addressing missing 
data. Rather, the WWC’s approach recognizes that the attrition standard and baseline 
equivalence requirement can limit bias in complete case analyses, because the missing 
data affect the analytic sample. 

 
WWC Review Process for Step 3 of the Review of Studies with Missing Data 
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 If the study limits potential bias from imputed outcome data (using the formulas in 
Appendix B), or the analytic sample contains no imputed outcome data, then continue 
to Step 4 of the review process for studies with missing data. 

 If the study does not limit potential bias from unmeasured factors, then the study is 
rated Does Not Meet WWC Group Design Standards. 

Step 4. Is the study a high-attrition RCT that analyzes the full randomized sample? 
The fourth step in the review process for missing outcome data addresses a second way 

imputed outcome data can affect the rating of a study. When study authors analyze a high-
attrition RCT by imputing outcome data so that they analyze the full sample that was randomized 
to conditions, the study does not need to satisfy the baseline equivalence requirement to be 
eligible to receive the rating Meets WWC Group Design Standards With Reservations.  

In general, the WWC requires that high-attrition RCTs satisfy the baseline equivalence 
requirement because of a risk of bias from compositional differences between the remaining 
intervention and comparison group members. However, some high-attrition RCTs impute all 
missing outcome data and analyze the original randomized sample. These high-attrition RCTs do 
not need to satisfy the baseline equivalence requirement because of a presumption that 
intervention and comparison groups that result from random assignment are unlikely to have 
substantive compositional differences. Imputing missing outcome data and analyzing the full 
randomized sample preserves the integrity of the originally randomized groups. Although 
compositional differences are not considered a threat to bias, like other high-attrition RCTs, 
these studies are eligible to be rated only Meets WWC Group Design Standards With 
Reservations. These studies are not eligible for the highest rating because of the risk of bias from 
imputing a larger amount of missing outcome data compared to a low-attrition RCT. 

All QEDs, high-attrition RCTs that do not analyze the original randomized sample, and 
compromised RCTs must satisfy the baseline equivalence requirement (Step 5 in Figure II.5). 
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WWC Review Process for Step 4 of the Review of Studies with Missing Data 

 If the study is a high-attrition RCT that analyzes the original randomized sample, then 
the study is eligible to receive the rating Meets WWC Group Design Standards With 
Reservations and does not need to satisfy the baseline equivalence requirement. 

 If the study is a QED, high-attrition RCT that does not analyze the original randomized 
sample, or a compromised RCT, then the study must satisfy the baseline equivalence 
requirement to be eligible to receive the rating Meets WWC Group Design Standards 
With Reservations. Continue to Step 5 of the review process for studies with missing 
data. 

Step 5. Are data in the analytic sample missing or imputed for any baseline measure 
specified in the review protocol? 

QEDs, high-attrition RCTs that do not impute data to analyze the full randomized sample, 
and compromised RCTs must satisfy the baseline equivalence requirement to be eligible to be 
rated Meets WWC Group Design Standards With Reservations. However, it is not possible for 
the WWC to assess baseline equivalence on the full analytic sample using actual data when some 
data are missing or imputed for a measure that is specified in the review protocol as required for 
assessing baseline equivalence.  

WWC Review Process for Step 5 of the Review of Studies with Missing Data 
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 If the study is a QED, high-attrition RCT that does not analyze the original randomized 
sample, or a compromised RCT, and the analytic sample does not include missing or 
imputed data for any baseline measure specified in the review protocol, then continue 
to Step 5a of the review process for studies with missing data. 

 If the study is a QED, high-attrition RCT that does not analyze the original randomized 
sample, or a compromised RCT, and the analytic sample includes some missing or 
imputed data for a baseline measure specified in the review protocol, then continue to 
Step 5b of the review process for studies with missing data. 

Step 5a. Does the study satisfy baseline equivalence for the analytic sample? 
If all of the missing or imputed baseline data in the analytic sample are for baseline 

measures not specified in the review protocol as required for satisfying baseline equivalence in 
the outcome domain (or no baseline data are missing or imputed), then baseline equivalence can 
be assessed using the usual approach described in Step 3 of Section A of this chapter. A study 
that satisfies the baseline equivalence requirement using actual data for the analytic sample is 
eligible to be rated Meets WWC Group Design Standards With Reservations. 

An analysis that uses non-response weights to address missing outcome data must satisfy 
baseline equivalence using observed data for the analytic sample using weighted means and 
standard deviations. 
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WWC Review Process for Step 5a of the Review of Studies with Missing Data 
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 If the study satisfies the baseline equivalence requirement using actual baseline data, 
the study is eligible to receive the rating Meets WWC Group Design Standards With 
Reservations. 

 If the study does not satisfy the baseline equivalence requirement using actual baseline 
data, the study is rated Does Not Meet WWC Group Design Standards. 

Step 5b. Does the study satisfy baseline equivalence using the largest baseline difference 
accounting for missing or imputed baseline data? 

If some data are missing or imputed for a baseline measure that is specified in the review 
protocol as required for satisfying baseline equivalence in the outcome domain, the WWC uses a 
different process to assess baseline equivalence. In this case, the WWC estimates how large the 
baseline difference might be under different assumptions about how the missing data are related 
to measured or unmeasured factors. The largest of these estimates (in absolute value) is used as 
the baseline difference for the study. 

Just as for studies with complete baseline data, a study with missing or imputed data for a 
required baseline measure is eligible to be rated Meets WWC Group Design Standards With 
Reservations if the largest estimated standardized baseline difference does not exceed 0.25 
standard deviations when the analysis includes an acceptable adjustment for the baseline 
measure, or 0.05 standard deviations otherwise. A study that satisfies this alternative baseline 
equivalence requirement is eligible to be rated Meets WWC Group Design Standards With 
Reservations. 

The WWC’s approach to estimating the baseline difference in studies with missing or 
imputed baseline data are similar to the approach used to estimate bias from using imputed 
outcome data, described above. Instead of comparing means of the baseline measure, the WWC 
compares means of the outcome measure, separately for the intervention and comparison groups, 
for two samples: (1) the analytic sample and (2) the analytic sample restricted to cases with 
observed baseline data. A larger absolute difference in these means within a group indicates that 
the data may be missing in a way that is related to unmeasured sample characteristics, and the 
measured impact of the intervention may be biased. 

To translate the intervention and comparison group differences in outcome means into an 
estimate of a baseline effect size, the WWC uses the pooled standard deviation of the outcome 
measure and the correlation between the baseline and outcome measure. Appendix C provides 
the formulas the WWC uses to estimate the bias (Equations C1–C4, D1–D4, C1*–C4*, and 
D1*–D4*). When a review protocol specifies that baseline equivalence must be assessed on 
multiple baseline measures, the formulas in Appendix C must be applied to each required 
baseline measure. The formulas used to estimate the baseline difference vary based on two 
factors: (1) whether the outcome measure is observed for all subjects in the analytic sample and 
(2) whether the outcome data are missing or imputed.  

• When the outcome measure is observed for all subjects in the analytic sample, the 
WWC requires the following data from the authors: (a) the means and standard 
deviations of the outcome measure for the analytic sample, separately for the 
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intervention and comparison groups; (b) the means of the outcome measure for the 
subjects in the analytic sample with observed baseline data, separately for the 
intervention and comparison groups; (c) the correlation between the baseline and the 
outcome measures, and (d) an estimate of the baseline difference based on study data. 
As noted in Step 3 (the section on imputed outcome data) above, the correlation can be 
estimated on a sample other than the analytic sample, but must not be estimated using 
imputed data. If the authors did not impute the baseline data, then the WWC will use 
baseline means and standard deviations to measure the baseline difference for the 
portion of the analytic sample with observed baseline data. However, if the study did 
impute baseline data, then the WWC will include the imputed data when calculating the 
means (but use standard deviations based only on the observed data). 

• When the outcome measure is imputed for some subjects in the analytic sample, in 
addition to (c) and (d), the following data are required: (e) the means of the outcome 
measure for the subjects in the analytic sample with observed outcome data, separately 
for the intervention and comparison groups; (f) the means of the outcome measure for 
the subjects in the analytic sample with observed baseline and outcome data, separately 
for the intervention and comparison groups; (g) the standard deviations of the outcome 
measure for either the sample of subjects in the analytic sample with observed outcome 
data or the sample with observed baseline and outcome data; and (h) the number of 
subjects with observed outcome data in the analytic sample by condition. 

If these data are not reported in the study, the WWC will request them from the authors. 

There are two special considerations for applying the requirement in Step 5b when an 
analysis uses non-response weights or complete case analyses: 

• An analysis that uses non-response weights to address missing outcome data must 
satisfy baseline equivalence using observed data for the analytic sample using weighted 
means and standard deviations. 

• Because no baseline data are missing or imputed, a complete case analysis that excludes 
cases with missing baseline data must satisfy the baseline equivalence requirement using 
the observed data for the analytic sample, as described above in Step 2 of Section A of 
this chapter, rather than using the formulas in Appendix C. In other words, the complete 
case analysis must satisfy baseline equivalence using Step 5a, and not Step 5b.  

 
WWC Review Process for Step 5b of the Review of Studies with Missing Data 
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 If the study satisfies the baseline equivalence requirement using the largest baseline 
difference (estimated according to the formulas in Appendix C) accounting for the 
missing or imputed data, the study is eligible to receive the rating Meets WWC Group 
Design Standards With Reservations. 

 If the study does not satisfy the baseline equivalence requirement using the largest 
baseline difference accounting for the missing or imputed data, the study is rated Does 
Not Meet WWC Group Design Standards. 
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D. Complier Average Causal Effects 
In RCTs, subjects are randomly assigned to groups that differ in access to an intervention. 

However, subjects do not always comply with their assigned conditions. In the assigned 
intervention group—the group whose assignment makes them eligible for the intervention—
some subjects might choose not to receive intervention services. In the assigned comparison 
group—the group whose assignment makes them ineligible for the intervention—some subjects 
might nevertheless receive the intervention. 

In the presence of noncompliance, RCT studies have typically estimated either or both of 
two impacts. First, to estimate the effect of being assigned to the intervention, known as the 
intent-to-treat (ITT) effect, the mean difference in outcomes between the entire assigned 
intervention group and the entire assigned comparison group is calculated. 

Second, to estimate the effects of actually receiving the intervention, one common approach 
is to estimate the complier average causal effect (CACE).4 The CACE is the average effect of 
taking up the intervention among compliers—those who would take up the intervention if 
assigned to the intervention group and who would not take up the intervention if assigned to the 
comparison group. 

The CACE cannot be estimated with a subgroup analysis because compliers cannot be fully 
distinguished from other sample members. In particular, among sample members assigned to the 
intervention group, compliers cannot be distinguished from always-takers—those who would 
always take up the intervention, regardless of their randomly assigned status—because both 
groups take up the intervention. Among sample members assigned to the comparison group, 
compliers cannot be distinguished from never-takers—those who would never take up the 
intervention, regardless of their randomly assigned status—because neither group takes up the 
intervention. 

Instead, the CACE is typically estimated with an instrumental variables (IV) estimator, 
which uses only the variation in take-up that is induced by the random assignment process to 
estimate the impacts of taking up the intervention on outcomes. An IV estimator starts from an 
assumption, known as the exclusion restriction, that neither the outcomes of always-takers nor 
the outcomes of never-takers differ between the intervention and comparison groups (because 
assignment to those groups cannot influence their take-up status). Any difference between the 
intervention and comparison groups must therefore be attributable to compliers. Likewise, the 
difference in take-up rates between the two groups reveals the fraction of study sample members 
who are compliers. Conceptually (and, in certain scenarios, mathematically), an IV estimator, 
therefore, estimates the effect of the intervention on compliers by dividing the difference in 
outcomes between the intervention and comparison groups by the difference in take-up rates. As 
discussed later, conventional statistical tests based on IV estimators perform well only if sample 
members’ randomly assigned status has a strong association with take-up. 

4 In some disciplines, the CACE is also referred to as the local average treatment effect (LATE). Seminal papers by 
Imbens and Angrist (1994) and Angrist et al. (1996) provide a formal discussion of how the CACE can be identified 
and estimated.  
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This section is intended to specify the scenarios under which CACE estimates from RCTs 
are eligible for review and subsequently eligible to be rated Meets WWC Group Design 
Standards Without Reservations or Meets WWC Group Design Standards With Reservations. 

1. Criteria for Whether RCT Studies are Eligible for Review Under CACE Standards 
To be eligible for review, a CACE estimate from an RCT must meet several technical 

criteria. To specify these technical criteria, it is necessary to define some key terms, as discussed 
below. 

Key Terms 
We refer to the following commonly accepted terms from the econometric literature on 

instrumental variables: 

• Endogenous independent variable: The variable whose impact on outcomes is the 
impact of interest. In this context, the endogenous independent variable is a binary 
indicator for taking up the intervention. It is endogenous because its variation could be 
affected by subjects’ decisions. A particularly uninterested member of the intervention 
group might elect not to participate, and the (unobserved) factors underlying the 
decision might also be correlated with outcomes, inducing a correlation between take-up 
and outcomes that is not reflective of a causal effect of the intervention itself.  

• Structural equation: An equation that models the outcome as a function of the 
endogenous independent variable (and possibly other covariates). In this context, 
estimation of the structural equation produces an estimate of the CACE—the impact of 
intervention take-up on outcomes. 

• Instrumental variables: Variables that induce variation in the endogenous independent 
variable but are assumed to be uncorrelated with other factors influencing the outcome 
variable. By definition, instrumental variables are excluded from the structural equation. 
In this context, the instrumental variables are binary indicators for the group to which 
subjects were randomly assigned. 

• First-stage equation: An equation that models the endogenous independent variable as a 
function of the instrumental variables (and possibly other covariates). In this context, the 
first-stage equation is modeling the extent to which take-up is influenced by randomly 
assigned group status. Assigned group status should influence take-up because sample 
members assigned to the intervention group are supposed to receive the intervention and 
those assigned to the comparison group are not. 

Technical Eligibility Criteria 
To be eligible for review under the CACE guidance, a CACE estimate from an RCT must be 

based on statistical methods that meet all of the conditions below. 

The endogenous independent variable must be a binary indicator for taking up any portion 
of the intervention. The WWC does not yet have standards for evaluating studies that estimate 
the relationship between an outcome and a continuous measure of intervention dosage, so the 
endogenous independent variable must be binary. Moreover, because it’s possible that any 
positive dosage of the intervention could affect outcomes, the endogenous independent variable 
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must distinguish sample members who took up any portion of the intervention from those who 
did not. 

Each structural equation estimated by the study must have exactly one endogenous 
independent variable. With multiple endogenous independent variables, criteria for evaluating 
instrument strength (see Stock & Yogo, 2005) would require matrix algebraic quantities that are 
rarely reported in education evaluations.5 

The instrumental variables must be binary indicators for the groups (intervention and 
comparison) to which subjects are randomly assigned. If random assignment forms two 
assignment groups—one assigned intervention group and one assigned comparison group—then 
there will be one instrumental variable, a binary indicator that distinguishes the groups. 

In some cases, a CACE estimate may use multiple instrumental variables that induce 
variation in a single endogenous independent variable. For example, if random assignment is 
conducted separately in several sites, a study could interact the intervention assignment indicator 
with site indicators, and then use both the intervention assignment indicator and the interaction 
terms as instruments. (The site indicators would serve as covariates in both the first-stage and 
structural equations.). The use of these multiple instruments allows the first-stage equation to 
model variation across sites in the extent to which assignment to the intervention group 
influences take-up.6 Another example in which multiple instrumental variables may be warranted 
is when there are three or more groups—for instance, a group with highest assigned priority for 
receiving the intervention, a group with lower assigned priority, and an assigned comparison 
group that cannot receive the intervention—to which each subject could be randomly assigned. 
In this scenario, the instrumental variables are binary indicators for all but one of the assignment 
groups.7 

The sets of baseline covariates—independent variables other than the endogenous 
independent variable and instrumental variables—must be identical in the structural equation and 
first-stage equation. If baseline covariates are included in the analysis, the structural equation and 
first-stage equation must contain identical sets of baseline covariates, or else the study will 
violate either an eligibility criterion specified above or technical conditions needed for model 
estimation. In particular, if a baseline covariate from the first-stage equation is not included in 
the structural equation, then it is effectively serving as an instrumental variable that is not among 
the types of eligible instruments. If a baseline covariate from the structural equation is not 
included in the first-stage equation, then the model will lack enough sources of variation to 

5 With multiple endogenous independent variables, evaluating instrument strength would require calculating the 
Cragg–Donald statistic, which is the minimum eigenvalue from the matrix analog of the first-stage F-statistic (Cragg 
& Donald, 1993; Stock & Yogo, 2005; Sanderson & Windmeijer, forthcoming). Many applied researchers would 
find it challenging to calculate this statistic unless they had access to specific software that performs this calculation 
(for instance, the ivregress command in Stata). Moreover, if a study did not report this statistic, the WWC would not 
be able to calculate it without the individual-level data used for the evaluation. 
6 A multisite CACE estimate does not have to use site-specific intervention assignment indicators; a single 
intervention assignment indicator can serve as the sole instrumental variable, in which case the study is choosing not 
to model differences across sites in the effects of intervention assignment on take-up. 
7 In all of these examples, there is still only a single take-up variable, and thus, the study still estimates a single 
average impact of take-up on outcomes. 
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estimate all of the coefficients in the structural equation—a scenario known as 
underidentification. 

The study must estimate the CACE using two-stage least squares (2SLS) or a method that 
produces the same estimate as 2SLS. In 2SLS, the estimated impact of take-up on outcomes is 
equivalent to that produced by the following two stages. First, the first-stage equation is 
estimated with OLS, and predicted values of take-up are obtained from these estimates. Second, 
the endogenous take-up variable is replaced by its predicted values in the structural equation, 
which is then estimated by OLS. From this second stage, the estimated coefficient on the 
predicted take-up variable is equivalent to the 2SLS estimate of the CACE (and the standard 
error of the coefficient must be adjusted to account for the first-stage prediction, as discussed 
later).  

When there is only one instrument, the 2SLS estimate is the same as a ratio in which the 
numerator is the ITT estimate and the denominator is the estimated effect of intervention 
assignment on take-up from the first-stage equation. This ratio is similar to, but more general 
than, the Bloom (1984) adjustment. The Bloom (1984) estimator is the ITT estimate divided by 
the take-up rate in the intervention group. It is equivalent to the 2SLS estimator when (1) there is 
no take-up in the comparison group, and (2) no baseline covariates are included in the analysis. 
When these two conditions hold, these standards can be applied to studies that use the Bloom 
adjustment.8 

Although 2SLS is the most widely used approach to CACE estimation, other methods exist. 
Alternative methods include: (1) limited information maximum likelihood (Anderson & Rubin, 
1949); (2) generalized method of moments (Hansen, 1982); and (3) missing-data methods based 
on Bayesian procedures or the EM algorithm (Imbens & Rubin, 1997a). Because these methods 
have not been used frequently in education evaluations, we have not proposed standards that 
apply to these methods. 

2. Overview of Process for Rating CACE Estimates 
A CACE estimate from an RCT is evaluated on a different set of criteria, depending on 

whether the RCT has low or high attrition: 

• A CACE estimate from an RCT with low attrition Meets WWC Group Design 
Standards Without Reservations if it satisfies two conditions: (1) no clear violations of 
the exclusion restriction, and (2) sufficient instrument strength.9 It is rated Does Not 
Meet WWC Group Design Standards if at least one of those conditions is not satisfied. 

8 When members of the assigned comparison group take up the intervention, the Bloom adjustment is not applicable. 
When the structural equation has baseline covariates, the Bloom adjustment implicitly excludes those covariates 
from the first-stage equation, leading to underidentification. 
9 Another assumption required for the internal validity of CACE estimates is called monotonicity (Angrist et al., 
1996). Under this assumption, anyone who would take up the intervention if assigned to the comparison condition 
would also do so if assigned to the intervention condition. In other words, it is assumed that there are no individuals 
who would take up the intervention if assigned to the comparison condition, but would not take up the intervention 
if assigned to the intervention condition. This assumption is not directly verifiable. However, it seems at least as 
plausible as other unverifiable assumptions that are needed for ITT impacts to attain causal validity, such as the 
assumption that each subject’s outcome is unaffected by the treatment status of other subjects. Therefore, these 
standards assume that monotonicity is satisfied. 
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• A CACE estimate from an RCT with high attrition Meets WWC Group Design 
Standards With Reservations if it satisfies three conditions: (1) no clear violations of the 
exclusion restriction, (2) sufficient instrument strength, and (3) a baseline equivalence 
requirement. It is rated Does Not Meet WWC Group Design Standards if at least one of 
those conditions is not satisfied. 

The review process for CACE estimates is outlined in Figure II.6. The following sections 
provide details on the procedures for assigning ratings to CACE estimates. Section 3 describes 
the method for determining whether an RCT has low or high attrition when rating CACE 
estimates. Sections 4 and 5 then describe the procedures for rating CACE estimates from RCTs 
with low and high attrition, respectively. 

Figure II.6. Review Process for Studies that Report a CACE Estimate 
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Note:  To receive a rating of Meets WWC Group Design Standards Without Reservations or Meets WWC Group Design 
Standards With Reservations, the study must also satisfy the requirements in Chapter IV, including that the study 
must examine at least one outcome measure that meets review requirements and be free of confounding factors. 

3. Calculating Attrition when Rating CACE Estimates 
When rating CACE estimates, the basic approach to determining whether attrition is low or 

high will follow the usual attrition standard for RCTs (see Chapter II.A). In particular, both 
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overall and differential attrition must be calculated. Table II.1 of the Standards Handbook will 
then determine whether the combination of overall and differential attrition is considered low or 
high. 

However, the specific method for calculating attrition rates when rating CACE estimates is 
different than the method used when rating ITT estimates. When rating ITT estimates, the overall 
attrition rate is the fraction of the entire randomly assigned sample that did not contribute 
outcome data to the final analysis. Likewise, the differential attrition rate is the difference in 
attrition rates between the entire assigned intervention group and entire assigned comparison 
group. It is appropriate to measure attrition for the entire sample when rating ITT estimates, 
because those estimates are intended to represent how assignment to the intervention would, on 
average, affect all subjects. 

In contrast, a CACE estimate represents the average effect of taking up the intervention for 
compliers only. Accordingly, when rating a CACE estimate, the WWC will calculate overall and 
differential attrition rates that pertain specifically to compliers. Because compliers cannot be 
directly identified (as discussed earlier), the attrition rates for compliers likewise cannot be 
directly calculated. Instead, the attrition rates must be estimated on the basis of specific 
assumptions, discussed below. 

For the usual scenario in which there are two assigned groups—the intervention group 
(denoted by Z = 1) and the comparison group (denoted by Z = 0)—the differential attrition rate 
for compliers, complier∆  will be estimated as 

(II.1)  1, 0,

1, 0,

ˆ ran rancomplier

ran ran

A A
D D

−
∆ =

−
 

where ,z ranA  is the attrition rate in the assigned group Z = z, and ,z ranD  is the fraction of the 
assigned group Z = z that took up the intervention. The numerator of equation (1) is the 
differential attrition rate that the WWC calculates when rating ITT estimates, and the 
denominator is the difference in take-up rates between assigned groups. The equation (II.1) 
provides a consistent estimate of the differential attrition rate for compliers under the assumption 
that attrition rates for always-takers and never-takers do not differ by assigned status. More 
generally, the equation (II.1) provides a conservative (upper-bound) estimate of the differential 
attrition rate for compliers under the assumption that differential attrition rates for always-takers 
and never-takers (if nonzero) have the same sign as the differential attrition rate for compliers. 
The WWC regards the latter assumption as reasonable and realistic; it is difficult to identify 
scenarios in which assignment to an intervention would influence attrition patterns in opposite 
ways for always-takers and never-takers.10 

10 In most cases, attrition is due to missing outcome data. Less frequently, attrition may be due to missing data on 
take-up status. If some members of the randomly assigned sample are missing take-up status, the WWC will not 
have all of the information needed for calculating the denominator of the equation (II.1). In this case, we assume a 
worst-case scenario, in which individuals in the intervention group with missing take-up status truly did not take up 
the intervention, and individuals in the comparison group with missing take-up status truly took up the intervention. 
This worst-case scenario minimizes the denominator in the equation (II.1), and therefore, leads to an upper-bound 
for the differential attrition rate. 
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To calculate the overall attrition rate for compliers, we will calculate the attrition rate for 
compliers in the intervention and comparison groups separately, and then take a weighted 
average of the two attrition rates, with weights equal to group size. Let zdA  be the observed 
attrition rate for people with assignment status 𝑍𝑍 = 𝑧𝑧 and take-up status 𝐷𝐷 = 𝑑𝑑 (with 𝐷𝐷 = 1 
denoting receipt of the intervention and 𝐷𝐷 = 0 denoting nonreceipt). Following Imbens and 
Rubin (1997b), the attrition rate for compliers in the comparison group, 0

complierR , will be 
estimated as11 

(II.2)  ( ) ( )0, 00 1, 10
0

1, 0,
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ran ran
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− − −
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−
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The attrition rate for compliers in the intervention group, 1
ˆ complierR , will then be estimated as 

(II.3)  1 0
ˆ ˆ ˆcomplier complier complierR R= +∆ . 

The overall attrition rate, ˆ complier
overallR , will then be calculated as 
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where 1N  and 0N  are the number of sample members randomly assigned to the intervention and 
comparison groups, respectively. 

The procedure described thus far in this section is equivalent to using the units of analysis to 
estimate a 2SLS regression in which attrition (specifically, a binary variable indicating whether a 
subject was included in the final analysis sample) is the outcome, a take-up indicator is the 
endogenous independent variable, and an indicator for assignment to the intervention group 
(rather than the comparison group) serves as the instrumental variable. The estimated coefficient 
on the take-up indicator is equivalent to the differential attrition rate shown in the equation (II.1) 
and the WWC will use the result from this 2SLS regression as the measure of differential 
attrition when provided. 

If there are three or more groups to which each sample member could be randomly assigned, 
the procedure we will follow is likewise equivalent to estimating a 2SLS regression in which 
attrition is the outcome, a take-up indicator is the endogenous independent variable, and a set of 
assigned group indicators (one for each group except an omitted reference group) constitute the 
instrumental variables. In this procedure, we will first order the assigned groups from lowest to 
highest take-up rate. For each comparison between consecutively ordered groups, we will apply 
equations (II.1 through II.4) to obtain differential and overall attrition rates for compliers 

11 The intuition behind the equation (II.2) is roughly as follows. Members of the assigned comparison group who do 
not take up the intervention consist of a mix of compliers and never-takers. Starting from the attrition rate for this 
mixed group (the first term in the numerator of the equation [II.2]), we remove the contribution coming from 
comparison-group never-takers, which is assumed to be equivalent to the observed attrition rate of never-takers in 
the intervention group (the second term in the numerator of the equation [II.2]). The resulting difference is an 
estimate of the attrition rate for comparison-group compliers. 
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relevant to that comparison—that is, for subjects who are induced to take up the intervention by 
being assigned to the higher-ordered group instead of the lower-ordered group. We will then take 
a weighted average of both the overall and differential attrition rate across those different 
comparisons, with weights specified in Imbens and Angrist (1994). Appendix D provides 
formulas for those weights. 

4. Procedures for Rating CACE Estimates when Attrition is Low 
A CACE estimate from a low-attrition RCT Meets WWC Group Design Standards Without 

Reservations if it satisfies two criteria: (1) no clear violations of the exclusion restriction, and (2) 
sufficient instrument strength. If at least one of those criteria is not met, the CACE estimate is 
rated Does Not Meet WWC Group Design Standards. Next, we describe the two criteria in detail. 
The conceptual background for these criteria is available in Appendix D. 

Criterion 1: No Clear Violations of the Exclusion Restriction 
For a CACE estimate to have no clear violations of the exclusion restriction, a necessary 

condition is that the study must report a definition of take-up that is the same across assigned 
groups. Moreover, the WWC’s lead methodologist for a review has the discretion to determine 
that a study fails to satisfy the exclusion restriction as a result of a situation in which assignment 
to the intervention can materially influence the behavior of subjects even if they do not take up 
the intervention. For example, the exclusion restriction would be violated if subjects assigned to 
the intervention group received offers to convince them to enroll in the comparison group 
instead. See Appendix D for additional discussion of violations of the exclusion restriction. 

Criterion 2: Sufficient Instrument Strength 
Depending on the number of instruments, a CACE estimate must report a first-stage F-

statistic—the F-statistic for the joint significance of the instruments in the first-stage equation—
at least as large as the minimum required level shown in Table II.7. The minimum required 
levels are based on Stock and Yogo’s (2005) derivations on the minimum first-stage F-statistic 
needed to ensure that the actual type I error rate is unlikely to exceed 0.10 for a t-test whose 
assumed type I error rate is 0.05.12 When there is one instrument, authors may report a t-statistic 
instead. In this case, the F-statistic is equal to the square of the t-statistic. 

When baseline covariates are included in the 2SLS regression, the first-stage F-statistic 
assesses the joint significance of the instruments in the first-stage equation while controlling for 
the baseline covariates. In such cases, the F-statistic should only reflect the significance of the 
instruments, and not the significance of the baseline covariates. If the unit of assignment differs 
from the unit of analysis, then the study must report first-stage F-statistics after adjusting for 
clustering. 

In a limited set of circumstances, the WWC will be able to calculate the first-stage F-
statistic even if this statistic is not reported by the study and cannot be obtained through an 
author query. Specifically, in the case of one instrumental variable (that distinguishes a single 

12 Specifically, the minimum required first-stage F-statistic is the critical value for rejecting the null hypothesis that 
the instruments are weak enough to yield type I error rates exceeding 0.10. See Stock and Yogo (2005) for details. 
Although it is common for researchers to use a rule of thumb that the F-statistic must exceed 10, Table II.7 imposes 
a stronger requirement. Stock and Yogo’s (2005) analyses are, in their own words, “a refinement and improvement 
to the Staiger-Stock (1997) rule of thumb that the instruments be deemed ‘weak’ if the first-stage F is less than 10.”  
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intervention group and single comparison group) and no clustering, the WWC can obtain a 
conservative (lower-bound) value for the first-stage F-statistic if information is available on the 
take-up rate for analysis sample members in the intervention group ( )1,anD , the take-up rate for 

analysis sample members in the comparison group ( )0,anD , the number of analysis sample 

members in the intervention group ( )1,anN , and the number of analysis sample members in the 

comparison group ( )0,anN . The first-stage F-statistic is represented as 

( )
( ) ( )

2
1, 0,

1, 1, 0, 0,

1, 0,

1 1
an an

an an an an

an an
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D D D D
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which is a lower-bound because it does not take into account precision gains from controlling for 
other covariates in the first-stage equation. 

Table II.7. First-Stage F-Statistic Thresholds for Satisfying the Criterion of Sufficient Instrument 
Strength  

Number of 
Instruments 

Minimum Required  
First-Stage F-Statistic 

1 16.38 
2 19.93 
3 22.30 
4 24.58 
5 26.87 
6 29.18 
7 31.50 
8 33.84 
9 36.19 
10 38.54 
11 40.90 
12 43.27 
13 45.64 
14 48.01 
15 50.39 
16 52.77 
17 55.15 
18 57.53 
19 59.92 
20 62.30 
21 64.69 
22 67.07 
23 69.46 
24 71.85 
25 74.24 
26 76.62 
27 79.01 
28 81.40 
29 83.79 
30 86.17 

Source: Stock & Yogo (2005). 
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If a CACE estimate does not have an associated first-stage F-statistic reported in the study, 
then the WWC will attempt to obtain it through an author query. If the authors do not provide 
this statistic upon being queried, then the WWC will try to calculate the first-stage F-statistic 
using the formula above, provided that there is only one instrumental variable and no clustering. 
If none of these options enables the first-stage F-statistic to be identified, then the study does not 
demonstrate sufficient instrument strength and is rated Does Not Meet WWC Group Design 
Standards. 

5. Procedures for Rating CACE Estimates when Attrition is High 
A CACE estimate from a high-attrition RCT Meets WWC Group Design Standards With 

Reservations if it satisfies three criteria: (1) no clear violations of the exclusion restriction, 
(2) sufficient instrument strength, and (3) a baseline equivalence requirement. If at least one of 
those criteria is not satisfied, the CACE estimate is rated Does Not Meet WWC Group Design 
Standards. 

The first two criteria are identical to those discussed in Chapter II.C.4 for RCTs with low 
attrition. The remainder of this section describes the third criterion, the baseline equivalence 
requirement. 

The baseline equivalence requirement for CACE estimates in high-attrition RCTs follows 
the basic elements of the baseline equivalence requirement described in Step 3 of Section A 
above. For each baseline characteristic specified in the review protocol, we will calculate a 
difference between intervention and comparison group members in the analytic sample. If the 
reported difference is greater than 0.25 standard deviations in absolute value, then the baseline 
equivalence is not satisfied. If the difference is between 0.05 standard deviations and 0.25 
standard deviations, the analysis must control for the baseline characteristic in the 2SLS 
regression. Differences of less than or equal to 0.05 require no statistical adjustment (see Table 
II.2).  

However, the specific method for calculating a baseline difference when rating CACE 
estimates is different than the usual method used when rating QEDs or ITT estimates from high-
attrition RCTs. The usual method assesses the degree of imbalance between groups in the entire 
analytic sample. However, for the purpose of rating CACE estimates, it is necessary to assess the 
degree of imbalance between groups only among compliers in the analytic sample. 

For each characteristic X specified in the review protocol, we will use the following 
approach to calculate the baseline difference between compliers in the intervention and 
comparison groups within the analytic sample. Let ,z anX  be the mean of the characteristic for 

members of the analytic sample with assigned status 𝑍𝑍 = 𝑧𝑧, and let ,z anD  be the take-up rate 
among analytic sample members with assigned status 𝑍𝑍 = 𝑧𝑧. We will estimate the baseline 
difference among compliers as 

(II.5)   ( ) ( )1, 0, 1, 0,
ˆ /complier

an an an anX X D Dβ = − − , 

and then express this difference in standard deviation units (with standard deviations calculated 
in the usual way, based on the pooled analytic sample). 
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The numerator of Equation (II.5) is the baseline difference that the WWC calculates when 
rating ITT estimates from high-attrition RCTs, and the denominator is the difference in take-up 
rates between the intervention and comparison groups in the analytic sample. This equation is 
justified by the same type of assumption that underlies the differential attrition rate calculation in 
Equation (1). Specifically, Equation (II.5) provides a conservative (upper-bound) estimate of the 
baseline difference for compliers under the assumption that baseline differences for always-
takers and never-takers (if nonzero) have the same sign as the baseline difference for compliers. 

In fact, because attrition is the key source of bias that can lead to baseline differences in 
RCTs, assumptions about attrition behavior (from Chapter II) shape what types of assumptions 
about baseline differences are reasonable. Baseline differences emerge when intervention group 
members who leave the study are different than comparison group members who leave the study, 
resulting in a baseline imbalance between groups among those who remain in the study. Stated 
differently, baseline differences emerge when assignment to the intervention is associated with 
the composition of people who stay or leave. The approach to calculating attrition, explained in 
Chapter II.C, was built on the notion that assignment to the intervention is unlikely to have 
opposite effects on attrition rates for different subpopulations. By similar logic, assignment to the 
intervention is unlikely to have opposite effects on the types of sample members who leave the 
study in different subpopulations. For this reason, the WWC finds it reasonable and realistic to 
assume that baseline differences have the same sign for always-takers, compliers, and never-
takers, justifying the use of Equation (II.5). 

If there are three or more groups to which each sample member could be randomly assigned, 
we will first order the assigned groups from lowest to highest take-up rate, calculate baseline 
differences in the analytic sample between compliers of consecutively ordered groups, and take a 
weighted average of those baseline differences (Imbens & Angrist, 1994). See Appendix D for 
details. 
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III. REGRESSION DISCONTINUITY DESIGNS 

Regression discontinuity designs (RDDs) are increasingly used by researchers with the goal 
of obtaining consistent estimates of the local average impacts of education-related interventions 
that are made available to individuals or groups on the basis of how they compare to a cutoff 
value on some known measure. For example, students may be assigned to a summer school 
program if they score below a cutoff value on a standardized test, or schools may be awarded a 
grant based on their score on an application.  

Under a typical RDD, the effect of an intervention is estimated as the difference in mean 
outcomes between intervention and comparison group members at the cutoff, adjusting 
statistically for the relationship between the outcomes and the variable used to assign subjects to 
the intervention. The variable used to assign subjects to the intervention is commonly referred to 
as the “forcing” or “assignment” or “running” variable (the term “forcing variable” is used 
below). A regression line (or curve) is estimated for the intervention group and similarly for the 
comparison group, and the difference in these regression lines at the cutoff value of the forcing 
variable is the estimate of the effect of the intervention. Stated differently, an effect is said to 
have occurred if there is a “discontinuity” in the two regression lines at the cutoff. This estimate 
pertains to average intervention effects for subjects right at the cutoff. RDDs generate 
asymptotically unbiased estimates of the effect of an intervention if (1) the relationship between 
the outcome and forcing variable is modeled appropriately (defined in Standard 4 below) and (2) 
the forcing variable was not manipulated (either behaviorally or mechanically) to influence 
assignment to the intervention group. 

This chapter presents criteria under which estimates of effects from RDD studies can be 
rated Meets WWC RDD Standards Without Reservations and the conditions under which they 
can be rated Meets WWC RDD Standards With Reservations. These standards apply to both 
“sharp” and “fuzzy” RDDs (defined below in Section C). We provide standards for studies that 
report a single RDD impact (Section C), standards for studies that report multiple impacts 
(Section D), and standards for studies that report pooled or aggregate impacts (Section E). As is 
the case in randomized controlled trials (RCTs), clusters of students (e.g., schools, classrooms, or 
any other group of multiple individuals that have the same value of the assignment variable) 
might be assigned to intervention and comparison groups. These standards apply to both non-
clustered and clustered RDDs. While the standards are focused on assessing the causal validity 
of impact estimates, we also describe two reporting requirements (Sections F and G) focused on 
reporting accurate standard errors.  

A. Assessing Whether a Study is Eligible for Review as an RDD 
A study is eligible for review as an RDD study if it meets the following criteria: 

• Treatment assignments are based on a numerical forcing variable; subjects with numbers 
at or above a cutoff value (or at or below that value) are assigned to the intervention 
group whereas subjects with scores on the other side of the cutoff are assigned to the 
comparison group. For example, an evaluation of a tutoring program could be classified 
as an RDD if students with a reading test score at or below 30 are admitted to the 
program and students with a reading test score above 30 are not. As another example, a 
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study examining the impacts of grants to improve teacher training in local areas could be 
considered an RDD if grants are awarded to only those sites with grant application 
scores that are at least 70. In some instances, RDDs may use multiple criteria to assign 
the treatment to subjects. For example, a student may be assigned to an afterschool 
program if the student’s reading score is below 30 or the student’s math score is below 
40. Studies that use multiple assignment variables or cutoffs with the same sample are 
eligible for review under these standards only if they (1) use a method described in the 
literature (e.g., in Reardon & Robinson, 2012 or Wong, Steiner, & Cook, 2013) to 
reduce those variables to a single assignment variable or (2) analyze each assignment 
variable separately. If a study does not do this (e.g., if it uses the response surface 
method described in Reardon & Robinson, 2012), then it is not currently eligible for 
review under these standards. As with RCTs, noncompliance with treatment assignment 
is permitted, but the study must still meet the criteria below to be eligible for a rating of 
Meets WWC RDD Standards. 

• The forcing variable is ordinal (i.e., has a unique ordering of the values from lowest to 
highest) and includes a minimum of four or more unique values below the cutoff and 
four or more unique values above the cutoff. This condition is required to model the 
relationship between the outcomes and the forcing variable. The forcing variable must 
never be based on nonordinal categorical variables (e.g., gender or race). The analyzed 
data must also include at least four unique values of the forcing variable below the 
cutoff and four unique values above the cutoff. This is required for eligibility because at 
least this many data points are required to credibly select bandwidths or functional forms 
for the relationship between the outcome and the forcing variable. 

• The study must not have a confounding factor as defined for group design studies in 
Chapter IV below. A confounding factor is a component of the study design that is 
perfectly aligned with either the intervention or comparison group. That is, some factor 
is present for members of only one group and absent for all members in the other group. 
In particular, the cutoff value of the forcing variable must not be used to assign members 
of the study sample to interventions other than the one being tested. For example, the 
income cutoff for determining free/reduced-price lunch (FRPL) status cannot be the 
basis of an RDD because FRPL is used as the eligibility criteria for a wide variety of 
services that also could affect student achievement. This criterion is necessary to ensure 
that the study can isolate the causal effects of the tested intervention from the effects of 
other interventions. A study can examine the combined impact of two or more 
interventions that all use the same cutoff value; in that case, the study can be eligible for 
review as an RDD, but the causal statements made must be about the combined impact 
(because the causal effects of each individual intervention cannot be isolated).  

• The forcing variable used to calculate impacts must be the actual forcing variable, not a 
proxy or estimated forcing variable. A variable is considered to be a proxy if its 
correlation with the actual forcing variable is less than 1.  

If a study claims to be based on an RDD but does not have these properties, the study is not 
eligible for review as an RDD.  
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B. Possible Ratings for Studies Using RDDs 
Once a study is determined to be an RDD, the study can receive one of three ratings based 

on the set of criteria described below and summarized in Table III.1. 

1. Meets WWC RDD Standards Without Reservations. To qualify, a study must completely 
satisfy each of the five individual standards listed below. 

2. Meets WWC RDD Standards With Reservations. To qualify, a study must at least 
partially satisfy each of the following standards: 1, 4, 5, and either 2 or 3.  

3. Does Not Meet WWC RDD Standards. A study will receive this rating if it does not at 
least partially satisfy any of standards 1, 4, or 5, or does not at least partially satisfy both 
standards 2 and 3.  

Table III.1. RDD Study Ratings 

Standard To be rated Meets WWC RDD Standards 
Without Reservations, studies must: 

To be rated Meets WWC RDD Standards 
With Reservations, studies must: 

1: Integrity of the forcing variable Completely satisfy Partially satisfy 

2: Sample attrition Completely satisfy Must partially satisfy at least one of these 
two standards 3: Continuity Completely satisfy 

4. Bandwidth/Functional form Completely satisfy Partially satisfy 

5. Fuzzy RDD Completely satisfy Partially satisfy 

 
C. Standards for a Single RDD Impact  

The standards presented in this section focus on assessing the causal validity of the impact 
of a single discontinuity in a single ordinal forcing variable on a single outcome. Section D 
describes how to apply these standards in studies with multiple outcomes or samples. Section E 
describes how to apply these standards in studies with multiple impacts on the same outcome.  

Standard 1: Integrity of the Forcing Variable 
A key condition for an RDD to produce consistent estimates of effects of an intervention is 

that there was no systematic manipulation of the forcing variable. This situation is analogous to 
the nonrandom manipulation of intervention and comparison group assignments under an RCT. 
In an RDD, manipulation means that scores for some subjects were systematically changed from 
their true obtained values to influence treatment assignments and the true obtained values are 
unknown. With nonrandom manipulation, the true relationship between the outcome and forcing 
variable can no longer be identified, which could lead to inconsistent impact estimates.  

Manipulation is possible if “scorers” have knowledge of the cutoff value and have incentives 
and an ability to change unit-level scores to ensure that some subjects are assigned to a specific 
research condition. Stated differently, manipulation could occur if the scoring and treatment 
assignment processes are not independent. It is important to note that manipulation of the forcing 
variable is different from treatment status noncompliance (which occurs if some intervention 
group members do not receive intervention services or some comparison group members receive 
embargoed services). 
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The likelihood of manipulation will depend on the nature of the forcing variable, the 
intervention, and the study design. For example, manipulation is less likely to occur if the forcing 
variable is a standardized test score than if it is a student assessment conducted by teachers who 
also have input into treatment assignment decisions. Manipulation is also unlikely in cases where 
the researchers determined the cutoff value using an existing forcing variable (e.g., a score from 
a test that was administered prior to the implementation of the study). 

In all RDD studies, the integrity of the forcing variable should be established institutionally, 
statistically, and graphically.  

Criterion A. The institutional integrity of the forcing variable must be established by an 
adequate description of the scoring and treatment assignment process. This description 
must indicate the forcing variable used; the cutoff value selected; who selected the cutoff 
(e.g., researchers, school personnel, curriculum developers); who determined values of 
the forcing variable (e.g., who scored a test); and when the cutoff was selected relative 
to determining the values of the forcing variable. This description must show that 
manipulation was unlikely because scorers had little opportunity or little incentive to 
change “true” obtained scores in order to allow or deny specific subjects access to the 
intervention. If there is both a clear opportunity to manipulate scores and a clear 
incentive (e.g., in an evaluation of a math curriculum if a placement test is scored by the 
curriculum developer after the cutoff is known), then the study does not satisfy this 
standard. 
Criterion B. The statistical integrity of the forcing variable must be demonstrated by 
using statistical tests found in the literature (e.g., McCrary, 2008) to establish the 
smoothness of the density of the forcing variable right around the cutoff. This is 
important to establish because there may be incentives for scorers to manipulate scores 
to make subjects just eligible for the intervention group (in which case, there may be an 
unusual mass of subjects near the cutoff). The statistical test must fail to reject the null 
hypothesis of continuity in the density of the forcing variable at the 5 percent 
significance level.  
Criterion C. The graphical integrity of the forcing variable must be demonstrated by 
using a graphical analysis (such as a histogram or other type of density plot) to establish 
the smoothness of the density of the forcing variable right around the cutoff. There must 
not be strong evidence of a discontinuity at the cutoff that is obviously larger than 
discontinuities in the density at other points (some small discontinuities may arise when 
the forcing variable is discrete). 

A study completely satisfies this standard if Criteria A, B, and C are satisfied.  

A study partially satisfies this standard if two of the three criteria are satisfied. 

A study does not satisfy this standard if fewer than two of the three criteria are satisfied.  

Standard 2: Attrition 
An RDD study must have acceptable levels of overall and differential attrition rates (see 

Chapter II.A). The samples used to calculate attrition must include all subjects who were eligible 
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to be assigned to the intervention or comparison group using the forcing variable, and not only a 
subset of those subjects known to the researcher. For example, when age is used to assign 
students to a pre-kindergarten program, the assignment mechanism typically applies to all 
students in a defined geographical region (such as a state or district) and at a specified time 
(when a law was passed, or in the fall of a certain school year). An RDD study that examines the 
impact of the prekindergarten program using age as the assignment variable could only have 
acceptable levels of attrition if it can identify the full set of students who were present in the 
geographical region at the specified time. A study calculating attrition only within an 
administrative dataset on students enrolled in the state’s schools several years after assignment 
would not meet this requirement because the intervention could have affected whether students 
remained in the state. However, attrition can be assessed within exogenous subgroups, meaning a 
subgroup identified using a variable that is exogenous to intervention participation (see the 
subsection on sample loss that is not considered attrition in Step 2 of Section A in Chapter II). 
For example, attrition could be assessed separately within each site. Also, attrition can be 
calculated within a bandwidth around the cutoff value of the forcing variable. Attrition needs to 
be assessed separately for each contrast of interest. 

The way that attrition rates are calculated determines whether an RDD study satisfies this 
standard completely or partially. 

A study completely satisfies this standard if the reported combination of overall and 
differential attrition rates is low using at least one of the following approaches:  

(1) Study authors must report the predicted mean attrition rate at the cutoff estimated using 
data from below the cutoff, and the predicted mean attrition rate at the cutoff estimated using 
data from above the cutoff. Both numbers must be estimated using a statistical model that 
controls for the forcing variable using the same approach that was used to estimate the impact on 
the outcome. Specifically, the impact on attrition must be estimated either (1) using exactly the 
same bandwidth and/or functional form as was used to estimate the impact on the outcome or (2) 
using the same algorithm for selecting the bandwidth and/or functional form as was used to 
estimate the impact on the outcome. For the purpose of applying this standard, the overall 
attrition rate will be defined as the average of the predicted mean attrition rates on either side of 
the cutoff, and the differential attrition rate will be defined as the difference in the predicted 
mean attrition rates on either side of the cutoff.  

(2) Study authors must calculate overall and differential attrition for the sample inside the 
bandwidth, with or without adjusting for the forcing variable. 

A study partially satisfies this standard if the reported combination of overall and 
differential attrition rates is low when calculated using one of the following approaches rather 
than one of the two approaches above. Study authors can calculate overall and differential 
attrition for the entire research sample, with or without adjusting for the forcing variable. If 
authors calculate overall and differential attrition both ways (i.e., both with and without adjusting 
for the forcing variable), the WWC will review both and assign the highest possible rating to this 
part of the study design. Note that approaches should not be mixed: that is, if the rating is based 
on an overall attrition rate calculated without an adjustment for the forcing variable then the 
differential attrition rate should also be unadjusted.  
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A study does not satisfy this standard if attrition information is not available or if none of 
the conditions above are met.  

Standard 3: Continuity of the Relationship Between the Outcome and the Forcing Variable 
To obtain a consistent impact estimate using an RDD, there must be evidence that in the 

absence of the intervention, there would be a smooth relationship between the outcome and the 
forcing variable at the cutoff score. This condition is needed to ensure that any observed 
discontinuity in the outcomes of intervention and comparison group subjects at the cutoff can be 
attributed to the intervention. 

This smoothness condition cannot be checked directly, although there are two indirect 
approaches that could be used. The first approach is to test whether, conditional on the forcing 
variable, key baseline covariates that are correlated with the outcome variable (as identified in 
the review protocol for the purpose of establishing equivalence) are continuous at the cutoff. 
This means that the intervention must have no impact on baseline covariates at the cutoff. 
Particularly important baseline covariates for this analysis are pre-intervention measures of the 
key outcome variables (e.g., pretests).  

The second approach for assessing the smoothness condition is to use statistical tests or 
graphical analyses to examine whether there are discontinuities in the outcome-forcing variable 
relationship at values away from the cutoff. This involves testing for impacts at values of the 
forcing variable where there should be no impacts, such as the medians of points above or below 
the cutoff value (Imbens & Lemieux, 2008). The presence of such discontinuities (impacts) 
would imply that the relationship between the outcome and the forcing variable at the cutoff may 
not be truly continuous, suggesting that observed impacts at the cutoff may not be due to the 
intervention. 

Three criteria determine whether a study satisfies this standard. 

Criterion A. Baseline equivalence on key covariates (as identified in the review 
protocol) must be established at the cutoff value of the forcing variable. This involves 
calculating an impact at the cutoff on the covariate of interest, and the study must either 
(1) use exactly the same bandwidth and/or functional form as was used to estimate the 
impact on the outcome or (2) use the same algorithm for selecting the bandwidth and/or 
functional form as was used to estimate the impact on the outcome. Authors may 
exclude sample members from this analysis for reasons that are clearly exogenous to 
intervention participation (for example, authors may calculate baseline equivalence 
using only data within the bandwidth that was used to estimate the impact on the 
outcome). The burden of proof falls on the authors to demonstrate that any sample 
exclusions were made for exogenous reasons. 
The baseline equivalence standards for group designs apply to the results from this 
analysis (see the WWC Standards Handbook, Chapter II). Specifically, if the impact for 
any covariate is greater than 0.25 standard deviations in absolute value (based on the 
variation of that characteristic in the pooled sample), this criterion is not satisfied. If the 
impact for a covariate is between 0.05 standard deviations and 0.25 standard deviations, 
the statistical model used to estimate the average treatment effect on the outcome must 
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include a statistical adjustment for that covariate to satisfy this criterion. Differences of 
less than or equal to 0.05 require no statistical adjustment. 
For dichotomous covariates, authors must provide the predicted mean covariate value 
(i.e., predicted probability) at the cutoff estimated using data from below the cutoff and 
the predicted probability at the cutoff estimated using data from above the cutoff. Both 
predicted probabilities must be calculated using the same statistical model that is used to 
estimate the impact on the covariate at the cutoff. These predicted probabilities are 
needed so that WWC reviewers can transform the impact estimate into standard 
deviation units. 
If the attrition standard is at least partially satisfied, then the equivalence criterion can be 
demonstrated using data not in the analytic sample, such as data from a different year, 
cohort, or site. However, all other requirements specified above apply (e.g., using an 
acceptable bandwidth and/or functional form, and excluding sample members only for 
clearly exogenous reasons). The leadership team, in consultation with content experts, 
has discretion to determine that the sample is too different from the context in the study 
sample to satisfy this criterion. 
If the attrition standard is not met, this analysis must be conducted using only subjects 
with non-missing values of the key outcome variable used in the study. Exogenous 
exclusions from that sample are allowed. For example, subjects outside of an acceptable 
bandwidth can be excluded. 
Criterion B. There must be no evidence, using graphical analyses, of a discontinuity in 
the outcome-forcing variable relationship at values of the forcing variable other than the 
cutoff value, unless a satisfactory explanation of such a discontinuity is provided. An 
example of a “satisfactory explanation” is that the discontinuity corresponds to some 
other known intervention that was also administered using the same forcing variable but 
with a different cutoff value. Another example could be a known structural property of 
the assignment variable; for example, if the assignment variable is a construct involving 
the aggregation of both continuous and discrete components. The graphical analysis 
(such as a scatter plot of the outcome and forcing variable using either the raw data or 
averaged/aggregated data within bins/intervals), must not show a discontinuity at any 
forcing variable value within the bandwidth (or, for the full sample if no bandwidth is 
used) that is larger than two times the standard error of the impact estimated at the cutoff 
value, unless a satisfactory explanation of that discontinuity is provided. (The standard 
error at the cutoff value is used because authors may not report the standard error at the 
point of the observed discontinuity).  
Criterion C. There must be no evidence, using statistical tests, of a discontinuity in the 
outcome-forcing variable relationship at values of the forcing variable other than the 
cutoff value, unless a satisfactory explanation of such a discontinuity is provided. The 
statistical tests must (1) use the same algorithm for selecting the bandwidth and/or 
functional form as was used to estimate the impact on the outcome, and (2) be conducted 
for at least four values of the forcing variable below the cutoff and four values above the 
cutoff (these values can be either within or outside the bandwidth). At least 95 percent of 
the estimated impacts on the outcome at other values of the forcing variable must be 
statistically insignificant at the 5 percent significance level. For example, if impacts are 
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estimated for 20 values of the forcing variable, at least 19 of them must be statistically 
insignificant.13 

A study completely satisfies this standard if Criteria A, B, and C are satisfied. 

A study partially satisfies this standard if Criterion A, and either Criteria B or C, are 
satisfied. 

A study does not satisfy this standard if Criterion A is not satisfied, or both Criteria B and C 
are not satisfied.  

Standard 4: Functional Form and Bandwidth  
Unlike with RCTs, statistical modeling plays a central role in estimating impacts in an RDD 

study. The most critical aspects of the statistical modeling are (1) the functional form 
specification of the relationship between the outcome variable and the forcing variable and (2) 
the appropriate range of forcing variable values used to select the analysis sample (i.e., the 
bandwidth around the cutoff value). Five criteria determine whether a study satisfies this 
standard. 

Criterion A. The local average treatment effect for an outcome must be estimated using 
a statistical model that controls for the forcing variable. For both bias and variance 
considerations, it is never acceptable to estimate an impact by comparing the mean 
outcomes of intervention and comparison group members without adjusting for the 
forcing variable (even if there is a weak relationship between the outcome and forcing 
variable).  
Criterion B. Ideally the study should use a local regression (either linear or quadratic) or 
related nonparametric approach in which impacts are estimated within a justified 
bandwidth, meaning a bandwidth selected using a systematic procedure that is described 
and supported in the methodological literature, such as cross-validation. For example, a 
bandwidth selection procedure described in an article published in a peer-reviewed 
journal that describes the procedure and demonstrates its effectiveness would be a 
justified bandwidth. An article published in an applied journal where the procedure 
happens to be used does not count as justification. (A study that does not use a justified 
bandwidth does not completely satisfy this standard, but could partially satisfy this 
standard if Criterion C is satisfied.) 
Criterion C. If the study does not use a local regression or related nonparametric 
approach or uses such an approach but not within a justified bandwidth, then it may 
estimate impacts using a “best fit” regression (using either the full sample or the sample 
within a bandwidth; the bandwidth does not need to be justified). For an impact estimate 
to meet this criterion, the functional form of the relationship between the outcome and 
forcing variable must be shown to be a better fit to the data than at least two other 
functional forms. Any measure of goodness of fit from the methodological literature can 
be used, such as the Akaike Information Criterion (AIC) or adjusted R-squared.  

13 If impacts are estimated for fewer than 20 values of the forcing variable, all of them must be statistically 
insignificant at the 5 percent significance level. 
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Criterion D. The study needs to provide evidence that the findings are robust to varying 
bandwidth or functional form choices. At least one of five types of evidence is sufficient 
to meet this criterion14:  
(1) In the case that Criterion B applies, the sign and significance of impact estimates 

must be the same for a total of at least two different justified bandwidths. For 
example, this criterion would be satisfied if the sign and significance of an impact 
are the same using a bandwidth selected by cross-validation15 and a bandwidth 
selected by the method described in Imbens and Kalyanaraman (2012). Two impact 
estimates are considered to have the same significance if they are both statistically 
significant at the 5 percent significance level, or if neither of them is statistically 
significant at the 5 percent significance level. Two impact estimates are considered 
to have the same sign if they are both positive, both negative, or if one is positive 
and one is negative but neither are statistically significant at the 5 percent 
significance level. 

(2) In the case that Criterion B applies, the sign and significance of impact estimates 
must be the same for at least one justified bandwidth and at least two additional 
bandwidths (that are not justified). 

(3) In the case that Criterion C applies, the sign and significance of impact estimates 
must be the same using a total of at least two different goodness-of-fit measures to 
select functional form. For example, this criterion would be satisfied if the impact 
corresponding to the functional form selected using the AIC is the same sign and 
significance as an impact corresponding to the functional form selected using the 
regression R-squared (note, both measures may select the same functional form). 

(4) In the case that Criterion C applies, the sign and significance of impact estimates 
must be the same for at least three different functional forms (including the “best 
fit” regression). 

(5) If the study meets both criteria B and C, then the sign and significance of impact 
estimates must be the same for the impact estimated within a justified bandwidth 
and the impact estimated using a “best fit” regression. 

Criterion E. The report must include a graphical analysis displaying the relationship 
between the outcome and forcing variable, including a scatter plot (using either the raw 
data or averaged/aggregated data within bins/intervals) and a fitted curve. The display 
cannot be obviously inconsistent with the choice of bandwidth and the functional form 
specification for the analysis. Specifically, (a) if the study uses a particular functional 
form for the outcome-forcing variable relationship, then the study must show graphically 
that this functional form fits the scatter plot reasonably well, and (b) if the study uses a 

14 If a study presents more than one type of evidence, and one type shows findings are robust while another type 
does not, then this criterion is still satisfied. That is, studies are not penalized for conducting more sensitivity 
analyses.  
15 An implementation of cross-validation for RDD analysis is described in Imbens and Lemieux (2008). 

63 

                                                           



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

local linear regression, then the scatter plot must show that the outcome-forcing variable 
relationship is indeed reasonably linear within the chosen bandwidth.  
Criterion F. The relationship between the forcing variable and the outcome must not be 
constrained to be the same on both sides of the cutoff.  

A study completely satisfies this standard if Criteria A, B, D, E, and F are satisfied. 

A study partially satisfies this standard if Criteria A, B or C, and E are satisfied. 

A study does not satisfy this standard if either Criterion A or Criterion E is not satisfied or 
if both Criteria B and C are not satisfied. 

Standard 5: Fuzzy Regression Discontinuity Design (FRDD) 
In a sharp RDD, all intervention group members receive intervention services and no 

comparison group members receive services. In a FRDD, some intervention group members do 
not receive intervention services or some comparison group members receive embargoed 
services, but there is still a substantial discontinuity in the probability of receiving services at the 
cutoff. In an FRDD analysis, the impact of service receipt is calculated as a ratio. The numerator 
of the ratio is the RDD impact on an outcome of interest. The denominator is the RDD impact on 
the probability of receiving services. This analysis is typically conducted using either two stage 
least squares (2SLS) or a Wald estimator. FRDD analysis is analogous to a complier average 
causal effect (CACE) or local average treatment effect (LATE) analysis—consequently many 
aspects of this standard are analogous to the WWC standards for CACE analysis in the context of 
RCTs.  

The internal validity of an FRDD estimate depends primarily on three conditions. The first 
condition, known as the exclusion restriction, requires that the only channel through which 
assignment to the intervention or comparison groups can influence outcomes is by affecting take-
up of the intervention being studied (Angrist, Imbens, & Rubin, 1996). When this condition does 
not hold, group differences in outcomes would be attributed to the effects of taking up the 
intervention when they may be attributable to other factors differing between the intervention 
and comparison groups. The exclusion restriction cannot be completely verified, as it is 
impossible to determine whether the effects of assignment on outcomes are mediated through 
unobserved channels. However, it is possible to identify clear violations of the exclusion 
restriction—in particular, situations in which groups face different circumstances beyond their 
differing take-up of the intervention of interest. 
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The second condition is that the discontinuity in the probability of receiving services at the 
cutoff is large enough to limit the influence of finite sample bias. The FRDD scenario can be 
interpreted as an instrumental variables (IV) model in which falling above or below the cutoff is 
an instrument for receiving intervention services (the participation indicator). IV estimators will 
be subject to finite sample bias if there is not a substantial difference in service receipt on either 
side of the cutoff; that is, if the instrument is “weak” (Stock & Yogo, 2005). FRDD impacts need 
not be estimated using 2SLS methods (e.g., they can be estimated using Wald estimators), but 
authors must run the first stage regression (of the participation indicator on the indicator for 
being above or below the cutoff and the forcing variable) and provide either the F-statistic or the 
t-statistic from this regression.  

The third condition is that two relationships are modeled appropriately: (1) the relationship 
between the forcing variable and the outcome of interest (Standard 4) and (2) the relationship 
between the forcing variable and receipt of services. Ideally, the FRDD impact would be 
estimated using a justified bandwidth and functional form, where justification is focused on the 
overall FRDD impact, not just the numerator or denominator separately. There are methods in 
the literature for selecting a justified bandwidth that targets the ratio (e.g., Imbens & 
Kalyanaraman, 2012; Calonico, Cattaneo, & Titiunik, 2014). However, in practice authors often 
use the bandwidth for the numerator of the FRDD, which is consistent with advice from Imbens 
and Kalyanaraman (2012).16 

Eight criteria determine whether a study satisfies this standard. All eight criteria are waived 
for impact estimates calculated using a reduced form model (in which the outcome is modeled as 
a function of the forcing variable, an indicator for being above or below the cutoff, and possibly 
other covariates, but the participation indicator is not included in the model). This type of model 
is analogous to an intent-to-treat (ITT) analysis in the context of RCTs.17 

Criterion A. The participation indicator must be a binary indicator for taking up at least 
a portion of the intervention (e.g., it could be a binary indicator for receiving any 
positive dosage of the intervention).  
Criterion B. The estimation model must have exactly one participation indicator.  
Criterion C. The indicator for being above or below the cutoff must be a binary 
indicator for the groups (intervention and comparison) to which subjects are assigned.  
Criterion D. The same covariates (one of which must be the forcing variable) must be 
included in (1) the analysis that estimates the impact on participation and (2) the analysis 

16 On p. 14, the authors write “In practice, this often leads to bandwidth choices similar to those based on the 
optimal bandwidth for estimation of only the numerator of the RD estimate. One may therefore simply wish to use 
the basic algorithm ignoring the fact that the regression discontinuity design is fuzzy.” 
17 An important consideration when interpreting and applying these standards is that they are focused on the causal 
validity of impact estimates, not on appropriate interpretation of impact estimates. While the reduced form impact 
estimate may be a valid estimate of the effect of being below (or above) the RDD cutoff, interpreting that impact can 
be challenging in some contexts. In particular, while the reduced form RDD impact is methodologically analogous 
to the ITT impact from an RCT, the substantive interpretation can be entirely different. Addressing these interpretive 
issues is beyond the scope of these standards but we urge users of these standards to think carefully about 
interpretation.  
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that estimates the impact on outcomes. In the case of 2SLS estimation, this means that 
the same covariates must be used in the first and second stages.  
Criterion E. To satisfy this criterion, an FRDD estimate must have no clear violations 
of the exclusion restriction. Defining participation inconsistently between the assigned 
intervention and assigned comparison groups would constitute a clear violation of the 
exclusion restriction. Therefore, the study must report a definition of take-up that is the 
same across assigned groups. Another violation of the exclusion restriction is the 
scenario in which assignment to the intervention group changes the behavior of subjects 
even if they do not take up the intervention itself. In this case, the treatment assignment 
might have effects on outcomes though channels other than the take-up rate. There must 
be no clear evidence that assignment to the intervention influenced the outcomes of 
subjects through channels other than take-up of the intervention.  
Criterion F. The study must provide evidence that the forcing variable is a strong 
predictor of participation in the intervention. In a regression of program participation on 
a treatment indicator and other covariates, the coefficient on the treatment indicator must 
report a minimum F-statistic of 16 or a minimum t-statistic of 4.18 For FRDD studies 
with more than one indicator for being above or below the cutoff, see the WWC Group 
Design Standards for RCTs that report CACE estimates for the minimum required first-
stage F-statistic. 
Criterion G. The study must use a local regression or related nonparametric approach in 
which FRDD impacts are estimated within a justified bandwidth, meaning a bandwidth 
selected using a systematic procedure that is described and supported in the 
methodological literature. Ideally, this method would be justified for the FRDD impact 
estimate, not just the numerator of the FRDD estimate. However, two other approaches 
are acceptable. First, it is acceptable to use separate bandwidths for the numerator and 
denominator, if both are selected using a justified approach (for example, the IK 
algorithm applied separately to the numerator and denominator). Second, it is acceptable 
to use the bandwidth selected for the numerator if that bandwidth is smaller than (or 
equal to) a justified bandwidth selected for the denominator. 
Criterion H. If Criterion G is not met, the study can still partially satisfy the standard by 
satisfying this criterion. This criterion is satisfied if the FRDD impact is estimated using 
a bandwidth that is only justified for the numerator (even if it is larger than a bandwidth 
justified for the denominator). This criterion is also satisfied if the denominator is 
estimated using a “best fit” functional form. That is, the functional form of the 
relationship between program receipt and the forcing variable must be shown to be a 
better fit to the data than at least two other functional forms. Any measure of goodness 

18 Stock and Yogo (2005). The F-statistic must be for the instrument only—not the F-statistic for the entire first 
stage regression. If the unit of assignment does not equal the unit of analysis, the F-statistic (or t-statistic) must 
account for clustering using an appropriate method (such as boot-strapping, hierarchical linear modeling [HLM], or 
the method proposed in Lee & Card, 2008). Also, a working paper by Marmer, Fier, & Lemieux (2014) suggests 
that in the FRDD context, the minimum first-stage F-statistic that ensures asymptotic validity of a 5 percent two-
sided test is much higher than would be required in a simple IV setting (specifically, they suggest 135). Until a 
published paper provides an F-statistic cutoff that is appropriate for FRDD studies that use a justified bandwidth, the 
F-statistic of 16 will be used as the interim criterion for assessing instrument strength.  
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of fit from the methodological literature can be used, such as the AIC or adjusted R-
squared. 

A study completely satisfies this standard if Criteria A–G are satisfied.  

A study partially satisfies this standard if Criteria A–F and Criterion H are satisfied. 

A study does not satisfy this standard if any of the following Criteria are not satisfied: A–F, 
or H. 

D. Applying Standards to Studies that Report Multiple Impact Estimates 
Some RDD studies report multiple separate impacts, for example impacts for different 

outcomes or subgroups of interest. Each of the standards described above will be applied to each 
outcome-subgroup combination, resulting in a separate rating for each combination. The overall 
rating for the study will be the highest rating attained by any outcome-subgroup combination, 
and will apply to only the combination(s) with that rating. In Section E, we address the special 
case of impacts that are pooled or aggregated across multiple combinations of forcing variables, 
cutoffs, and samples.  

E. Applying Standards to Studies That Involve Aggregate or Pooled Impacts  
Some RDD studies may report pooled or aggregate impacts for some combinations of 

forcing variables, cutoffs, and samples. By “pooled impact”, we mean that data from each 
combination of forcing variable, cutoff, and sample are standardized and grouped into a single 
data set for which a single impact is calculated. By “aggregate impact”, we mean a weighted 
average of impacts that are calculated separately for every combination of forcing variable, 
cutoff, and sample.  

The overall rating for the study will be the highest rated impact (including pooled and 
aggregate impacts) presented. Authors may improve the rating of a pooled or aggregate impact 
by excluding combinations of forcing variables, cutoffs, and samples that do not meet WWC 
RDD standards for reasons that are clearly exogenous to intervention participation. For example, 
in a multi-site study, a site that fails the institutional check for manipulation could be excluded 
from the aggregate impact, resulting in a higher rating for the aggregate impact. However, 
potentially endogenous exclusions—those potentially influenced by the intervention—will not 
improve the rating of an aggregate impact because standards will be applied as if those 
exclusions were not made. For example, excluding sites that have a high differential attrition rate 
from an aggregate impact will not improve the rating of that impact because for the purpose of 
applying the attrition standard, we will include those sites. The burden of proof falls on the 
authors to demonstrate that any exclusions from the aggregate impact were made for exogenous 
reasons.  

For each impact that is based on a single forcing variable, cutoff, and sample, the standards 
can be directly applied as stated in Section C.  

For pooled or aggregate impacts that are based on multiple forcing variables, cutoffs, or 
samples, additional guidance for applying the standards is provided here. 
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Standard 1: Integrity of the Forcing Variable 
Criterion A. If the institutional integrity of the forcing variable is not satisfied for any 
combination of forcing variable, cutoff, and sample that are included in a pooled or 
aggregate impact, then this criterion is not satisfied for that pooled or aggregate impact. 
However, it is permissible to exclude from a pooled or aggregate impact cases that do 
not satisfy this criterion. For example, if a pooled or aggregate impact is estimated using 
data from five sites, and the institutional integrity of the forcing variable is not satisfied 
in one of those five sites, then the pooled or aggregate impact does not satisfy this 
criterion. However, a pooled or aggregate impact estimated using data from only the four 
sites for which the institutional integrity of the forcing variable is satisfied would satisfy 
this criterion.  
Criterion B. For an aggregate or a pooled impact this criterion is satisfied if it is 
satisfied for every unique combination of forcing variable, cutoff, and sample that 
contributes to the pooled or aggregate impact. In the case of a pooled impact, applying 
an appropriate statistical test to the pooled data can also satisfy this criterion. It is 
permissible to exclude from a pooled or aggregate impact cases that do not satisfy this 
criterion. 
Criterion C. For an aggregate or a pooled impact this criterion is satisfied if it is 
satisfied for every unique combination of forcing variable, cutoff, and sample that 
contributes to the pooled or aggregate impact. In the case of a pooled impact, providing a 
single figure based on the pooled data can also satisfy this criterion. It is permissible to 
exclude from a pooled or aggregate impact cases that do not satisfy this criterion. 

Standard 2: Attrition 
In the case of a pooled impact, the attrition standard described in Section C can be applied 

directly if the authors calculate and report overall and differential attrition using the pooled 
sample. Any sample excluded for endogenous reasons (i.e., potentially influenced by the 
intervention) from calculating the pooled or aggregate impact cannot be excluded from the 
attrition calculation. 

In the case of an aggregate impact, the WWC attrition standard can be applied to the overall 
and differential attrition rates calculated as weighted averages of the overall and differential rates 
calculated for each unique combination of forcing variable, cutoff, and sample that contribute to 
the aggregate impact. Authors must calculate overall and differential attrition for each of those 
unique combinations in a way that is consistent with the standard described in Section C, and the 
weights used in aggregation must be the same weights used to calculate the weighted impact 
being reviewed. The attrition standard described in Section C is then applied to the combination 
of overall and differential attrition based on the weighted average.  

Standard 3: Continuity of the Relationship Between the Outcome and the Forcing Variable 
Criterion A. In the case of a pooled impact, this criterion can be applied as described in 
Section C without modification. In the case of an aggregate impact, baseline equivalence 
can be established by applying the same aggregation approach to the impacts on baseline 
covariates as is used to aggregate impacts on outcomes.  
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Criterion B. In the case of a pooled impact, this criterion can be applied as described in 
Section C without modification. In the case of an aggregate impact, the requirements for 
this criterion must be applied cumulatively across all combinations of forcing variables, 
cutoffs, and samples. Specifically, there must not be evidence of a discontinuity larger 
than twice the standard error of the impact at any non-cutoff value within the bandwidth 
of any forcing variable for any sample (this means that a graphical analysis must be 
presented for every combination of forcing variable, cutoff, and sample). In cases where 
impacts from disjoint (non-overlapping) samples are being aggregated, it is acceptable to 
exclude from the aggregate impact any impacts from samples that do not satisfy this 
criterion (such an exclusion is considered exogenous).  
Criterion C. In the case of a pooled impact, this criterion can be applied as described in 
Section C without modification. In the case of an aggregate impact, the requirements for 
this criterion must be applied cumulatively across all combinations of forcing variables, 
cutoffs, and samples. That is, at least 95 percent of estimated impacts at values of the 
forcing variables other than the cutoffs (across all samples) must be statistically 
insignificant. In cases where impacts from disjoint (non-overlapping) samples are being 
aggregated, it is acceptable to exclude from the aggregate impact any impacts from 
samples that do not satisfy this criterion (such an exclusion is considered exogenous). 

Standard 4: Functional Form and Bandwidth  
In the case of a pooled impact, this standard can be applied as described in Section C 

without modification. 

In the case of an aggregate impact, Criteria A, B, C, E, and F of this standard must be 
applied to every impact included in the aggregate. Any impacts excluded from the aggregate 
because they do not satisfy one of those criteria will be treated as attrition. The aggregate impact 
will receive the lowest rating from among all of these impacts.  

Criterion D can just be applied to the aggregate impact. That is, it is sufficient to 
demonstrate robustness of the aggregate impact—it is not necessary to show robustness of every 
impact included in the aggregate (although showing robustness for every individual impact is 
also acceptable).  

Standard 5: Fuzzy Regression Discontinuity Design (FRDD) 
In the case of a pooled impact, this standard can be applied as described in Section C 

without modification. 

In the case of an aggregate impact, this standard must be applied to every impact included in 
the aggregate. Any impacts excluded from the aggregate will be treated as attrition, with two 
exceptions—impacts may be excluded if they do not meet Criterion E or F. The aggregate impact 
will receive the lowest rating from among all of these impacts.  

F.  Reporting Requirement for Studies with Clustered Sample 
As is the case in RCTs, clusters of students (e.g., schools, classrooms, or any other group of 

multiple individuals that have the same value of the assignment variable) might be assigned to 
intervention and comparison groups. Clustering affects standard errors but does not lead to 
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biased impact estimates, so if study authors do not appropriately account for the clustering of 
students, a study can still meet WWC RDD standards if it satisfies the standards described 
above. However, because the statistical significance of findings is used for the rating of the 
effectiveness of an intervention, when observations are clustered into groups and the unit of 
assignment (the cluster) differs from the unit of analysis (the individual), study authors must 
account for clustering using an appropriate method (such as boot-strapping, HLM, or the method 
proposed in Lee & Card, 2008) in order for findings reported by the author to be included in the 
rating of effectiveness. If the authors do not account for clustering, then the WWC will not rely 
on the statistical significance of the findings from the study. However, the findings can still be 
included as “substantively important” if the effect size is 0.25 standard deviations or greater.  

G.  Reporting Requirement for Dichotomous Outcomes 
For dichotomous outcomes, study authors must provide the predicted mean outcome (i.e., 

predicted probability) at the cutoff estimated using data from below the cutoff and the predicted 
probability at the cutoff estimated using data from above the cutoff. Both predicted probabilities 
must be calculated using the same statistical model that is used to estimate the impact on the 
outcome at the cutoff. These predicted probabilities are needed in order for findings reported by 
the author for those outcomes to be included in the rating of effectiveness. 
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IV. NON-DESIGN COMPONENTS 

In addition to the standards for reviewing eligible studies presented above, two other 
components may affect a study’s rating: outcome requirements and confounding factors.  

A. Outcome Requirements and Reporting 
For a finding to be eligible to meet WWC group design standards, it must measure the effect 

of an intervention on an outcome measure that (a) demonstrates face validity, (b) demonstrates 
reliability, (c) is not overaligned with the intervention, and (d) is collected in the same manner 
for both intervention and comparison groups. Standardized tests, in which the same test is given 
in the same manner to all test takers, are assumed to have face validity and be reliable. 
Additionally, behavior outcomes measured using administrative data, such as graduation from 
high school, school enrollment, and grade retention, are assumed to be reliable because these 
outcomes are straightforward to measure. Grade point average is also assumed to be reliable if a 
formula for calculating the measure is specified. Findings based on outcome measures that do 
not meet all four of these requirements are rated Does Not Meet WWC Group Design Standards. 

In addition to these four requirements, a study that analyzes imputed outcome data must 
show that it limits the potential bias from analyzing the imputed outcome data under different 
assumptions about how the missing data are related to measured or unmeasured factors, as 
described in Section C of Chapter II. A study that uses non-response weights must also satisfy 
this requirement. The study must use an acceptable approach (listed in Section C of Chapter II) 
to address missing data in the analytic sample for the study to be eligible to be rated Meets WWC 
Group Design Standards With or Without Reservations. 

Face validity  
To show evidence of face validity, a sufficient description of the outcome measure must be 

provided for the WWC to determine that the measure is clearly defined, and the content assessed 
by the measure aligns with its definition. A measure described as a test of reading 
comprehension that actually measures reading fluency does not have face validity.  

Reliability  
The reliability requirements aim to set standards for maximum allowable random 

measurement error, with higher reliability indicating lower measurement error. Internal 
consistency and test-retest reliability can capture measurement error that results from poor 
question wording, for example, while inter-rater reliability can capture measurement error that 
results from coder judgment. Although this random error does not create bias, the error reduces 
precision and the likelihood of detecting an impact if one actually exists. 

Reliability of an outcome measure may be established by meeting the following minimum 
standards: (a) internal consistency (such as Cronbach’s alpha) of 0.50 or higher; (b) temporal 
stability/test-retest reliability of 0.40 or higher; or (c) inter-rater reliability (such as percentage 
agreement, correlation, or kappa) of 0.50 or higher. The protocol for a review may specify higher 
standards for assessing reliability. 
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The WWC accepts out-of-sample reliability statistics unless review team leadership 
determines the study sample is too dissimilar from the sample used to measure reliability. When 
a study does not report reliability statistics for an outcome measure, the WWC will ask the study 
authors to provide a statistic. The WWC will also use previously-gathered information about 
reliability of outcomes that are used across studies.   

The protocol may also stipulate how to deal with outcome measures that are unlikely to 
provide reliability information. For example, without quantitatively meeting one of the three 
reliability standards listed above, an outcome measure may still be deemed reliable if the content 
expert or lead methodologist for a review determine that responses can be scored by a single 
coder with low error (e.g., a multiple choice test or counts of words spelled correctly). The 
protocol specifies whether these outcome measures can meet the reliability requirement.  

Overalignment 
A third requirement of outcome measures is that they not be overaligned with the 

intervention. An outcome measure is overaligned if it contains content or materials provided to 
subjects in one condition, but not the other. When outcome measures are closely aligned with or 
tailored to the intervention, the study findings may not be an accurate indication of the effect of 
the intervention. For example, an outcome measure based on an assessment that relied on 
materials used in the intervention condition but not in the comparison condition (e.g., specific 
reading passages or vocabulary words) likely would be judged to be overaligned.  

This rule does not apply when material covered by an outcome measure must be explicitly 
taught. For example, reciting the alphabet requires being taught the alphabet, but improving 
vocabulary skills does not require focusing on a specific set of words. Put another way, an 
outcome measure is only overaligned when the content or materials provided to subjects in a 
single condition might affect scores on the measure through gaming of the outcome measure, 
familiarity with the format, or other means besides learning educationally relevant material.  

The decision about whether a measure is overaligned is made by the review team leadership. 
In particular, content experts can provide guidance on whether the content assessed in a 
particular outcome measure is broadly educationally relevant, and thus, not overaligned.  

Outcome collection 
A fourth requirement of outcome measures is that they be collected in the same manner for 

the intervention and comparison groups. The WWC assumes data were collected in the same 
manner if no information is provided. However, reviewers look for comments in studies that (a) 
different modes, timing, or personnel were used for the groups, or (b) measures were constructed 
differently for the groups. Reviewers may send questions to authors to clarify how data were 
collected. When outcome data are collected differently for the intervention and comparison 
groups, study-reported impact estimates will confound differences due to the intervention with 
those due to differences in the data collection methods. For example, measuring dropout rates 
based on program records for the intervention group and school administrative records for the 
comparison group will result in unreliable impact estimates, because it will not be possible to 
disentangle the true impact of the intervention from differences in the dropout rates that are due 
to the particular measure used. Additionally, when intervention and comparison students are in 
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different districts, grade point average might be calculated differently or be based on different 
courses in the two groups. If so it will not be possible to disentangle the impact of the 
intervention from differences in how the outcome is measured. 

B. Confounding Factors 
In some studies, a component of the study design or the circumstances under which the 

intervention was implemented are perfectly aligned, or confounded, with either the intervention 
or comparison group. That is, some factor is present for members of only one group and absent 
for all members in the other group. Because it is impossible to separate the degree to which an 
observed effect was due to the intervention and how much was due to the confounding factor, a 
study with a confounding factor cannot meet WWC standards. In QED studies, confounding is 
almost always a potential issue due to the selection of a sample, because some unobserved 
factors may have contributed to the outcome. The WWC accounts for this issue by not allowing 
a QED study to receive the highest rating. 

WWC reviewers must decide whether there is sufficient information to determine that the 
only difference between the two groups that is not controlled for by design or analysis is the 
presence of the intervention. If not, there may a confounding factor, and the reviewer must 
determine if that factor could affect the outcome separately from the intervention. However, the 
WWC never presumes the presence of a confounding factor. A specific factor that is aligned with 
the intervention or comparison condition must be identified based on evidence in the study or 
obtained from an author query. 

This section describes three types of confounding factors: (a) the intervention or comparison 
group contains a single unit (n = 1), (b) the characteristics of the subjects in the intervention or 
comparison group differ systematically (with no overlap) in ways that are associated with the 
outcomes, and (c) the intervention is always offered in combination with another intervention 
and the combined intervention is ineligible for review based on the review protocol and the 
purpose of the review. Under most review protocols, the WWC will consider studies with the 
third type of confounding factor as a reason to screen the study out as ineligible (because the 
study does not examine an intervention with a primary focus aligned with the review protocol), 
rather than a reason to assign a rating of Does Not Meet WWC Group Design Standards. In 
particular, if a review effort is interested in a specific intervention, and that intervention is 
combined with another intervention, the study will not be reviewed for that particular review 
effort. As it can sometimes be difficult to determine whether something is a confounding factor, 
the examples below describe situations that are and are not confounding factors for each of the 
three categories. 

The intervention or comparison group contains a single unit (n = 1). 

The most common type of confounding factor occurs when either the intervention or 
comparison group contains a single study unit (such as a teacher, classroom, or school) and that 
unit is not present in the other condition. In these situations, there is no way to distinguish 
between the effect of the intervention and that unit.  
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• Examples of confounding factors 
o Two schools are randomly assigned, one to each condition. 

o A study has two intervention classrooms and two comparison classrooms, but 
both intervention classrooms had the same teacher, who had no interaction with 
the comparison classrooms.  

• Examples of similar circumstances that are not confounding factors 
o Students are randomly assigned to condition and are all taught by the same 

teacher in the same school. The WWC does not consider this to be a confounding 
factor because the same teacher taught both conditions. 

o Schools from three school districts are randomly assigned to condition. Two of 
the districts have schools that are represented in both conditions, but all schools 
in the third district were assigned to a single group. The WWC does not consider 
this to be a confounding factor because two districts are represented in both 
groups. 

o A school with unique organization and governance is compared to multiple 
comparison schools. When the intervention of interest is attending the school, the 
WWC does not consider this to be a confounding factor because the school and 
the intervention are the same. However, when the focus of the review is a 
particular intervention implemented within the school, then the single school 
would be considered a confounding factor because the effect of the school cannot 
be distinguished from the effect of the intervention of interest. Additionally, a 
single school is not a replicable intervention, so if the review protocol states that 
eligible interventions must be replicable, the single school would be a 
confounding factor. 

The characteristics of the subjects in the intervention or comparison group differ systematically 
(with no overlap) in ways that are associated with the outcomes. 

Another example of confounding occurs when the characteristics of the subjects in each 
group differ systematically in ways that are associated with the outcomes. For example, a small 
group of teachers in a master’s program implements the intervention, whereas students in the 
comparison group are taught by teachers with bachelor’s degrees. If the teachers’ education is 
not a component of the intervention—that is, the intervention does not specify that only masters-
level teachers can lead the intervention—then it is a potential confounding factor. In this case, 
differences in student outcomes between the intervention and comparison groups may be due to 
the intervention, the higher level of education of the intervention group teachers, or a 
combination of the two.  

When the time period differs for the groups, time is a confounding factor. A design in which 
groups are defined by cohort is often labeled a successive-cohort design or cohort design. As an 
example, an intervention group consists of a cohort of third graders in year Y and the comparison 
group consists of the previous cohort of third graders in year Y-1. Usually both cohorts are 
observed in one school or the same set of schools. In this cohort design, the intervention and 
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comparison conditions are completely aligned with different time periods, and the estimated 
impact is confounded with any changes that occur between those time periods. These changes 
(e.g., new district policies, new personnel, or new state tests) could plausibly affect outcomes. 
Because many of the changes that occur over time are likely to be unobserved or not reported, 
the WWC cannot assess how problematic the potential changes are in individual studies.  

When there is imperfect overlap in the characteristic between the conditions, this is not a 
confounding factor. Instead, these situations should be addressed through the usual baseline 
equivalence requirements specified in the review protocol. 

• Examples of confounding factors 
o Intervention students were fifth-grade students during the 2014–15 school year, 

and comparison students were fifth-grade students enrolled in the same school 
during the 2013–14 school year. 

o Intervention students are all in grade 8, and comparison students are all in grade 
7. 

o Intervention students are all English learners, and no comparison students are. 

• Examples of similar circumstances that are not confounding factors 
o Students volunteer to enroll in two different types of mathematics courses: one 

uses a novel group-based approach (the intervention condition), and one uses a 
more traditional teacher-directed style (the comparison condition). Some 
characteristics of students who volunteered for the intervention condition may 
differ from those who volunteered for the comparison condition (e.g., more 
extroverted students select the group-based program, and more introverted 
students select the teacher-directed style), but these are not measured by the 
researcher. The WWC does not consider this to be a confounding factor, but the 
selection mechanism and potential difference in unmeasured characteristics are 
reasons that QEDs are limited to a rating of Meets WWC Group Design 
Standards With Reservations, if the baseline equivalence requirement is satisfied 
on baseline characteristics specified in the review protocol.  

o Classrooms in the intervention condition have much lower rates of students who 
are eligible for free or reduced-price lunch, compared to those in the comparison 
condition. The WWC does not consider this to be a confounding factor because 
there is some overlap in the characteristic between the groups. However, under 
some review protocols, this difference could be a characteristic on which 
equivalence must be assessed. 

The intervention is always offered in combination with a second intervention and the combined 
intervention is ineligible for review according to the review protocol and the purpose of the 
review. 

A confounding factor also exists if an intervention is always offered in combination with a 
second intervention, because any subsequent differences in outcomes cannot be attributed solely 
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to either intervention. However, if both interventions are individually eligible for review under 
the same review protocol, the WWC may view the combination as a single intervention and 
report on its effects. Additionally, whereas studies with other types of confounding factors are 
considered eligible for review, but do not meet standards, a study with this type of confounding 
factor is typically ruled ineligible (and not assigned a rating) because it does not examine an 
intervention with a primary focus aligned with the review protocol. 

• Example of a confounding factor 
o The focus of the review is a specific software program. Students in the 

intervention condition were exposed to two software programs (the software 
program that is the focus of the review and an additional program), but students 
in the comparison condition were not exposed to either software program. 

• Example of a similar circumstance that is not a confounding factor 
o The focus of the review is a specific software program. At the same time, 

everyone in the school is exposed to a second software program, including all 
intervention and comparison students. The WWC does not consider this to be a 
confounding factor because all students received the second program, so the only 
difference between the two groups is the software program of interest. 
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In 2009, the WWC convened a panel of experts to draft a pilot version of review standards 
for studies using a single-case design (SCD) approach. This appendix contains an updated 
version of the pilot standards developed by this panel that were released in June 2010. As of the 
publication of this Handbook, the WWC standards for SCDs are applied only to judge evidence 
from individual studies. The WWC has not determined whether or how findings from SCD 
studies will be incorporated into reports that combine findings across studies.19 

These standards are intended to guide WWC reviewers in identifying and evaluating SCDs. 
If a study is an eligible SCD, it is reviewed using the study rating criteria to determine whether it 
receives a rating of Meets WWC Pilot SCD Standards Without Reservations, Meets WWC Pilot 
SCD Standards With Reservations, or Does Not Meet WWC Pilot SCD Standards. A study that 
meets standards is then reviewed using visual analysis to determine whether it provides Strong 
Evidence of a Causal Relation, Moderate Evidence of a Causal Relation, or No Evidence of a 
Causal Relation for each outcome.20 For studies that provide strong or moderate evidence of a 
causal relation, an effect size is calculated. 

SCDs are identified by the following features: 

• An individual case is the unit of intervention administration and data analysis. A case 
may be a single participant or a cluster of participants (e.g., a classroom or community). 

• Within the design, the case can provide its own control for purposes of comparison. For 
example, the case’s series of outcome variables prior to the intervention is compared 
with the series of outcome variables during (and after) the intervention. 

• The outcome variable is measured repeatedly within and across different conditions or 
levels of the independent variable. These different conditions are referred to as phases 
(e.g., first baseline phase, first intervention phase, second baseline phase, and second 
intervention phase).21 

The standards for SCDs apply to a wide range of designs, including ABAB designs, multiple 
baseline designs, alternating and simultaneous intervention designs, changing criterion designs, 
and variations of these core designs like multiple probe designs. Even though SCDs can be 
augmented by including one or more independent comparison cases (i.e., a comparison group), 

19 The WWC is working with SCD experts to determine the best way to present single-case findings, both alone and 
in conjunction with group design findings. 
20 This process results in a categorization scheme that is similar to that used for evaluating evidence credibility by 
inferential statistical techniques (hypothesis testing, effect size estimation, and confidence interval construction) in 
traditional group designs.  
21 In SCDs, the ratio of data points (measures) to the number of cases is usually large so as to distinguish SCDs from 
other longitudinal designs (e.g., traditional pretest/posttest and general repeated-measures designs). Although 
specific prescriptive and proscriptive statements would be difficult to provide here, what can be stated is that 
(1) parametric univariate repeated-measures analysis cannot be performed when there is only one experimental case; 
(2) parametric multivariate repeated-measures analysis cannot be performed when the number of cases is less than 
or equal to the number of measures; and (3) for both parametric univariate and multivariate repeated-measures 
analysis, standard large sample (represented here by large numbers of cases) statistical theory assumptions must be 
satisfied for the analyses to be credible (also see Kratochwill & Levin, 2010). 
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in this document, the standards address only the core SCDs and are not applicable to the 
augmented independent comparison SCDs. 

A. Determining a Study Rating 
If the study appears to be an SCD, the following rules are used to determine whether the 

study’s design Meets WWC Pilot SCD Standards Without Reservations, Meets WWC Pilot SCD 
Standards With Reservations, or Does Not Meet WWC Pilot SCD Standards. In order to meet 
standards, the following design criteria must be present (illustrated in Figure A.1): 

• The independent variable (i.e., the intervention) must be systematically manipulated, 
with the researcher determining when and how the independent variable conditions 
change. 

• For each case, the outcome variable must be measured systematically over time by more 
than one assessor. The design needs to collect inter-assessor agreement in each phase 
and at least 20% of the data points in each condition (e.g., baseline, intervention), and 
the inter-assessor agreement must meet minimal thresholds.22 Inter-assessor agreement 
(commonly called inter-observer agreement) must be documented on the basis of a 
statistical measure of assessor consistency. Although there are more than 20 statistical 
measures to represent inter-assessor agreement (e.g., Berk, 1979; Suen & Ary, 1989), 
commonly used measures include percentage agreement (or proportional agreement) and 
Cohen’s kappa coefficient (Hartmann, Barrios, & Wood, 2004). According to Hartmann 
et al. (2004), minimum acceptable values of inter-assessor agreement range from 0.80 to 
0.90 (on average) if measured by percentage agreement and at least 0.60 if measured by 
Cohen’s kappa. 

• The study must include at least three attempts to demonstrate an intervention effect at 
three different points in time.23 The three demonstrations criterion is based on 
professional convention (Horner, Swaminathan, Sugai, & Smolkowski, 2012). More 
demonstrations further increase confidence in experimental control (Kratochwill & 
Levin, 2010). 

22 Study designs where 20 percent of the total data points include inter-assessor agreement data, but where it is not 
clear from the study text that 20 percent of the data points in each condition include inter-assessor agreement data, 
are determined to meet this design criterion, although the lack of full information will be documented. If the topic 
area team leadership determines that there are further exceptions to this standard, they will be specified in the topic 
area or practice guide protocol. These determinations are based on content knowledge of the outcome variable. 
23 Although atypical, there might be circumstances in which designs without three replications meet the standards. A 
case must be made by the topic area team leadership based on content expertise, and at least two WWC reviewers 
must agree with this decision. 
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Figure A.1. Study Rating Determinants for SCDs 

Independent Variable
The independent variable is systematically manipulated, with the researcher 

determining when and how the independent variable conditions change.

Inter-Assessor Agreement 
Each outcome is measured over time by more than one assessor, with inter-assessor agreement  

collected in each phase and in 20% of data points in each condition and that meets minimal 
thresholds.

Reversal/ 
Withdrawal 
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• Phases must meet criteria involving the number of data points to qualify as an attempt to 
demonstrate an effect.24 
 Reversal/withdrawal (AB). Must have a minimum of four phases per case with at 

least five data points per phase to be rated Meets WWC Pilot SCD Standards 
Without Reservations. Must have a minimum of four phases per case with at least 
three data points per phase to be rated Meets WWC Pilot SCD Standards With 
Reservations. Any phases based on fewer than three data points cannot be used to 
demonstrate the existence or lack of an effect. 

 Multiple baseline and multiple probe. Must have a minimum of six phases with at 
least five data points per phase to be rated Meets WWC Pilot SCD Standards 
Without Reservations. Must have a minimum of six phases with at least three data 
points per phase to be rated Meets Pilot SCD Standards With Reservations. Any 
phases based on fewer than three data points cannot be used to demonstrate the 
existence or lack of an effect. Both designs implicitly require some degree of 
concurrence in the timing of their implementation across cases when the 
intervention is being introduced. Otherwise, these designs cannot be distinguished 
from a series of separate AB designs. 

 Alternating treatment. Must have a minimum of five data points per condition (e.g., 
baseline, intervention) and at most two data points per phase to be rated Meets 
WWC Pilot SCD Standards Without Reservations. Must have four data points per 
condition and at most two data points per phase to be rated Meets WWC Pilot SCD 
Standards With Reservations. Any phases based on more than two data points 
cannot be used to demonstrate the existence or lack of an effect because the design 
features rapid alternations between phases. When designs include multiple 
intervention comparisons (e.g., A versus B, A versus C, C versus B), each 
intervention comparison is rated separately. 

Failure to meet any of these results in a study rating of Does Not Meet WWC Pilot SCD 
Standards. Multiple probe designs (a special case of multiple baselines) must meet additional 
criteria because baseline data points are intentionally missing:25 failure to meet any of these 
results in a study rating of Does Not Meet WWC Pilot SCD Standards. 

• Initial pre-intervention sessions must overlap vertically. Within the first three 
sessions, the design must include three consecutive probe points for each case to Meet 
Pilot SCD Standards Without Reservations and at least one probe point for each case to 
Meet Pilot SCD Standards With Reservations. 

• Probe points must be available just prior to introducing the independent variable. 
Within the three sessions just prior to introducing the independent variable, the design 

24 If the topic area team leadership determines that there are exceptions to this standard, these will be specified in the 
topic area or practice guide protocol (e.g., extreme self-injurious behavior might warrant a lower threshold of only 
one or two data points). 
25 If the topic area team leadership determines that there are exceptions to these standards, they will be specified in 
the topic area or practice guide protocol (e.g., conditions when stable data patterns necessitate collecting fewer than 
three consecutive probe points just prior to introducing the intervention or when collecting overlapping initial pre-
intervention points is not possible). 

A-5 

                                                           



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

must include three consecutive probe points for each case to Meet Pilot SCD Standards 
Without Reservations and at least one probe point for each case to Meet Pilot SCD 
Standards With Reservations. 

• Each case not receiving the intervention must have a probe point in a session where 
another case either (a) first receives the intervention or (b) reaches the prespecified 
intervention criterion. This point must be consistent in level and trend with the case’s 
previous baseline points. 

B. Additional Consideration: Areas for Discretion 
The topic area team leadership will (a) define the independent and outcome variables under 

investigation,26 (b) establish parameters for considering fidelity of intervention 
implementation,27 and (c) consider the reasonable application of the standards to the area and 
specify any deviations from the standards in that area protocol. Methodologists and content 
experts might need to make decisions about whether the design is appropriate for evaluating an 
intervention. For example, an intervention associated with a permanent change in participant 
behavior should be evaluated with a multiple baseline design rather than an ABAB design. 

The methodologist will also consider the various threats to validity and how the researcher 
was able to address these concerns, especially when the standards do not necessarily mitigate the 
validity threat in question (e.g., testing, instrumentation). Note that the SCD standards apply to 
both observational measures and standard academic assessments. Similar to the approach with 
group designs, methodologists are encouraged to define the parameters associated with 
“acceptable” assessments in their protocols. For example, repeated measures with alternative 
forms of an assessment may be acceptable, and WWC psychometric criteria would apply. Topic 
area team leadership also might need to make decisions about particular studies. Several 
questions will need to be considered, such as (a) will generalization variables be reported; (b) 
will follow-up phases be assessed; (c) if more than one consecutive baseline phase is present, are 
these treated as one phase or two distinct phases; and (d) are multiple interventions conceptually 
distinct or multiple components of the same intervention. 

C. Visual Analysis of Single-Case Research Results28 
Single-case researchers traditionally have relied on visual analysis of the data to determine 

(a) whether evidence of a relation between an independent variable and an outcome variable 
exists and (b) the strength or magnitude of that relation (Hersen & Barlow, 1976; Kazdin, 1982; 
Kennedy, 2005; Kratochwill, 1978; Kratochwill & Levin, 1992; McReynolds & Kearns, 1983; 
Richards, Taylor, Ramasamy, & Richards, 1999; Tawney & Gast, 1984; White & Haring, 1980). 
An inferred causal relation requires that changes in the outcome measure resulted from 
manipulation of the independent variable. A causal relation is demonstrated if the data across all 
phases of the study document at least three instances of an effect at a minimum of three different 

26 Because SCDs are reliant on phase repetition and effect replication across participants, settings, and researchers to 
establish external validity, specification of the intervention materials, procedures, and context of the research is 
particularly important within these studies (Horner et al., 2005). 
27 Because interventions are applied over time, continuous measurement of implementation is a relevant 
consideration.  
28 This section was prepared by Robert Horner, Thomas Kratochwill, and Samuel Odom. 
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points in time (as specified in the standards). An effect is documented when the data pattern in 
one phase (e.g., an intervention phase) differs more than would be expected from the data pattern 
observed or extrapolated from the previous phase (e.g., a baseline phase; Horner et al., 2005). 

1. Features Examined in Visual Analysis 
To assess the effects within SCDs, six features are used to examine within- and between-

phase data patterns: (a) level, (b) trend, (c) variability, (d) immediacy of the effect, (e) overlap, 
and (f) consistency of data in similar phases (Fisher, Kelley, & Lomas, 2003; Hersen & Barlow, 
1976; Kazdin, 1982; Kennedy, 2005; Morgan & Morgan, 2009; Parsonson & Baer, 1978). These 
six features are assessed individually and collectively to determine whether the results from a 
single-case study demonstrate a causal relation and are represented in the evidence rating. 

Examination of the data within a phase is used (a) to describe the observed pattern of a 
unit’s performance and (b) to extrapolate the expected performance forward in time, assuming 
that no changes in the independent variable occur (Furlong & Wampold, 1981). The six visual 
analysis features are used collectively to compare the observed and projected patterns for each 
phase with the actual pattern observed after manipulation of the independent variable. This 
comparison of observed and projected patterns is conducted across all phases of the design (e.g., 
baseline to intervention, intervention to baseline, intervention to intervention). 

• Level refers to the mean score for the data within a phase. 

• Trend refers to the slope of the best-fitting straight line for the data within a phase. 

• Variability refers to the range or standard deviation of data about the best-fitting straight 
line. 

In addition to comparing the level, trend, and variability of data within each phase, the 
researcher also examines data patterns across phases by considering the immediacy of the effect, 
overlap, and consistency of data in similar phases. 

• Immediacy of the effect refers to the change in level between the last three data points in 
one phase and the first three data points of the next. The more rapid (or immediate) the 
effect, the more convincing the inference that change in the outcome measure was due to 
manipulation of the independent variable. Delayed effects might actually compromise 
the internal validity of the design. However, predicted delayed effects or gradual effects 
of the intervention may be built into the design of the experiment that would then 
influence decisions about phase length in a particular study. 

• Overlap refers to the proportion of data from one phase that overlaps with data from the 
previous phase. The smaller the proportion of overlapping data points (or conversely, the 
larger the separation), the more compelling the demonstration of an effect. 

• Consistency of data in similar phases involves looking at data from all phases within the 
same condition (e.g., all “baseline” phases, all “peer-tutoring” phases) and examining 
the extent to which there is consistency in the data patterns from phases with the same 
conditions. The greater the consistency, the more likely the data represent a causal 
relation. 

A-7 



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

These six features are assessed both individually and collectively to determine whether the 
results from a single-case study demonstrate a causal relation. Regardless of the type of SCD 
used in a study, visual analysis of level, trend, variability, immediacy of the effect, overlap, and 
consistency of data patterns across similar phases is used to assess whether the data demonstrate 
at least three indications of an effect at different points in time. If this criterion is met, the data 
are deemed to document a causal relation, and an inference may be made that change in the 
outcome variable is causally related to manipulation of the independent variable. 

2. Steps of Visual Analysis 
Our rules for conducting visual analysis involve four steps and the six features described 

above (Parsonson & Baer, 1978). The first step is documenting a predictable baseline pattern of 
data (e.g., student is reading with many errors, student is engaging in high rates of screaming). If 
a convincing baseline pattern is documented, then the second step consists of examining the data 
within each phase of the study to assess the within-phase pattern(s). The key question is to assess 
whether there are sufficient data with sufficient consistency to demonstrate a predictable pattern 
of responding. The third step in the visual analysis process is comparing the data from each 
phase with the data in the adjacent (or similar) phase to assess whether manipulation of the 
independent variable was associated with an “effect.” An effect is demonstrated if manipulation 
of the independent variable is associated with a predicted change in the pattern of the dependent 
variable. The fourth step in visual analysis is integrating all the information from all phases of 
the study to determine whether there are at least three demonstrations of an effect at different 
points in time (i.e., documentation of a causal or functional relation; Horner et al., in press). 

The rationale underlying visual analysis in SCDs is that predicted and replicated changes in 
a dependent variable are associated with active manipulation of an independent variable. The 
process of visual analysis is analogous to the efforts in group-design research to document 
changes that are causally related to the introduction of the independent variable. In group-design 
inferential statistical analysis, an effect is described as statistically significant when the measured 
difference in outcomes is unlikely to have been observed under the view that the intervention had 
no impact. In single-case research, a claimed effect occurs when three demonstrations of an 
effect are documented at different points in time. The process of making this determination, 
however, requires that the reader is presented with the individual unit’s raw data (typically in 
graphic format) and actively participates in the interpretation process. 

Figures A.2 through A.9 provide examples of the visual analysis process for one common 
SCD, the ABAB design, using the proportion of 10-second observation intervals with child 
tantrums as the dependent variable and a tantrum intervention as the independent variable. The 
design is appropriate for interpretation because the ABAB design format allows the opportunity 
to assess a causal relation (e.g., to assess if there are three demonstrations of an effect at three 
different points in time, namely the B, A, and B phases following the initial A phase). 

Step 1: The first step in the analysis is to determine whether the data in the Baseline 1 (first 
A) phase document that (a) the proposed concern/problem is demonstrated (e.g., tantrums occur 
too frequently) and (b) the data provide sufficient demonstration of a clearly defined (i.e., 
predictable) baseline pattern of responding that can be used to assess the effects of an 
intervention. This step is represented in the Standards, because if a proposed concern is not 
demonstrated or a predictable pattern of the concern is not documented, the effect of the 
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independent variable cannot be assessed. The data in Figure A.2 demonstrate a Baseline 1 phase 
with 11 sessions, with an average of 66% intervals with tantrums across these 11 sessions. The 
range of tantrums per session is from 50% to 75% with an increasing trend across the phase and 
the last three data points averaging 70%. These data provide a clear pattern of responding that 
would be outside socially acceptable levels and, if left unaddressed, would be expected to 
continue in the 50% to 80% range. 

Figure A.2. Depiction of an ABAB Design 
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The two purposes of a baseline are to (a) document a pattern of behavior in need of change 
and (b) document a pattern that has a sufficiently consistent level and variability, with little or no 
trend, to allow comparison with a new pattern following intervention. Generally, stability of a 
baseline depends on a number of factors and the options the researcher has selected to deal with 
instability in the baseline (Hayes, Barlow, & Nelson-Gray, 1999). One question that often arises 
in SCD research is how many data points are needed to establish baseline stability. First, the 
amount of variability in the data series must be considered. Highly variable data may require a 
longer phase to establish stability. Second, if the effect of the intervention is expected to be large 
and demonstrates a data pattern that far exceeds the baseline variance, a shorter baseline with 
some instability may be sufficient to move forward with intervention implementation. Third, the 
quality of measures selected for the study may impact how willing the researcher/reviewer is to 
accept the length of the baseline. 

In terms of addressing an unstable baseline series, the researcher has the options of (a) 
analyzing and reporting the source of variability, (b) waiting to see whether the series stabilizes 
as more data are gathered, (c) considering whether the correct unit of analysis has been selected 
for measurement and if it represents the reason for instability in the data, and (d) moving forward 
with the intervention despite the presence of baseline instability. Professional standards for 
acceptable baselines are emerging, but the decision to end any baseline with fewer than three 
data points, or to end a baseline with an outlying data point, should be defended. In each case, it 
would be helpful for reviewers to have this information and/or contact the researcher to 
determine how baseline instability was addressed, along with a rationale. 

Step 2: The second step in the visual analysis process is to assess the level, trend, and 
variability of the data within each phase and to compare the observed pattern of data in each 
phase with the pattern of data in adjacent phases. The horizontal lines in Figure A.3 illustrate the 
comparison of phase levels, and the lines in Figure A.4 illustrate the comparison of phase trends. 
The upper and lower defining range lines in Figure A.5 illustrate the phase comparison for phase 
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variability. In Figures A.3 through A.5, the level and trend of the data differ dramatically from 
phase to phase; however, changes in variability appear to be less dramatic. 

Figure A.3. An Example of Assessing Level with Four Phases of an ABAB Design 

 

 

 

Figure A.4. An Example of Assessing Trend in Each Phase of an ABAB Design 

Figure A.5. Assess Variability Within Each Phase 
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Step 3: The information gleaned through examination of level, trend, and variability is 
supplemented by comparing the overlap, immediacy of the effect, and consistency of patterns in 
similar phases. Figure A.6 illustrates the concept of overlap. There is no overlap between the 
data in Baseline 1 (A1) and the data in Intervention 1 (B1). There is one overlapping data point 
(10%; Session 28) between Intervention 1 (B1) and Baseline 2 (A2), and there is no overlap 
between Baseline 2 (A2) and Intervention 2 (B2). 
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Figure A.6. Consider Overlap Between Phases 

 

 

Immediacy of the effect compares the extent to which the level, trend, and variability of the 
last three data points in one phase are distinguishably different from the first three data points in 
the next. The data in the ovals, squares, and triangles of Figure A.7 illustrate the use of 
immediacy of the effect in visual analysis. The observed effects are immediate in each of the 
three comparisons (Baseline 1 and Intervention 1, Intervention 1 and Baseline 2, and Baseline 2 
and Intervention 2). 

Figure A.7. Examine the Immediacy of Effect with Each Phase Transition 
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Consistency of similar phases examines the extent to which the data patterns in phases with 
the same (or similar) procedures are similar. The linked ovals in Figure A.8 illustrate the 
application of this visual analysis feature. Phases with similar procedures (Baseline 1 and 
Baseline 2, Intervention 1 and Intervention 2) are associated with consistent patterns of 
responding. 



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

Figure A.8. Examine Consistency Across Similar Phases 

 

 

Step 4: The final step of the visual analysis process involves combining the information 
from each of the phase comparisons to determine whether all the data in the design (data across 
all phases) meet the standard for documenting three demonstrations of an effect at different 
points in time. The bracketed segments in Figure A.9 (A, B, C) indicate the observed and 
projected patterns of responding that would be compared with actual performance. Because the 
observed data in the Intervention 1 phase are outside the observed and projected data pattern of 
Baseline 1, the Baseline 1 and Intervention 1 comparison demonstrates an effect (Figure A.9A). 
Similarly, because the data in Baseline 2 are outside the observed and projected patterns of 
responding in Intervention 1, the Intervention 1 and Baseline 2 comparison demonstrates an 
effect (Figure A.9B). The same logic allows for identification of an effect in the Baseline 2 and 
Intervention 2 comparison (Figure A.9C). Because the three demonstrations of an effect occur at 
different points in time, the full set of data in this study is considered to document a causal 
relation as specified in the standards. 

Figure A.9A. Examine Observed and Projected Comparison Baseline 1 to Intervention 1 
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Figure A.9B. Examine Observed and Projected Comparison Intervention 1 to Baseline 2 

 

 

 

Figure A.9C. Examine Observed and Projected Comparison Baseline 2 to Intervention 2 
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3. Characterizing Study Findings 
For studies that meet standards, the following rules are used to determine whether the study 

provides Strong Evidence, Moderate Evidence, or No Evidence of a causal relationship for each 
outcome. In order to provide Strong Evidence, at least two WWC reviewers certified in visual (or 
graphical) analysis must verify that a causal relation was documented. Specifically, this is 
operationalized as at least three demonstrations of the intervention effect along with no non-
effects by29

• Documenting the consistency of level, trend, and variability within each phase; 

• Documenting the immediacy of the effect, the proportion of overlap, and the consistency 
of the data across phases in order to demonstrate an intervention’s effect, and comparing 
the observed and projected patterns of the outcome variable; and 

• Examining external factors and anomalies (e.g., a sudden change of level within a 
phase). 

If an SCD does not provide three demonstrations of an effect, then there is No Evidence of a 
causal relationship. If a study provides three demonstrations of an effect and also includes at 

29 This section assumes that the demonstration of an effect will be established through visual analysis. As the field 
reaches greater consensus about appropriate statistical analyses and quantitative effect size measures, new standards 
for effect demonstration will need to be developed. 
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least one demonstration of a non-effect, there is Moderate Evidence of a causal relationship. The 
following characteristics must be considered when identifying a non-effect: 

• Data within the baseline phase do not provide sufficient demonstration of a clearly 
defined pattern of responding that can be used to extrapolate the expected performance 
forward in time, assuming no changes to the independent variable. 

• Failure to establish a consistent pattern within any phase (e.g., high variability within a 
phase). 

• Either long latency between introduction of the independent variable and change in the 
outcome variable, or overlap between observed and projected patterns of the outcome 
variable between baseline and intervention phases, makes it difficult to determine 
whether the intervention is responsible for a claimed effect. 

• Inconsistent patterns across similar phases (e.g., an ABAB design in which the first time 
an intervention is introduced, the outcome variable data points are high; the second time 
an intervention is introduced, the outcome variable data points are low; and so on). 

• Comparing the observed and projected patterns of the outcome variable between phases 
does not demonstrate evidence of a causal relation (i.e., there are not at least three 
demonstrations of an effect). 

When examining a multiple baseline design, also consider the extent to which the time in 
which a basic effect is initially demonstrated with one series (e.g., first 5 days following 
introduction of the intervention for Participant #1) is associated with change in the data pattern 
over the same time frame in the other series of the design (e.g., same 5 days for Participants #2, 
#3, and #4). If a basic effect is demonstrated within one series, and there is a change in the data 
patterns in the other series, the highest possible design rating is Moderate Evidence. 

If there is either Strong Evidence or Moderate Evidence, then effect size estimation follows. 
Appropriate methods for calculating the effect size from a SCD have not yet been developed. For 
the time being, the WWC review concludes with the evidence rating from visual analysis. 

D. Rating for SCDs 
When implemented with multiple design features (e.g., within- and between-case 

comparisons), SCDs can provide a strong basis for causal inference (Horner et al., 2005). 
Confidence in the validity of intervention effects demonstrated within cases is enhanced by 
replication of effects across different cases, studies, and research groups (Horner & Spaulding, 
2010). The results from SCD studies will not be combined into a single summary rating unless 
they meet the following thresholds (i.e., the “5-3-20” threshold):30 

• A minimum of five SCD studies examining the intervention that are rated Meets WWC 
Pilot SCD Standards Without Reservations or Meets WWC Pilot SCD Standards With 
Reservations. 

30 These are based on professional conventions. Future work with SCD meta-analysis can offer an empirical basis 
for determining appropriate criteria, and these recommendations might be revised. 

A-14 

                                                           



What Works Clearinghouse Standards Handbook, Version 4.0, 7/25/2017 Draft 

• The SCD studies must be conducted by at least three different research teams with no 
overlapping authorship at three different institutions. 

• The combined number of cases (i.e., participants, classrooms, etc.) totals at least 20. 
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A. Assessing the Bias when the Baseline Measure is Observed for all Subjects in the 
Analytic Sample 
The imputation methods the WWC considers acceptable require assuming that data are 

missing at random (MAR), which means the missing data depend on measured factors, but not 
unmeasured factors. If that assumption does not hold, impact estimates may be biased. 
Therefore, QEDs and high-attrition RCTs that use acceptable approaches to impute outcome data 
must demonstrate that they limit the potential bias from using imputed data to measure impacts. 
Specifically, potential bias due to deviations from the MAR assumption must not exceed 0.05 
standard deviations.  

The WWC uses a proxy pattern-mixture modelling approach to estimate the largest possible 
bias in an impact estimate under a set of reasonable assumptions about how the missing data are 
related to measured and unmeasured factors (Andridge & Little, 2011).  

To bound the bias, we begin by specifying that the probability that we observe an outcome 
for a given subject is related to the baseline measure and the outcome (which is unmeasured for 
some cases). This probability in the intervention group (𝑗𝑗 = 𝑖𝑖) or comparison group (𝑗𝑗 = 𝑐𝑐) is 
given by the following function 𝑚𝑚: 

𝑃𝑃𝑗𝑗(𝑥𝑥,𝑦𝑦) = 𝑚𝑚�𝑥𝑥
𝑠𝑠𝑥𝑥

+ 𝜆𝜆𝑗𝑗
𝑦𝑦
𝑠𝑠𝑦𝑦
�, 

where 𝑥𝑥 is the baseline measure for a subject, 𝑦𝑦 is the outcome measure for the subject, 𝑠𝑠𝑥𝑥 
and 𝑠𝑠𝑦𝑦 are the standard deviations of the baseline and outcome measures, and 𝜆𝜆𝑗𝑗 measures the 
deviations from the MAR assumption for group 𝑗𝑗. When 𝜆𝜆𝑗𝑗 = 0, the MAR assumption holds for 
group 𝑗𝑗, because the missing data depend only on measured baseline data. As 𝜆𝜆𝑗𝑗 increases, the 
missingness depends more strongly on the outcome, which may be unmeasured. 

Following Andridge and Little (2011), we can write the unmeasured full-sample outcome 
mean in a group (𝑦𝑦�𝑗𝑗) as a function of the complete case outcome mean (𝑦𝑦�𝑗𝑗𝑅𝑅), the full-sample and 
complete case baseline means (𝑥̅𝑥𝑗𝑗 and 𝑥̅𝑥𝑗𝑗𝑗𝑗), and the correlation between the outcome and the 
baseline measure 𝜌𝜌:  

𝑦𝑦�𝑗𝑗 = 𝑦𝑦�𝑗𝑗𝑅𝑅 + 𝑓𝑓𝑗𝑗(𝜌𝜌)
𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥
�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗𝑅𝑅�, ̅ ̅

where the function of 𝜌𝜌 is assumed to be: 

𝑓𝑓𝑗𝑗(𝜌𝜌) =
𝜆𝜆𝑗𝑗 + 𝜌𝜌 
𝜆𝜆𝑗𝑗𝜌𝜌 + 1

. 

In many cases, the value of 𝑦𝑦�𝑗𝑗 will deviate more from the observed mean of 𝑦𝑦�𝑗𝑗𝑗𝑗 when there 
is a larger absolute difference between the full-sample and complete case baseline means. 
Intuitively, this is because a larger difference means that the subjects with missing outcome data 
appear different from those with observed outcomes. 
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When MAR holds, 𝑓𝑓𝑖𝑖(𝜌𝜌) = 𝑓𝑓𝑐𝑐(𝜌𝜌) = 𝜌𝜌 (because 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑐𝑐 = 0), and the expected value of 𝑦𝑦�𝑗𝑗 
is equal to what a researcher would obtain for the full-sample outcome mean when imputing 
missing values of the outcome measure with predicted values from a regression of the outcome 
on the baseline measure. But as 𝜆𝜆𝑖𝑖 or 𝜆𝜆𝑐𝑐 become larger, the value of 𝑓𝑓𝑗𝑗(𝜌𝜌) becomes larger 
(approaching 1 𝜌𝜌⁄ ), and the outcome mean for the full sample will deviate from the researcher’s 
estimate of the mean using imputed data. 

The effect size obtained using an imputation method based on the MAR assumption can be 
written as the difference in the estimated full-sample intervention and comparison group 
outcome means with an adjustment for the baseline measure, given by:  

𝑔𝑔𝑀𝑀𝑀𝑀𝑅𝑅 =
1
𝑠𝑠𝑦𝑦

({𝑦𝑦𝑖𝑖𝑅𝑅 + 𝑐𝑐[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑅𝑅]} − {𝑦𝑦𝑐𝑐𝑅𝑅 + 𝑐𝑐[𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑐𝑐𝑅𝑅]} − 𝑐𝑐[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑐𝑐]), ̅ ̅ ̅ ̅ ̅ ̅

where 𝑐𝑐 is the coefficient from a regression of 𝑦𝑦 on 𝑥𝑥, and is equal to 𝜌𝜌(𝑠𝑠𝑦𝑦 𝑠𝑠𝑥𝑥⁄ ).  

But this equation can be generalized to the case where the MAR assumption does not hold: 

𝑔𝑔𝑁𝑁𝑀𝑀𝑀𝑀𝑅𝑅 =
1
𝑠𝑠𝑦𝑦
��𝑦𝑦𝑖𝑖𝑅𝑅 + 𝑓𝑓𝑖𝑖(𝜌𝜌)

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑅𝑅]� − �𝑦𝑦𝑐𝑐𝑅𝑅 + 𝑓𝑓𝑐𝑐(𝜌𝜌)
𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

[𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑐𝑐𝑅𝑅]� − 𝑐𝑐[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑐𝑐]�. ̅ ̅ ̅ ̅ ̅ ̅

Comparing 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 gives the bias due to deviations from the MAR assumption: 

𝐵𝐵𝑖𝑖𝐵𝐵𝑠𝑠𝑦𝑦 =  
1
𝑠𝑠𝑥𝑥

{(𝑓𝑓𝑖𝑖(𝜌𝜌) − 𝜌𝜌)[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑅𝑅] − (𝑓𝑓𝑐𝑐(𝜌𝜌) − 𝜌𝜌)[𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑐𝑐𝑅𝑅]}. ̅ ̅ ̅ ̅

Because 𝑓𝑓𝑗𝑗(𝜌𝜌) is bounded between 𝜌𝜌 and 1 𝜌𝜌⁄ , the largest bias (in absolute value) due to 
deviations from the MAR assumption is given by the maximum of the values given by the 
following three equations:  

𝐵𝐵1 = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
[𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑐𝑐𝑅𝑅]� 

𝐵𝐵2 = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
[𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑅𝑅]� 

𝐵𝐵3 = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
[(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑅𝑅) − (𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑐𝑐𝑅𝑅)]�. 

̅ ̅

̅ ̅

̅ ̅ ̅ ̅

The bounds in equations B1–B3 will be calculated using data reported in studies or obtained 
from authors. The equations include the following data elements described in Section C of 
Chapter II: (a) the means and standard deviations of the baseline measure for the analytic sample, 
separately for the intervention and comparison groups (𝑥̅𝑥𝑖𝑖, 𝑥̅𝑥𝑐𝑐, and the standard deviations are 
used to calculate the pooled within-group standard deviation 𝑠𝑠𝑥𝑥 [see Chapter IV, Section A of the 
Procedures Handbook for how the WWC calculates the pooled standard deviation]); (b) the 
means of the baseline measure for the subjects in the analytic sample with observed outcome 
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data, separately for the intervention and comparison groups (𝑥̅𝑥𝑖𝑖𝑖𝑖, 𝑥̅𝑥𝑐𝑐𝑐𝑐); and (c) the correlation 
between the baseline and the outcome measures (𝜌𝜌). 

For simplicity, these bounds were derived for a single baseline measure. If multiple baseline 
measures were used to form the imputed values in a study, it is acceptable (but not required) to 
replace the baseline means with the average predicted value of the outcome (i.e., the average of 
the values used to make adjustments to the outcome measure to produce an adjusted mean). In 
this case 1 𝑠𝑠𝑥𝑥⁄  is removed from the calculation of the bounds and replaced with 1 𝑠𝑠𝑦𝑦⁄  (because 
the predicted values have units of the dependent variable). Additionally, for outcome domains 
that require baseline equivalence on multiple baseline measures, it is required that the imputed 
values adjust for all baseline measures specified in the review protocol and that the bounds are 
calculated using the average of the predicted values.  

B. Assessing the Bias when the Baseline Measure is Imputed or Missing for Some Subjects 
in the Analytic Sample 
When an analytic sample includes both imputed outcome data and missing or imputed 

baseline data, it is not possible to calculate the bounds in B1 – B3. This is because the means of 
the baseline measure are unknown for the analytic sample, and also possibly for the restricted 
sample of subjects with observed outcome data. 

Instead, the bounds can be calculated using B1* – B3* below. These bounds can be derived 
by first writing the full sample outcome mean as a weighted sum of the outcome mean for the 
sample with missing data on the baseline measure, and the sample with observed data on the 
baseline measure: 

𝑦𝑦�𝑗𝑗 = �
𝑛𝑛𝑗𝑗 − 𝑛𝑛𝑗𝑗𝑥𝑥

𝑛𝑛𝑗𝑗
� 𝑦𝑦�𝑗𝑗~𝑥𝑥 + �

𝑛𝑛𝑗𝑗𝑥𝑥
𝑛𝑛𝑗𝑗
� 𝑦𝑦�𝑗𝑗𝑥𝑥, 

where 𝑛𝑛𝑗𝑗  is the number of observations in the analytic sample for group 𝑗𝑗, 𝑛𝑛𝑗𝑗𝑗𝑗 is the number 
of observations in the analytic sample for group 𝑗𝑗 with an observed value of the baseline 
measure, 𝑦𝑦�𝑗𝑗~𝑥𝑥 is the outcome mean for the observations in the analytic sample for group 𝑗𝑗 
missing the baseline measure, and 𝑦𝑦�𝑗𝑗𝑗𝑗 is the outcome mean for the remaining members of the 
analytic sample for group 𝑗𝑗. 

We assume that the analytic sample includes no cases where both the baseline and outcome 
data are missing, so 𝑦𝑦�𝑗𝑗~𝑥𝑥 is observed. But 𝑦𝑦�𝑗𝑗𝑗𝑗 is not observed because some cases with observed 
baseline data have missing outcome data. To address this, we write 𝑦𝑦�𝑗𝑗𝑥𝑥 as a function of observed 
measures: 

𝑦𝑦�𝑗𝑗 = �
𝑛𝑛𝑗𝑗 − 𝑛𝑛𝑗𝑗𝑥𝑥
𝑛𝑛𝑗𝑗

�𝑦𝑦�𝑗𝑗~𝑥𝑥 + �
𝑛𝑛𝑗𝑗𝑥𝑥
𝑛𝑛𝑗𝑗
� �𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦 + 𝑓𝑓𝑗𝑗(𝜌𝜌)

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥
�𝑥𝑥𝑗𝑗𝑥𝑥 − 𝑥𝑥𝑗𝑗𝑥𝑥𝑦𝑦��, ̅ ̅

where 𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦 is the outcome mean for the observations in the complete case analytic sample 
for group 𝑗𝑗 (observed baseline and outcome), 𝑥̅𝑥𝑗𝑗𝑗𝑗𝑗𝑗 is the baseline mean for the same sample, and 
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𝑥̅𝑥𝑗𝑗𝑗𝑗 is the baseline mean for the sample with observed baseline data (but possibly missing 
outcome data). This equation can be re-written as: 

𝑦𝑦�𝑗𝑗 = 𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦 + �
𝑛𝑛𝑗𝑗 − 𝑛𝑛𝑗𝑗𝑥𝑥
𝑛𝑛𝑗𝑗

� [𝑦𝑦�𝑗𝑗~𝑥𝑥 − 𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦] + �
𝑛𝑛𝑗𝑗𝑥𝑥
𝑛𝑛𝑗𝑗
� 𝑓𝑓𝑗𝑗(𝜌𝜌)

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥
�𝑥𝑥𝑗𝑗𝑥𝑥 − 𝑥𝑥𝑗𝑗𝑥𝑥𝑦𝑦� ̅ ̅

The effect size obtained using an imputation method based on the MAR assumption 
(𝑓𝑓𝑗𝑗(𝜌𝜌) = 𝜌𝜌) can be written as the difference in the estimated full-sample intervention and 
comparison group outcome means31, given by:  

𝑔𝑔𝑀𝑀𝑀𝑀𝑅𝑅 =
1
𝑠𝑠𝑦𝑦
��𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦 + �

𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖

� �𝑦𝑦�𝑖𝑖~𝑥𝑥 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦� + �
𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖
� 𝑐𝑐�𝑥𝑥𝑖𝑖𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦��

− �𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦 + �
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑥𝑥

𝑛𝑛𝑐𝑐
� �𝑦𝑦�𝑐𝑐~𝑥𝑥 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦� + �

𝑛𝑛𝑐𝑐𝑥𝑥
𝑛𝑛𝑐𝑐
� 𝑐𝑐�𝑥𝑥𝑐𝑐𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦���. 

̅ ̅

̅ ̅

The more general equation that allows deviations from the MAR assumption is given by: 

𝑔𝑔𝑁𝑁𝑀𝑀𝑀𝑀𝑅𝑅 =
1
𝑠𝑠𝑦𝑦
��𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦 + �

𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖

� �𝑦𝑦�𝑖𝑖~𝑥𝑥 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦� + �
𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖
� 𝑓𝑓𝑖𝑖(𝜌𝜌)

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥
�𝑥𝑥𝑖𝑖𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦��

− �𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦 + �
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑥𝑥

𝑛𝑛𝑐𝑐
� �𝑦𝑦�𝑐𝑐~𝑥𝑥 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦� + �

𝑛𝑛𝑐𝑐𝑥𝑥
𝑛𝑛𝑐𝑐
� 𝑓𝑓𝑐𝑐(𝜌𝜌)

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥
�𝑥𝑥𝑐𝑐𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦���. 

̅ ̅

̅ ̅

Comparing 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 gives the bias due to deviations from the MAR assumption: 

𝐵𝐵𝑖𝑖𝐵𝐵𝑠𝑠𝑦𝑦 =  
1
𝑠𝑠𝑥𝑥
��
𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖
� (𝑓𝑓𝑖𝑖(𝜌𝜌) − 𝜌𝜌)�𝑥𝑥𝑖𝑖𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� − �

𝑛𝑛𝑐𝑐𝑥𝑥
𝑛𝑛𝑐𝑐
� (𝑓𝑓𝑐𝑐(𝜌𝜌) − 𝜌𝜌)�𝑥𝑥𝑐𝑐𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦��. ̅ ̅ ̅ ̅

The absolute value of this bias is no greater than the maximum of B1* – B3*: 

𝐵𝐵1∗ = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
�
𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖
� �𝑥𝑥𝑖𝑖𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦�� 

𝐵𝐵2∗ = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
�
𝑛𝑛𝑐𝑐𝑥𝑥
𝑛𝑛𝑐𝑐
� �𝑥𝑥𝑐𝑐𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦�� 

𝐵𝐵3∗ = �
1
𝑠𝑠𝑥𝑥

1 − 𝜌𝜌2

𝜌𝜌
��
𝑛𝑛𝑖𝑖𝑥𝑥
𝑛𝑛𝑖𝑖
� �𝑥𝑥𝑖𝑖𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� − �

𝑛𝑛𝑐𝑐𝑥𝑥
𝑛𝑛𝑐𝑐
� �𝑥𝑥𝑐𝑐𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦��� 

̅ ̅

̅ ̅

̅ ̅ ̅ ̅

In addition to (c) used in calculating equations B1–B3 discussed above, the bounds in 
equations B1*–B3* include the following data elements described in Section C of Chapter II: (d) 
the means of the baseline measure for the subjects in the analytic sample with observed baseline 

31 Here, we ignore an adjustment for the baseline measure. Because the baseline data are also imputed, deviations 
from the MAR assumption can lead to bias in this adjustment. This source of potential bias in the outcome effect 
size is accounted for separately through the baseline equivalence requirement when data are missing, the technical 
details of which are discussed in Appendix C. 
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data, separately for the intervention and comparison groups (𝑥̅𝑥𝑖𝑖𝑖𝑖, and 𝑥̅𝑥𝑐𝑐𝑐𝑐); (e) the means of the 
baseline measure for the subjects in the analytic sample with observed baseline and outcome 
data, separately for the intervention and comparison groups (𝑥̅𝑥𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐); (f) the standard 
deviations of the baseline measure for either the sample of subjects in the analytic sample with 
observed outcome data or the sample with observed baseline and outcome data, separately for 
the intervention and comparison groups, which are used to calculate 𝑠𝑠𝑥𝑥 (for simplicity, referred 
to using the consistent notation despite the difference in the data used to calculate it); and (g) the 
number of subjects with observed baseline data in the analytic sample by condition (𝑛𝑛𝑐𝑐𝑐𝑐). 

The formulas in B1* – B3* reduce to B1 – B3 when there are no missing baseline data. 
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A. Bounding the Baseline Difference When the Outcome is Observed for all Subjects in 
the Analytic Sample 
It is not possible to assess baseline equivalence using observed data for the analytic sample 

in QEDs and high-attrition RCTs that use acceptable approaches to impute baseline data, or are 
missing some baseline data for the analytic sample. However, the WWC will consider the 
potential bias from baseline differences to be limited if, under different assumptions about 
whether the data are MAR or not, the standardized baseline difference does not exceed 0.25 
standard deviations when the analysis includes an acceptable adjustment for the baseline 
measure, or 0.05 standard deviations otherwise. This requirement applies only to baseline 
measures that are required for satisfying the baseline equivalence requirement based on the 
review protocol. 

The WWC uses the same proxy pattern-mixture modelling approach used to address 
imputed outcome data to estimate the largest possible baseline difference under a set of 
reasonable assumptions about how the missing data are related to measured and unmeasured 
factors (Andridge & Little, 2011).  

Using the same notation introduced in Appendix B, the baseline mean for a sample with 
missing or imputed baseline data can be modelled using: 

𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑗𝑗𝑅𝑅 + 𝑔𝑔𝑗𝑗(𝜌𝜌)
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗𝑅𝑅�, ̅ ̅

where 𝑥̅𝑥𝑗𝑗 and 𝑥̅𝑥𝑗𝑗𝑗𝑗 are the full-sample and complete case baseline means, 𝑦𝑦�𝑗𝑗 and 𝑦𝑦�𝑗𝑗𝑅𝑅 are the full-
sample and complete case outcome means, 𝜌𝜌 is the correlation between the outcome and the 
baseline measure, and 

𝑔𝑔𝑗𝑗(𝜌𝜌) =
1

f𝑗𝑗(𝜌𝜌) =
𝜆𝜆𝑗𝑗𝜌𝜌 + 1 
𝜆𝜆𝑗𝑗 + 𝜌𝜌

. 

The full-sample baseline effect size obtained using an imputation method based on the MAR 
assumption (𝑔𝑔𝑐𝑐(𝜌𝜌) = 𝑔𝑔𝑖𝑖(𝜌𝜌) = 𝜌𝜌 when 𝜆𝜆𝑗𝑗 approaches ∞) can be written as the baseline effect 
size for the observed sample 𝑔𝑔𝑥𝑥𝑥𝑥 with an adjustment for the difference between the full-sample 
and complete case outcome means in the intervention and comparison groups, given by: 

𝑔𝑔𝑥𝑥𝑀𝑀𝑀𝑀𝑅𝑅 = 𝑔𝑔𝑥𝑥𝑅𝑅 +
𝜌𝜌
𝑠𝑠𝑦𝑦

([𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − [𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]) 

where 𝑔𝑔𝑥𝑥𝑥𝑥 = 𝑥̅𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑐𝑐𝑐𝑐. The more general equation for the baseline effect size that allows 
for deviations from the MAR is: 

𝑔𝑔𝑥𝑥𝑁𝑁𝑀𝑀𝑀𝑀𝑅𝑅 = 𝑔𝑔𝑥𝑥𝑅𝑅 +
1
𝑠𝑠𝑦𝑦

(𝑔𝑔𝑖𝑖(𝜌𝜌)[𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − 𝑔𝑔𝑐𝑐(𝜌𝜌)[𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]). 
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Because 𝑔𝑔𝑗𝑗(𝜌𝜌) is bounded between 𝜌𝜌 and 1 𝜌𝜌⁄ , the largest baseline effect size (in absolute 
value) accounting for deviations from the MAR assumption is given by the maximum of the 
values given by following four equations: 

𝐶𝐶1 = �𝑔𝑔𝑥𝑥𝑅𝑅 +
𝜌𝜌
𝑠𝑠𝑦𝑦

([𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − [𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅])� 

𝐶𝐶2 =  �𝑔𝑔𝑥𝑥𝑅𝑅 +
1
𝜌𝜌𝑠𝑠𝑦𝑦

([𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − [𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅])� 

𝐶𝐶3 =  �𝑔𝑔𝑥𝑥𝑅𝑅 +
1
𝑠𝑠𝑦𝑦
�𝜌𝜌[𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅]−

1
𝜌𝜌

[𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]�� 

𝐶𝐶4 =  �𝑔𝑔𝑥𝑥𝑅𝑅 +
1
𝑠𝑠𝑦𝑦
�

1
𝜌𝜌

[𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − 𝜌𝜌[𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]��. 

The first of these, C1, is |𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥|, the estimate of the baseline effect size when MAR holds. 

The bounds in equations C1–C4 will be calculated using data reported in studies or obtained 
from authors. The equations include the following data elements described in Section C of 
Chapter II: (a) the means and standard deviations of the outcome measure for the analytic 
sample, separately for the intervention and comparison groups (𝑦𝑦�𝑖𝑖, 𝑦𝑦�𝑐𝑐, and the standard 
deviations are used to calculate the pooled within-group standard deviation 𝑠𝑠𝑦𝑦); (b) the means of 
the outcome measure for the subjects in the analytic sample with observed baseline data, 
separately for the intervention and comparison groups (𝑦𝑦�𝑖𝑖𝑅𝑅, 𝑦𝑦�𝑐𝑐𝑅𝑅); (c) the correlation between the 
baseline and the outcome measures (𝜌𝜌), and (d) an estimate of the baseline difference based on 
study data (𝑔𝑔𝑥𝑥𝑥𝑥). 

Applying the bounds in C1 – C4 does not require knowing the baseline effect size using 
imputed baseline data. Rather, these bounds use the complete case baseline effect size. When the 
study imputes the baseline data using an acceptable approach and reports the baseline effect size 
based on imputed data, 𝑔𝑔𝑥𝑥𝑥𝑥, a different set of bounds should be used. 

Comparing 𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, the bias in the imputed baseline effect size due to deviations 
from MAR is given by: 

𝐵𝐵𝑖𝑖𝐵𝐵𝑠𝑠𝑥𝑥 =
1
𝑠𝑠𝑦𝑦
�(𝑔𝑔𝑖𝑖(𝜌𝜌) − 𝜌𝜌)[𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅] − (𝑔𝑔𝑐𝑐(𝜌𝜌) − 𝜌𝜌)[𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]�. 

Adding this bias to 𝑔𝑔𝑥𝑥𝑥𝑥 gives an alternative set of bounds for the baseline effect size: 

𝐷𝐷1 = |𝑔𝑔𝑥𝑥𝑥𝑥| 

𝐷𝐷2 = �𝑔𝑔𝑥𝑥𝑥𝑥 +
1
𝑠𝑠𝑦𝑦

1 − 𝜌𝜌2

𝜌𝜌
[𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅]� 
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𝐷𝐷3 = �𝑔𝑔𝑥𝑥𝑥𝑥 −
1
𝑠𝑠𝑦𝑦

1 − 𝜌𝜌2

𝜌𝜌
[𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅]� 

𝐷𝐷4 = �𝑔𝑔𝑥𝑥𝑥𝑥 +
1
𝑠𝑠𝑦𝑦

1 − 𝜌𝜌2

𝜌𝜌
[(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑅𝑅) − (𝑦𝑦�𝑐𝑐 − 𝑦𝑦�𝑐𝑐𝑅𝑅)]�. 

For simplicity, the bounds given by C1 – C4 and D1 – D4 were derived based on an 
imputation model based only on the relationship between the outcome and the baseline measure. 
If in addition to the outcome, the imputation model also included baseline measures, it is 
acceptable (but not required) to replace the outcome means with the average predicted value of 
the baseline measure. In this case the formula should scale by 𝑠𝑠𝑥𝑥 instead of 𝑠𝑠𝑦𝑦.  

When baseline equivalence is required on multiple baseline measures, the bounds should be 
calculated separately for each baseline measure, and none may exceed the tolerable thresholds of 
0.25 standard deviations when the analysis includes an acceptable adjustment, or 0.05 standard 
deviations otherwise. 

B. Bounding the Baseline Difference When the Outcome Measure is Imputed for Some 
Subjects in the Analytic Sample 
When an analytic sample includes both imputed outcome data and missing or imputed 

baseline data, it is not possible to calculate the bounds in C1 – C4 or D1 – D4. This is because 
the means of the outcome measure are unknown for the analytic sample, and also possibly for the 
restricted sample of subjects with observed baseline data. 

Similar to the equation for 𝑦𝑦�𝑗𝑗 in Section B of Appendix B, the full sample baseline mean for 
group 𝑗𝑗 can be written as: 

𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑗𝑗𝑥𝑥𝑦𝑦 + �
𝑛𝑛𝑗𝑗 − 𝑛𝑛𝑗𝑗𝑦𝑦

𝑛𝑛𝑗𝑗
� [𝑥𝑥𝑗𝑗~𝑦𝑦 − 𝑥𝑥𝑗𝑗𝑥𝑥𝑦𝑦] + �

𝑛𝑛𝑗𝑗𝑦𝑦
𝑛𝑛𝑗𝑗
��𝑔𝑔𝑗𝑗(𝜌𝜌)

𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
�𝑦𝑦�𝑗𝑗𝑦𝑦 − 𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦��, ̅ ̅ ̅ ̅

where 𝑥̅𝑥𝑗𝑗𝑗𝑗𝑗𝑗 is the baseline mean for the observations in the complete case analytic sample 
for group 𝑗𝑗 (observed baseline and outcome), 𝑦𝑦�𝑗𝑗𝑥𝑥𝑦𝑦 is the outcome mean for the same sample, and 
𝑦𝑦�𝑗𝑗𝑦𝑦 is the outcome mean for the sample with observed outcome data (but possibly missing 
baseline data).  

The baseline effect size obtained using an imputation method based on the MAR assumption 
(𝑔𝑔𝑗𝑗(𝜌𝜌) = 𝜌𝜌) can be written as the difference in the estimated full-sample intervention and 
comparison group baseline means, given by:  

𝑔𝑔𝑥𝑥𝑀𝑀𝑀𝑀𝑅𝑅 = 𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+
1
𝑠𝑠𝑥𝑥
���

𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� + �
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖
�
𝜌𝜌𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦

�𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦

𝑛𝑛𝑐𝑐
� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� + �

𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐
�
𝜌𝜌𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦

�𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���. 

̅ ̅

̅ ̅
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where 𝑔𝑔𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥) = 𝑥̅𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐. The more general formula that allows for deviations from 
MAR is the following: 

𝑔𝑔𝑥𝑥𝑁𝑁𝑀𝑀𝑀𝑀𝑅𝑅 = 𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+
1
𝑠𝑠𝑥𝑥
���

𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� + �
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖
� 𝑔𝑔𝑗𝑗(𝜌𝜌)

𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
�𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦

𝑛𝑛𝑐𝑐
� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� + �

𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐
� 𝑔𝑔𝑗𝑗(𝜌𝜌)

𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
�𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���. 

̅ ̅

̅ ̅

The largest baseline effect size (in absolute value) accounting for deviations from the MAR 
assumption is given by the maximum of the values from equations C1* – C4*: 

𝐶𝐶1∗ =  �𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+ ���
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� + 𝜌𝜌 �
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� + 𝜌𝜌 �
𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���� 

𝐶𝐶2∗ = �𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+ ���
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� +
1
𝜌𝜌
�
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑦𝑦

�  �𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� +
1
𝜌𝜌
�
𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���� 

𝐶𝐶3∗ =  �𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+ ���
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� + 𝜌𝜌 �
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� +
1
𝜌𝜌
�
𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���� 

𝐶𝐶4∗ =  �𝑔𝑔𝑥𝑥𝑅𝑅(𝑥𝑥𝑦𝑦)

+ ���
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑖𝑖~𝑦𝑦 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑦𝑦� +
1
𝜌𝜌
�
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦��

− ��
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑥𝑥

� �𝑥𝑥𝑐𝑐~𝑦𝑦 − 𝑥𝑥𝑐𝑐𝑥𝑥𝑦𝑦� + 𝜌𝜌 �
𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦

� �𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦����. 

̅ ̅

̅ ̅

̅ ̅

̅ ̅

̅ ̅

̅ ̅

̅ ̅

̅ ̅

In addition to (c) and (d) used in calculating equations C1–C4 discussed above, the bounds 
in equations C1*–C4* include the following data elements described in Section C of Chapter II: 
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(e) the means of the outcome measure for the subjects in the analytic sample with observed 
outcome data, separately for the intervention and comparison groups (𝑦𝑦�𝑖𝑖𝑦𝑦, and 𝑦𝑦�𝑐𝑐𝑦𝑦); (f) the means 
of the outcome measure for the subjects in the analytic sample with observed baseline and 
outcome data, separately for the intervention and comparison groups (𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦, and 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦); (g) the 
standard deviations of the outcome measure for either the sample of subjects in the analytic 
sample with observed outcome data or the sample with observed baseline and outcome data, 
which are used to calculate 𝑠𝑠𝑥𝑥 (for simplicity, referred to using the consistent notation despite the 
difference in the data used to calculate it); and (h) the number of subjects with observed outcome 
data in the analytic sample by condition (𝑛𝑛𝑖𝑖, and 𝑛𝑛𝑐𝑐). 

Applying the bounds in C1* – C4* does not require knowing the baseline effect size using 
imputed baseline data. Rather these bounds use the complete case baseline effect size. When the 
study imputes the baseline data using an acceptable approach and reports the baseline effect size 
based on imputed data, 𝑔𝑔𝑥𝑥𝑥𝑥, a different set of bounds should be used. 

Comparing 𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, the bias in the imputed baseline effect size due to deviations 
from MAR is given by: 

𝐵𝐵𝑖𝑖𝐵𝐵𝑠𝑠𝑥𝑥 =
1
𝑠𝑠𝑦𝑦
��
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖
� (𝑔𝑔𝑖𝑖(𝜌𝜌) − 𝜌𝜌)�𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦� − �

𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐
� (𝑔𝑔𝑐𝑐(𝜌𝜌) − 𝜌𝜌)�𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦��. 

Adding this bias to 𝑔𝑔𝑥𝑥𝑥𝑥 gives an alternative set of bounds for the baseline effect size D1* – 
D4*: 

𝐷𝐷1∗ = |𝑔𝑔𝑥𝑥𝑥𝑥| 

𝐷𝐷2∗ = �𝑔𝑔𝑥𝑥𝑥𝑥 +
1
𝑠𝑠𝑦𝑦
�
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖
�

1 − 𝜌𝜌2

𝜌𝜌
�𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦�� 

𝐷𝐷3∗ = �𝑔𝑔𝑥𝑥𝑥𝑥 −
1
𝑠𝑠𝑦𝑦
�
𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐
�

1 − 𝜌𝜌2

𝜌𝜌
�𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦�� 

𝐷𝐷4∗ = �𝑔𝑔𝑥𝑥𝑥𝑥 =
1
𝑠𝑠𝑦𝑦

1 − 𝜌𝜌2

𝜌𝜌
��
𝑛𝑛𝑖𝑖𝑦𝑦
𝑛𝑛𝑖𝑖
� �𝑦𝑦�𝑖𝑖𝑦𝑦 − 𝑦𝑦�𝑖𝑖𝑥𝑥𝑦𝑦� − �

𝑛𝑛𝑐𝑐𝑦𝑦
𝑛𝑛𝑐𝑐
� �𝑦𝑦�𝑐𝑐𝑦𝑦 − 𝑦𝑦�𝑐𝑐𝑥𝑥𝑦𝑦���. 

The formulas in C1* – C4* and D1* – D4* reduce to C1 – C4 and D1 – D4 when there are 
no missing outcome data. 
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A. Conceptual Background for Rating CACE Estimates when Attrition is Low  
1. Criterion 1: No Clear Violations of the Exclusion Restriction 

Under the exclusion restriction, the only channel through which assignment to the 
intervention or comparison groups can influence outcomes is by affecting take-up of the 
intervention being studied (Angrist et al., 1996). The exclusion restriction implies that always-
takers in the intervention and comparison groups should not differ in outcomes because their 
assignment status did not influence their take-up status; likewise, never-takers in the intervention 
and comparison groups should not differ in outcomes. When this condition does not hold, group 
differences in outcomes would be attributed to the effects of taking up the intervention when 
they may be attributable to other factors differing between the intervention and comparison 
groups.  

The exclusion restriction cannot be completely verified, as it is impossible to determine 
whether the effects of assignment on outcomes are mediated through unobserved channels. 
However, it is possible to identify clear violations of the exclusion restriction—in particular, 
situations in which groups face different circumstances beyond their differing take-up of the 
intervention of interest. 

Existing WWC standards that prohibit “confounding factors”—factors that differ completely 
between the assigned groups—already rule out many violations of the exclusion restriction. For 
example, if groups differ in their eligibility for interventions other than the intervention being 
studied, the implied violation of the exclusion restriction is also a confounding factor that, under 
current WWC group design standards, would cause a study to be rated Does Not Meet WWC 
Group Design Standards. 

One scenario that does not represent a confounding factor in ITT studies would be a 
violation of the exclusion restriction. The exclusion restriction would be violated if take-up was 
defined inconsistently between the assigned intervention group and assigned comparison group. 
For example, suppose that take-up in the assigned intervention group was defined as enrolling in 
the intervention being studied (such as an intensive afterschool program), whereas take-up in the 
assigned comparison group was defined as enrolling in the specified intervention or “similar” 
interventions (such as attending any program after school). In this case, differences in outcomes 
between assigned groups might not be attributable solely to differences in rates of take-up as 
defined by the study because the two take-up rates measure different concepts. 

Another violation of the exclusion restriction that does not necessarily stem from a 
confounding factor is the scenario in which assignment to the intervention group changes the 
behavior of subjects even if they do not take up the intervention itself. For example, in an 
experiment to test the effectiveness of requiring unemployed workers to receive job-search and 
training services, assignment to the intervention group might motivate subjects to search for a 
job to avoid having to participate in the intervention services. In this case, the intervention 
assignment might have effects on outcomes through channels other than the take-up rate. 
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Judgment is required to determine whether a potential unintended channel for group status to 
influence outcomes is important enough to undermine the internal validity of a CACE estimate. 
Under this guidance, the WWC’s lead methodologist for a review has the responsibility to make 
this judgment. 

2. Criterion 2: Sufficient Instrument Strength 
The condition of sufficient instrument strength requires that the group assignment indicators 

(the instrumental variables) collectively serve as strong predictors of take-up (the endogenous 
independent variable). As discussed next, this condition is necessary for conventional statistical 
tests based on 2SLS estimators to have low type I (false positive) error rates. 

The need for sufficient instrument strength stems from the statistical properties of 2SLS 
estimators. An extensive statistical literature has demonstrated that, in finite samples, 2SLS 
estimators of CACE impacts include part of the bias of OLS estimates (Richardson, 1968; Sawa, 
1969; Basmann, 1974; Nelson & Startz, 1990; Buse, 1992; Bound et al., 1995; Bloom et al., 
2010).32 Moreover, in finite samples, 2SLS estimators do not have a normal distribution—the 
distribution typically used to construct confidence intervals. For these reasons, conventional 
statistical tests—such as t-tests and F-tests—based on 2SLS estimators in finite samples have 
actual type I error rates that generally are higher than the assumed type I error rates (Stock & 
Yogo, 2005). For instance, a t-test conducted at an assumed 5 percent significance level will 
have an actual type I error rate exceeding 5 percent. 

The bias issue with 2SLS estimators shrinks as the instruments become stronger predictors 
of the endogenous independent variable. An instrument is considered a stronger predictor of an 
endogenous independent variable if (1) the association between the instrument and endogenous 
independent variable is larger, or (2) the association is more precisely estimated. In the context 
of estimating CACE effects, group status is a stronger instrument when group take-up rates differ 
more and when sample sizes are larger. 

Instruments also must be strong enough for statistical tests of 2SLS estimators to have 
“acceptably” low type I error rates. As instruments become stronger, the probability distributions 
of 2SLS estimators converge to normal distributions centered on the true CACE impact. Type I 
error rates follow suit and converge to their assumed levels. We put “acceptably” in quotes 
because defining what is acceptable requires its own standard, which we explain below. 

Selecting the maximum tolerable type I error rate is the first step in establishing a criterion 
for sufficient instrument strength. WWC standards do not provide a precedent for acceptable 
rates of type I error but do provide a precedent for acceptable levels of bias in impact estimates, 
which is 0.05 standard deviations. We use this precedent to set acceptable type I error rates. In 

32 As discussed by Bloom et al. (2010), the finite-sample bias of IV estimators originates from sampling error. Due 
to finite samples, random assignment will produce intervention and comparison groups that, by chance, are not fully 
identical on the characteristics of group members. Some of these unobserved characteristics exert influences on both 
take-up and outcomes. For illustrative purposes, suppose take-up and outcomes are positively correlated due to these 
unobserved influences. When sampling error leads to greater (or smaller) differences in take-up between the 
intervention and comparison groups, greater (or smaller) differences in outcomes arise. Although both types of 
differences result from random imbalances, the differences are systematically related, creating a spurious association 
between take-up and outcomes. 
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the next section, we present a statistical framework that links type I error rates to estimation bias. 
Using this framework, for a t-test whose assumed type I error rate is 0.05, ensuring a bias of less 
than 0.05 standard deviations implies actual type I error rates of less than 0.10. Thus, the 
guidelines for instrument strength specified here are based on an upper limit of 0.10 for the type I 
error rate. 

B. Linking CACE Estimation Bias With Type I Error Rates  
Here, we provide a statistical framework for deriving the relationship between the bias of an 

impact estimator and the estimator’s type I error rate. We focus on a conventional t-test. In this 
framework, setting a maximum tolerable bias—for which there is precedent in WWC 
standards—implies setting a maximum tolerable type I error rate.  

Consider a situation in which the true impact of an intervention, 1β , is zero. A biased 

estimator of this impact, 1̂
biasedβ , will have a distribution centered on a value different from zero. 

Larger bias increases type I error; as the distribution of the estimator lies further away from zero, 
there is a greater likelihood of incorrectly rejecting the hypothesis of a zero impact (assuming 
correct variances are estimated). 

To derive the relationship between bias and type I error rates, we cannot use the distribution 
of the 2SLS estimator, because its distribution has neither an expected value (when only one 
instrument is employed) nor a familiar distribution in finite samples (Stock et al., 2002). Instead, 
we consider a generic estimator expressed in effect size units, 1̂

biasedβ . It is distributed normally 
with expected value equal to  standard deviations when the true impact is zero. The 
probability of a type I error using a 5 percent significance test is 

0b >

D-4 

(B.1) 
( ) ( )

1 1
0.975 0.025

1 1

ˆ ˆ
Type I Error Rate Pr Pr

ˆ ˆ

biased biased

biased biased
z z

SE SE
β β
β β

   
   = > + <
   
   

 

 
( ) ( ) ( ) ( )

1 1
0.975 0.025

1 1 1 1

ˆ ˆ
Pr Pr

ˆ ˆ ˆ ˆ

biased biased

biased biased biased biased

b bb bz z
SE SE SE SE
β β

β β β β

      − −      = > − + < −
               

 

   
( ) ( )0.975 0.025

1 1

1
ˆ ˆbiased biased

b bz z
SE SEβ β

   
   = −Φ − +Φ −
   
   

 

where ( )SE •  denotes the standard error of an estimator, qz  is the qth quantile of the standard 

normal distribution, and ( )Φ •  is the cumulative distribution function of the standard normal 
distribution. 
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Equation (B.1) provides the relationship between the type I error rate and bias as long as the 
standard error of the biased estimator is known. Therefore, to specify this relationship fully, we 
must pick a value for the standard error. The standard error can vary depending on sample size, 
covariates, degree of clustering, and other factors. Picking a standard error essentially entails 
choosing a “benchmark” level of precision to complete the specification of Equation (B.1). 

As the benchmark, we assume a level of precision corresponding to a study for which the 
minimum detectable effect size (MDES) is 0.25 standard deviations, the WWC threshold for 
substantively important effects. A value for MDES, in turn, directly implies a value for the 
standard error. Specifically, the minimum effect size that can be detected using a two-tailed test 
at a 5 percent significance level with 80 percent power can be expressed as a function of the 
standard error (SE), as follows (see Bloom, 2004): 

(B.2) 1 1(1 0.05 / 2) (0.8) 2.802MDES SE SE− − = Φ − +Φ × = ×  . 

Using Equation (B.2), a study designed to have an MDES of 0.25 is expected to have a 
standard error of 0.09 standard deviations (= 0.25 / 2.802). 

By substituting the benchmark standard error, 0.09 standard deviations, for 1̂( )biasedSE β  in 
Equation (B.1), we completely specify the relationship between the type I error rate and the 
amount of bias. Equation (B.1) becomes 

(B.1’) ( ) ( )0.975 0.025Type I Error Rate 1 / 0.09 / 0.09z b z b= −Φ − +Φ − . 

The final step is to substitute into equation (B.1’) a value for b that represents the maximum 
tolerable bias. As discussed earlier, the maximum value for b that is acceptable to the WWC is 
0.05 standard deviations. Setting b = 0.05 in equation (B.1’), we obtain a maximum tolerable 
type I error rate equal to 

Maximum Tolerable Type I Error Rate 0.975 0.0251 ( 0.05 / 0.09) ( 0.05 / 0.09) 0.086z z= −Φ − +Φ − = . 

The maximum tolerable type I error rate then determines the minimum required first-stage 
F-statistic for sufficient instrument strength. For a given number of instruments, Stock and Yogo 
(2005) calculate several different values for the minimum required first-stage F-statistic, 
depending on whether the maximum tolerable type I error rate is 0.10, 0.15, 0.20, or 0.25. For 
setting the WWC standard, our preceding calculations yield a maximum tolerable type I error 
rate of 0.086, which we round to 0.10, the closest value addressed by Stock and Yogo (2005). 
We then use this value to produce values for the minimum required first-stage F-statistic based 
on Stock and Yogo’s (2005) calculations. 
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C. Calculating Attrition and Baseline Differences When There Are Three or More 
Groups To Which Each Sample Member Could Be randomly Assigned in a CACE 
Analysis  

1. Calculating Attrition 
Chapter II.D of these standards provided formulas for calculating the overall and differential 

attrition rate for compliers when there are two assigned groups (the intervention group and 
comparison group). Here, we consider the scenario in which there are three or more groups to 
which each sample member could be randomly assigned (for instance, a group that is ineligible 
for the intervention, a group that has low priority for the intervention, and a group that has high 
priority for the intervention). Even though there are multiple assigned groups, there is still only a 
single intervention being studied, so there is still only a single measure of take-up—a binary 
variable for taking up any portion of the intervention. 

First, we order the assigned groups with the index k = 0, 1, 2,…K from lowest to highest 
take-up rate. We also make a monotonicity assumption (Imbens & Angrist, 1994): any sample 
member who would take up the intervention if assigned to group k would also take up the 
intervention if assigned to a group ordered after k. For each comparison between group (k – 1) 
and group k, compliers are defined as those who would take up the intervention if assigned to 
group k but not if assigned to group (k – 1). The 2SLS estimator of the CACE is a weighted 
average of complier impacts across these comparisons, with weights given by Imbens and 
Angrist (1994). Therefore, our method for calculating attrition follows the same approach: We 
calculate attrition (both overall and differential) for each comparison between consecutively 
ordered groups, and then take a weighted average across those comparisons, using the same 
weights as those in the 2SLS estimator. 

Specifically, let , 1
ˆ complier

k k−∆  be the differential attrition rate for compliers pertaining to the 
comparison between groups (k – 1) and k, based on applying Equation (D.1). The final 
differential attrition rate for all compliers, ˆ complier

final∆ , is calculated as 

(B.3) , 11

1

ˆ
ˆ

K complier
k k kcomplier k

final K
kk

λ

λ
−=

=

∆
∆ =∑

∑
 

where 𝜆𝜆𝑘𝑘 is the weight on the comparison between groups (k – 1) and k. Imbens and Angrist 
(1994) derive the weight to be 

(B.4) ( ) ( )k , 1, ,
K t

k ran k ran l ran ranl k

ND D D D
N

λ − =
= − −∑ . 

where ,k ranD  is the take-up rate for sample members assigned to group k, ranD  is the take-up rate 

in the entire randomly assigned sample, kN  is the number of sample members assigned to group 
k, and 𝑁𝑁 is the total number of sample members in the entire randomly assigned sample. 
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For calculating overall attrition, the same weights are used to take a weighted average of the 
overall complier attrition rates across all comparisons.  

2. Calculating Baseline Differences 
The final calculation of a baseline difference (on a characteristic specified in the protocol) 

follows a similar approach as that used for calculating attrition. For each comparison between 
groups (k – 1) and k, we use Equation (II.5) to calculate the baseline difference for compliers in 
the analytic sample. We then take a weighted average of those baseline differences. The weight 
on each comparison is again specified by Equation (B.4), except that all sample sizes and take-up 
rates are calculated from the analytic sample, not the original randomly assigned sample. 
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