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SINGLE-CASE DESIGNS TECHNICAL DOCUMENTATION 

In an effort to expand the pool of scientific evidence available for review, the What Works 
Clearinghouse (WWC) assembled a panel of national experts in single-case design (SCD) and 
analysis to draft SCD Standards. In this paper, the panel provides an overview of SCDs, specifies 
the types of questions that SCDs are designed to answer, and discusses the internal validity of 
SCDs. The panel then proposes SCD Standards to be implemented by the WWC. The Standards 
are bifurcated into Design and Evidence Standards (see Figure 1). The Design Standards evaluate 
the internal validity of the design. Reviewers assign the categories of Meets Standards, Meets 
Standards with Reservations and Does not Meet Standards to each study based on the Design 
Standards. Reviewers trained in visual analysis will then apply the Evidence Standards to studies 
that meet standards (with or without reservations), resulting in the categorization of each 
outcome variable as demonstrating Strong Evidence, Moderate Evidence, or No Evidence.  

A. OVERVIEW OF SINGLE-CASE DESIGNS 

SCDs are adaptations of interrupted time-series designs and can provide a rigorous 
experimental evaluation of intervention effects (Horner & Spaulding, in press; Kazdin, 1982, in 
press; Kratochwill, 1978; Kratochwill & Levin, 1992; Shadish, Cook, & Campbell, 2002). 
Although the basic SCD has many variations, these designs often involve repeated, systematic 
measurement of a dependent variable before, during, and after the active manipulation of an 
independent variable (e.g., applying an intervention). SCDs can provide a strong basis for 
establishing causal inference, and these designs are widely used in applied and clinical 
disciplines in psychology and education, such as school psychology and the field of special 
education. 

SCDs are identified by the following features:  

• An individual “case” is the unit of intervention and unit of data analysis (Kratochwill 
& Levin, in press). A case may be a single participant or a cluster of participants (e.g., 
a classroom or a community). 

• Within the design, the case provides its own control for purposes of comparison. For 
example, the case’s series of outcome variables are measured prior to the intervention 
and compared with measurements taken during (and after) the intervention.  

• The outcome variable is measured repeatedly within and across different conditions 
or levels of the independent variable. These different conditions are referred to as 
phases (e.g., baseline phase, intervention phase). 

As experimental designs, a central goal of SCDs is to determine whether a causal relation 
(i.e., functional relation) exists between the introduction of a researcher-manipulated 
independent variable (i.e., an intervention) and change in a dependent (i.e., outcome) variable 
(Horner & Spaulding, in press; Levin, O'Donnell, & Kratochwill, 2003). Experimental control 
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involves replication of the intervention in the experiment and this replication is addressed with 
one of the following methods (Horner, et al., 2005): 

• Introduction and withdrawal (i.e., reversal) of the independent variable (e.g., ABAB 
design) 

• Iterative manipulation of the independent variable across different observational 
phases (e.g., alternating treatments design)  

• Staggered introduction of the independent variable across different points in time 
(e.g., multiple baseline design) 

SCDs have many variants. Although flexible and adaptive, a SCD is shaped by its research 
question(s) and objective(s) which must be defined with precision, taking into consideration the 
specifics of the independent variable tailored to the case(s), setting(s), and the desired 
outcome(s) (i.e., a primary dependent variable). For example, if the dependent variable is 
unlikely to be reversed after responding to the initial intervention, then an ABAB reversal design 
would not be appropriate, whereas a multiple baseline design across cases would be appropriate. 
Therefore, the research question generally drives the selection of an appropriate SCD. 

B. CAUSAL QUESTIONS THAT SCDS ARE DESIGNED TO ANSWER 

The goal of a SCD is usually to answer “Is this intervention more effective than the current 
“baseline” or “business-as-usual” condition?” SCDs are particularly appropriate for 
understanding the responses of one or more cases to an intervention under specific conditions 
(Horner & Spaulding, in press). SCDs are implemented when pursuing the following research 
objectives (Horner et al., 2005): 

• Determining whether a causal relation exists between the introduction of an 
independent variable and a change in the dependent variable. For example, a research 
question might be “Does Intervention B reduce a problem behavior for this case (or 
these cases)?” 

• Evaluating the effect of altering a component of a multi-component independent 
variable on a dependent variable. For example, a research question might be “Does 
adding Intervention C to Intervention B further reduce a problem behavior for this 
case (or these cases)?” 

• Evaluating the relative effects of two or more independent variables (e.g., alternating 
treatments) on a dependent variable. For example, a research question might be “Is 
Intervention B or Intervention C more effective in reducing a problem behavior for 
this case (or these cases)?” 
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SCDs are especially appropriate for pursuing research questions in applied and clinical 
fields. This application is largely because disorders with low prevalence may be difficult to study 
with traditional group designs that require a large number of participants for adequate statistical 
power (Odom, et al., 2005). Further, in group designs, the particulars of who responded to an 
intervention under which conditions might be obscured when reporting only group means and 
associated effect sizes (Horner et al. 2005). SCDs afford the researcher an opportunity to provide 
detailed documentation of the characteristics of those cases that did respond to an intervention 
and those that did not (i.e., nonresponders). For this reason, the panel recommends that What 
Works Clearinghouse (WWC) reviewers systematically specify the conditions under which an 
intervention is and is not effective for cases being considered, if this information is available in 
the research report. 

Because the underlying goal of SCDs is most often to determine “Which intervention is 
effective for this case (or these cases)?” the designs are intentionally flexible and adaptive. For 
example, if a participant is not responding to an intervention, then the independent variables can 
be manipulated while continuing to assess the dependent variable (Horner et al., 2005). Because 
of the adaptive nature of SCD designs, nonresponders might ultimately be considered 
“responders” under particular conditions.1

C. THREATS TO INTERNAL VALIDITY IN SINGLE-CASE DESIGN

 In this regard, SCDs provide a window into the 
process of participant change. SCDs can also be flexible in terms of lengthening the number of 
data points collected during a phase to promote a stable set of observations, and this feature may 
provide additional insight into participant change.  

2

Similar to group randomized controlled trial designs, SCDs are structured to address major 
threats to internal validity in the experiment. Internal validity in SCDs can be improved through 
replication and/or randomization (Kratochwill & Levin, in press). Although it is possible to use 
randomization in structuring experimental SCDs, these applications are still rare. Unlike most 
randomized controlled trial group intervention designs, most single-case researchers have 
addressed internal validity concerns through the structure of the design and systematic 
replication of the effect within the course of the experiment (e.g., Hersen & Barlow, 1976; 
Horner et al., 2005; Kazdin, 1982; Kratochwill, 1978; Kratochwill & Levin, 1992). The former 
(design structure, discussed in the Standards as “Criteria for Designs…”) can be referred to as 
“methodological soundness” and the latter (effect replication, discussed in the Standards as 
“Criteria for Demonstrating Evidence…”) is a part of what can be called “evidence credibility” 
(see, for example, Kratochwill & Levin, in press).   

 

In SCD research, effect replication is an important mechanism for controlling threats to 
internal validity and its role is central for each of the various threats discussed below. In fact, the 

                                                 
1 WWC Principal Investigators (PIs) will need to consider whether variants of interventions constitute distinct 

interventions. Distinct interventions will be evaluated individually with the SCD Standards. For example, if the 
independent variable is changed during the course of the study, then the researcher must begin the replication series 
again to meet the design standards. 

2 Prepared by Thomas Kratochwill with input from Joel Levin, Robert Horner, and William Shadish. 
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replication criterion discussed by Horner et al. (2005, p. 168) represents a fundamental 
characteristic of SCDs: “In most [instances] experimental control is demonstrated when the 
design documents three demonstrations of the experimental effect at three different points in 
time with a single case (within-case replication), or across different cases (inter-case replication) 
(emphasis added).” As these authors note, an experimental effect is demonstrated when the 
predicted changes in the dependent measures covary with manipulation of the independent 
variable. This criterion of three replications has been included in the Standards for designs to 
“meet evidence” standards. Currently, there is no formal basis for the “three demonstrations” 
recommendation; rather, it represents a conceptual norm in published articles, research, and 
textbooks that recommend methodological standards for single-case experimental designs 
(Kratochwill & Levin, in press). 

Important to note are the terms level, trend and variability. “Level” refers to the mean score 
for the data within a phase. “Trend” refers to the slope of the best-fitting straight line for the data 
within a phase, and “variability” refers to the fluctuation of the data (as reflected by the data’s 
range or standard deviation) around the mean. See pages 17-20 for greater detail.  

Table 1, adapted from Hayes (1981) but without including the original “design type” 
designations, presents the three major types of SCDs and their variations. In AB designs, a case’s 
performance is measured within each condition of the investigation and compared between or 
among conditions. In the most basic two-phase AB design, the A condition is a baseline or 
preintervention series/phase and the B condition is an intervention series/phase. It is difficult to 
draw valid causal inferences from traditional two-phase AB designs because the lack of 
replication in such designs makes it more difficult to rule out alternative explanations for the 
observed effect (Kratochwill & Levin, in press). Furthermore, repeating an AB design across 
several cases in separate or independent studies would typically not allow for drawing valid 
inferences from the data (Note: this differs from multiple baseline designs, described below, 
which introduce the intervention at different points in time). The Standards require a minimum 
of four A and B phases, such as the ABAB design. 

There are three major classes of SCD that incorporate phase repetition, each of which can 
accommodate some form of randomization to strengthen the researcher’s ability to draw valid 
causal inferences (see Kratochwill & Levin, in press, for discussion of such randomization 
applications). These design types include the ABAB design (as well as the changing criterion 
design, which is considered a variant of the ABAB design), the multiple baseline design, and the 
alternating treatments design. Valid inferences associated with the ABAB design are tied to the 
design’s structured repetition. The phase repetition occurs initially during the first B phase, again 
in the second A phase, and finally in the return to the second B phase (Horner et al., 2005). This 
design and its effect replication standard can be extended to multiple repetitions of the treatment 
(e.g., ABABABAB) and might include multiple treatments in combination that are introduced in 
a repetition sequence as, for example, A/(B+C)/A/(B+C)/A (see Table 1). In the case of the 
changing criterion design, the researcher begins with a baseline phase and then schedules a series 
of criterion changes or shifts that set a standard for participant performance over time. The 
criteria are typically pre-selected and change is documented by outcome measures changing with 
the criterion shifts over the course of the experiment. 
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TABLE 1 

EXAMPLE SINGLE-CASE DESIGNS AND ASSOCIATED CHARACTERISTICS 

Representative Example Designs Characteristics 

Simple phase change designs [e.g., ABAB; BCBC 
and the changing criterion design].* (In the 
literature, ABAB designs are sometimes referred 
to as withdrawal designs, intrasubject replication 
designs, or reversal designs) 

In these designs, estimates of level, trend, and variability 
within a data series are assessed under similar conditions; the 
manipulated variable is introduced and concomitant changes 
in the outcome measure(s) are assessed in the level, trend, and 
variability between phases of the series, with special attention 
to the degree of overlap, immediacy of effect, and similarity 
of data patterns in similar phases (e.g., all baseline phases). 

Complex phase change [e.g., interaction element: 
B(B+C)B; C(B+C)C]  

In these designs, estimates of level, trend, and variability in a 
data series are assessed on measures within specific conditions 
and across time.  

Changing criterion design In this design the researcher examines the outcome measure to 
determine if it covaries with changing criteria that are 
scheduled in a series of predetermined steps within the 
experiment. An A phase is followed by a series of B phases 
(e.g., B1, B2, B3…BT), with the Bs implemented with 
criterion levels set for specified changes. Changes/ differences 
in the outcome measure(s) are assessed by comparing the 
series associated with the changing criteria. 

Alternating treatments (In the literature, alternating 
treatment designs are sometimes referred to as part 
of a class of multi-element designs) 

In these designs, estimates of level, trend, and variability in a 
data series are assessed on measures within specific conditions 
and across time. Changes/differences in the outcome 
measure(s) are assessed by comparing the series associated 
with different conditions. 

Simultaneous treatments (in the literature 
simultaneous treatment designs are sometimes 
referred to as concurrent schedule designs).  

In these designs, estimates of level, trend, and variability in a 
data series are assessed on measures within specific conditions 
and across time. Changes/differences in the outcome 
measure(s) are assessed by comparing the series across 
conditions. 

Multiple baseline (e.g., across cases, across 
behaviors, across situations) 

In these designs, multiple AB data series are compared and 
introduction of the intervention is staggered across time. 
Comparisons are made both between and within a data series. 
Repetitions of a single simple phase change are scheduled, 
each with a new series and in which both the length and 
timing of the phase change differ across replications. 

Source: Adapted from Hayes (1981) and Kratochwill & Levin (in press). To be reproduced with permission. 

* A represents a baseline series; “B” and “C” represent two different intervention series. 
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Another variation of SCD methodology is the alternating treatments design, which relative 
to the ABAB and multiple baseline designs potentially allows for more rapid comparison of two 
or more conditions (Barlow & Hayes, 1979; Hayes, Barlow, & Nelson-Gray, 1999). In the 
typical application of the design, two separate interventions are alternated following the baseline 
phase. The alternating feature of the design occurs when, subsequent to a baseline phase, the 
interventions are alternated in rapid succession for some specified number of sessions or trials. 
As an example, Intervention B could be implemented on one day and Intervention C on the next, 
with alternating interventions implemented over multiple days. In addition to a direct comparison 
of two interventions, the baseline (A) condition could be continued and compared with each 
intervention condition in the alternating phases. The order of this alternation of interventions 
across days may be based on either counterbalancing or a random schedule. Another variation, 
called the simultaneous treatment design (sometimes called the concurrent schedule design), 
involves exposing individual participants to the interventions simultaneously, with the 
participant’s differential preference for the two interventions being the focus of the investigation. 
This latter design is used relatively infrequently in educational and psychological research, 
however. 

The multiple baseline design involves an effect replication option across participants, 
settings, or behaviors. Multiple AB data series are compared and introduction of the intervention 
is staggered across time. In this design, more valid causal inferences are possible by staggering 
the intervention across one of the aforementioned units (i.e., sequential introduction of the 
intervention across time). The minimum number of phase repetitions needed to meet the standard 
advanced by Horner et al. (2005) is three, but four or more is recognized as more desirable (and 
statistically advantageous in cases in which, for example, the researcher is applying a 
randomization statistical test). Adding phase repetitions increases the power of the statistical test, 
similar to adding participants in a traditional group design (Kratochwill & Levin, in press). The 
number and timing of the repetitions can vary, depending on the outcomes of the intervention. 
For example, if change in the dependent variable is slow to occur, more time might be needed to 
demonstrate experimental control. Such a circumstance might also reduce the number of phase 
repetitions that can be scheduled due to cost and logistical factors. Among the characteristics of 
this design, effect replication across series is regarded as the characteristic with the greatest 
potential for enhancing internal and statistical-conclusion validity (see, for example, Levin, 
1992). 

Well-structured SCD research that embraces phase repetition and effect replication can rule 
out major threats to internal validity. The possible threats to internal validity in single-case 
research include the following (see also Shadish et al., 2002, p. 55): 

1. Ambiguous Temporal Precedence: Lack of clarity about which variable occurred 
first may yield confusion about which variable is the cause and which is the effect. 
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Embedded in the SCD Standards is a criterion that the independent variable is actively 
manipulated by the researcher, with measurement of the dependent variable occurring after that 
manipulation. This sequencing ensures the presumed cause precedes the presumed effect. A SCD 
cannot meet Standards unless there is active manipulation of the independent variable.3

Replication of this manipulation-measurement sequence in the experiment further 
contributes to an argument of unidirectional causation (Shadish et al., 2002). Effect replication, 
as specified in the Standards, can occur either through within-case replication or multiple-case 
replication in a single experiment, or by conducting two or more experiments with the same or 
highly similar intervention conditions included. The Standards specify that the study must show 
a minimum of three demonstrations of the effect through the use of the same design and 
procedures. Overall, studies that can meet standards are designed to mitigate the threat of 
ambiguous temporal precedence. 

 

2. Selection: Systematic differences between/among conditions in participant 
characteristics could cause the observed effect. 

In most single-case research, selection is generally not a concern because one participant is 
exposed to both (or all) of the conditions of the experiment (i.e., each case serves as its own 
control, as noted in features for identifying a SCD in the Standards). However, there are some 
conditions under which selection might affect the design’s internal validity. First, in SCDs that 
involve two or more between-case intervention conditions comprised of intact “units” (e.g., 
pairs, small groups, and classrooms), differential selection might occur. The problem is that the 
selected units might differ in various respects before the study begins. Because in most single-
case research the units are not randomly assigned to the experiment’s different intervention 
conditions, selection might then be a problem. This threat can further interact with other 
invalidating influences so as to confound variables (a methodological soundness problem) and 
compromise the results (an evidence credibility problem). Second, the composition of intact units 
(i.e., groups) can change (generally decrease in size, as a result of participant attrition) over time 
in a way that could compromise interpretations of a treatment effect. This is a particular concern 
when within-group individual participants drop out of a research study in a treatment-related 
(nonrandom) fashion (see also No. 6 below). The SCD Standards address traditional SCDs and 
do not address between-case group design features (for Standards for group designs, see the 
WWC Handbook). Third, in the multiple baseline design across cases, selection might be an 
issue when different cases sequentially begin the intervention based on “need” rather than on a 
randomly determined basis (e.g., a child with the most serious behavior problem among several 
candidate participants might be selected to receive the treatment first, thereby weakening the 
study’s external validity). 

                                                 
3 Manipulation of the independent variable is usually either described explicitly in the Method section of 

the text of the study or inferred from the discussion of the results. Reviewers will be trained to identify cases in 
which the independent variable is not actively manipulated and in that case, a study Does Not Meet Standards. 
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3. History: Events occurring concurrently with the intervention could cause the 
observed effect. 

History is typically the most important threat to any time series, including SCDs. This is 
especially the case in ex post facto single-case research because the researcher has so little ability 
to investigate what other events might have occurred in the past and affected the outcome, and in 
simple (e.g., ABA) designs, because one need find only a single plausible alternative event about 
the same time as treatment. The most problematic studies, for example, typically involve 
examination of existing databases or archived measures in some system or institution (such as a 
school, prison, or hospital). Nevertheless, the study might not always be historically confounded 
in such circumstances; the researcher can investigate the conditions surrounding the treatment 
and build a case implicating the intervention as being more plausibly responsible for the 
observed outcomes relative to competing factors. Even in prospective studies, however, the 
researcher might not be the only person trying to improve the outcome. For instance, the patient 
might make other outcome-related changes in his or her own life, or a teacher or parent might 
make extra-treatment changes to improve the behavior of a child. SCD researchers should be 
diligent in exploring such possibilities. However, history threats are lessened in single-case 
research that involves one of the types of phase repetition necessary to meet standards (e.g., the 
ABAB design discussed above). Such designs reduce the plausibility that extraneous events 
account for changes in the dependent variable(s) because they require that the extraneous events 
occur at about the same time as the multiple introductions of the intervention over time, which is 
less likely to be true than is the case when only a single intervention is done. 

4. Maturation: Naturally occurring changes over time could be confused with an 
intervention effect. 

In single-case experiments, because data are gathered across time periods (for example, 
sessions, days, weeks, months, or years), participants in the experiment might change in some 
way due to the passage of time (e.g., participants get older, learn new skills). It is possible that 
the observed change in a dependent variable is due to these natural sources of maturation rather 
than to the independent variable. This threat to internal validity is accounted for in the Standards 
by requiring not only that the design document three replications/demonstrations of the effect, 
but that these effects must be demonstrated at a minimum of three different points in time. As 
required in the Standards, selection of an appropriate design with repeated assessment over time 
can reduce the probability that maturation is a confounding factor. In addition, adding a control 
series (i.e., an A phase or control unit such as a comparison group) to the experiment can help 
diagnose or reduce the plausibility of maturation and related threats (e.g., history, statistical 
regression). For example, see Shadish and Cook (2009). 

5. Statistical Regression (Regression toward the Mean): When cases (e.g., single 
participants, classrooms, schools) are selected on the basis of their extreme scores, 
their scores on other measured variables (including re-measured initial variables) 
typically will be less extreme, a psychometric occurrence that can be confused with 
an intervention effect. 
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In single-case research, cases are often selected because their pre-experimental or baseline 
measures suggest high need or priority for intervention (e.g., immediate treatment for some 
problem is necessary). If only pretest and posttest scores were used to evaluate outcomes, 
statistical regression would be a major concern. However, the repeated assessment identified as a 
distinguishing feature of SCDs in the Standards (wherein performance is monitored to evaluate 
level, trend, and variability, coupled with phase repetition in the design) makes regression easy 
to diagnose as an internal validity threat. As noted in the Standards, data are repeatedly collected 
during baseline and intervention phases and this repeated measurement enables the researcher to 
examine characteristics of the data for the possibility of regression effects under various 
conditions. 

6. Attrition: Loss of respondents during a single-case time-series intervention study can 
produce artifactual effects if that loss is systematically related to the experimental 
conditions. 

Attrition (participant dropout) can occur in single-case research and is especially a concern 
under at least three conditions. First, premature departure of participants from the experiment 
could render the data series too short to examine level, trend, variability, and related statistical 
properties of the data, which thereby may threaten data interpretation. Hence, the Standards 
require a minimum of five data points in a phase to meet evidence standards without 
reservations. Second, attrition of one or more participants at a critical time might compromise the 
study’s internal validity and render any causal inferences invalid; hence, the Standards require a 
minimum of three phase repetitions to meet evidence standards. Third, in some single-case 
experiments, intact groups comprise the experimental units (e.g., group-focused treatments, 
teams of participants, and classrooms). In such cases, differential attrition of participants from 
one or more of these groups might influence the outcome of the experiment, especially when the 
unit composition change occurs at the point of introduction of the intervention. Although the 
Standards do not automatically exclude studies with attrition, reviewers are asked to attend to 
attrition when it is reported. Reviewers are encouraged to note that attrition can occur when (1) 
an individual fails to complete all required phases of a study, (2) the case is a group and 
individuals attrite from the group or (3) the individual does not have adequate data points within 
a phase. Reviewers should also note when the researcher reports that cases were dropped and 
record the reason for that (for example, being dropped for nonresponsiveness to treatment). To 
monitor attrition through the various phases of single-case research, reviewers are asked to apply 
a template embedded in the coding guide similar to the flow diagram illustrated in the 
CONSORT Statement (Moher, Schulz, & Altman, 2001) and adopted by the American 
Psychological Association for randomized controlled trials research (APA Publications and 
Communications Board Working Group on Journal Article Reporting Standards, 2008). See 
Appendix A for the WWC SCD attrition diagram. Attrition noted by reviewers should be 
brought to the attention of principal investigators (PIs) to assess whether the attrition may impact 
the integrity of the study design or evidence that is presented.  

7. Testing: Exposure to a test can affect scores on subsequent exposures to that test, an 
occurrence that can be confused with an intervention effect. 
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In SCDs, there are several different possibilities for testing effects—in particular, many 
measurements are likely to be “reactive” when administered repeatedly over time. For example, 
continuous exposure of participants to some curriculum measures might improve their 
performance over time. Sometimes the assessment process itself influences the outcomes of the 
study, such as when direct classroom observation causes change in student and teacher 
behaviors. Strategies to reduce or eliminate these influences have been proposed (Cone, 2001). 
In single-case research, the repeated assessment of the dependent variable(s) across phases of the 
design can help identify this potential threat. The effect replication standard can enable the 
researcher to reduce the plausibility of a claim that testing per se accounted for the intervention 
effect (see Standards).  

8. Instrumentation: The conditions or nature of a measure might change over time in a 
way that could be confused with an intervention effect. 

Confounding due to instrumentation can occur in single-case research when changes in a 
data series occur as a function of changes in the method of assessing the dependent variable over 
time. One of the most common examples occurs when data are collected by assessors who 
change their method of assessment over phases of the experiment. Such factors as reactivity, 
drift, bias, and complexity in recording might influence the data and implicate instrumentation as 
a potential confounding influence. Reactivity refers to the possibility that observational scores 
are higher as a result of the researcher monitoring the observers or observational process. 
Observer drift refers to the possibility that observers may change their observational definitions 
of the construct being measured over time, thereby not making scores comparable across phases 
of the experiment. Observational bias refers to the possibility that observers may be influenced 
by a variety of factors associated with expected or desired experimental outcomes, thereby 
changing the construct under assessment. Complexity may influence observational assessment in 
that more complex observational codes present more challenges than less complex codes with 
respect to obtaining acceptable levels of observer agreement. Numerous recommendations to 
control these factors have been advanced and can be taken into account (Hartmann, Barrios, & 
Wood, 2004; Kazdin, 1982).  

9. Additive and Interactive Effects of Threats to Internal Validity: The impact of a 
threat can be added to that of another threat or may be moderated by levels of another 
threat. 

In SCDs the aforementioned threats to validity may be additive or interactive. Nevertheless, 
the “Criteria for Designs that Meet Evidence Standards” and the “Criteria for Demonstrating 
Evidence of a Relation between an Independent and an Outcome Variable” have been crafted 
largely to address the internal validity threats noted above. Further, reviewers are encouraged to 
follow the approach taken with group designs, namely, to consider other confounding factors that 
might have a separate effect on the outcome variable (i.e., an effect that is not controlled for by 
the study design). Such confounding factors should be discussed with PIs to determine whether 
the study Meets Standards.  
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D. THE SINGLE-CASE DESIGN STANDARDS 

The PI within each topic area will: (1) define the independent and outcome variables under 
investigation,4 (2) establish parameters for considering fidelity of intervention implementation,5

SINGLE-CASE DESIGN STANDARDS 

 
and (3) consider the reasonable application of the Standards to the topic area and specify any 
deviations from the Standards in that area protocol. For example, when measuring self-injurious 
behavior, a baseline phase of fewer than five data points may be appropriate. PIs might need to 
make decisions about whether the design is appropriate for evaluating an intervention. For 
example, an intervention associated with a permanent change in participant behavior should be 
evaluated with a multiple baseline design rather than an ABAB design. PIs will also consider the 
various threats to validity and how the researcher was able to address these concerns, especially 
in cases in which the Standards do not necessarily mitigate the validity threat in question (e.g., 
testing, instrumentation). Note that the SCD Standards apply to both observational measures and 
standard academic assessments. Similar to the approach with group designs, PIs are encouraged 
to define the parameters associated with “acceptable” assessments in their protocols. For 
example, repeated measures with alternate forms of an assessment may be acceptable and WWC 
psychometric criteria would apply. PIs might also need to make decisions about particular 
studies. Several questions will need to be considered, such as: (a) Will generalization variables 
be reported? (b) Will follow-up phases be assessed? (c) If more than one consecutive baseline 
phase is present, are these treated as one phase or two distinct phases? and (d) Are multiple 
treatments conceptually distinct or multiple components of the same intervention? 

These Standards are intended to guide WWC reviewers in identifying and evaluating SCDs. 
The first section of the Standards assists with identifying whether a study is a SCD. As depicted 
in Figure 1, a SCD should be reviewed using the ‘Criteria for Designs that Meet Evidence 
Standards’, to determine those that Meet Evidence Standards, those that Meet Evidence 
Standards with Reservations, and those that Do Not Meet Evidence Standards.  

Studies that meet evidence standards (with or without reservations) should then be reviewed 
using the ‘Criteria for Demonstrating Evidence of a Relation between an Independent Variable 
and a Dependent Variable’ (see Figure 1).6

                                                 
4 Because SCDs are reliant on phase repetition and effect replication across participants, settings, and 

researchers to establish external validity, specification of the intervention materials, procedures, and context of the 
research is particularly important within these studies (Horner et al., 2005). 

 This review will result in a sorting of SCD studies 
into three groups: those that have Strong Evidence of a Causal Relation, those that have 
Moderate Evidence of a Causal Relation, and those that have No Evidence of a Causal Relation.  

5 Because interventions are applied over time, continuous measurement of implementation is a relevant 
consideration.   

6 This process results in a categorization scheme that is similar to that used for evaluating evidence 
credibility by inferential statistical techniques (hypothesis testing, effect-size estimation, and confidence-interval 
construction) in traditional group designs.  



  13  

FIGURE 1 

PROCEDURE FOR APPLYING SCD STANDARDS: FIRST EVALUATE DESIGN,  
THEN IF APPLICABLE, EVALUATE EVIDENCE 

 

 

Evaluate the Design 

Meets Evidence Standards Meets Evidence Standards with 
Reservations 

Does Not Meet Evidence Standards 

Conduct Visual Analysis for Each 
Outcome Variable 

Strong Evidence  Moderate Evidence  No Evidence  

 

Effect-Size Estimation 

 



  14  

A. SINGLE-CASE DESIGN CHARACTERISTICS 

SCDs are identified by the following features: 

• An individual “case” is the unit of intervention and the unit of data analysis. A case 
may be a single participant or a cluster of participants (e.g., a classroom or 
community). 

• Within the design, the case provides its own control for purposes of comparison. For 
example, the case’s series of outcome variables prior to the intervention is compared 
with the series of outcome variables during (and after) the intervention.  

• The outcome variable is measured repeatedly within and across different conditions 
or levels of the independent variable. These different conditions are referred to as 
“phases” (e.g., baseline phase, intervention phase).7

The Standards for SCDs apply to a wide range of designs, including ABAB designs, 
multiple baseline designs, alternating and simultaneous treatment designs, changing criterion 
designs, and variations of these core designs. Even though SCDs can be augmented by including 
one or more independent comparison cases (i.e., a comparison group), in this document the 
Standards address only the core SCDs and are not applicable to the augmented independent 
comparison SCDs.  

 

B. CRITERIA FOR DESIGNS THAT MEET EVIDENCE STANDARDS 

If the study appears to be a SCD, the following rules are used to determine whether the 
study’s design Meets Evidence Standards, Meets Evidence Standards with Reservations or Does 
Not Meet Evidence Standards.  

In order to Meet Evidence Standards, the following design criteria must be present: 

• The independent variable (i.e., the intervention) must be systematically 
manipulated, with the researcher determining when and how the independent 
variable conditions change. If this standard is not met, the study Does Not Meet 
Evidence Standards. 

                                                 
7 In SCDs, the ratio of data points (measures) to the number of cases usually is large so as to distinguish SCDs 

from other longitudinal designs (e.g., traditional pretest-posttest and general repeated-measures designs). Although 
specific prescriptive and proscriptive statements would be difficult to provide here, what can be stated is: (1) 
parametric univariate repeated-measures analysis cannot be performed when there is only one experimental case; (2) 
parametric multivariate repeated-measures analysis cannot be performed when the number of cases is less than or 
equal to the number of measures; and (3) for both parametric univariate and multivariate repeated-measures 
analysis, standard large-sample (represented here by large numbers of cases) statistical theory assumptions must be 
satisfied for the analyses to be credible (see also Kratochwill & Levin, in press, Footnote 1). 
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• Each outcome variable must be measured systematically over time by more than 
one assessor, and the study needs to collect inter-assessor agreement in each 
phase and on at least twenty percent of the data points in each condition (e.g., 
baseline, intervention) and the inter-assessor agreement must meet minimal 
thresholds. Inter-assessor agreement (commonly called interobserver agreement) 
must be documented on the basis of a statistical measure of assessor consistency. 
Although there are more than 20 statistical measures to represent inter-assessor 
agreement (see Berk, 1979; Suen & Ary, 1989), commonly used measures include 
percentage agreement (or proportional agreement) and Cohen’s kappa coefficient 
(Hartmann, Barrios, & Wood, 2004). According to Hartmann et al. (2004), minimum 
acceptable values of inter-assessor agreement range from 0.80 to 0.90 (on average) if 
measured by percentage agreement and at least 0.60 if measured by Cohen’s kappa. 
Regardless of the statistic, inter-assessor agreement must be assessed for each case on 
each outcome variable. A study needs to collect inter-assessor agreement in all 
phases. It must also collect inter-assessor agreement on at least 20% of all sessions 
(total across phases) for a condition (e.g., Baseline, Intervention.).8

• The study must include at least three attempts to demonstrate an intervention 
effect at three different points in time or with three different phase repetitions. If 
this standard is not met, the study Does Not Meet Evidence Standards.

 If this standard is 
not met, the study Does Not Meet Evidence Standards. 

9 Examples of 
designs meeting this standard include ABAB designs, multiple baseline designs with 
at least three baseline conditions, alternating/simultaneous treatment designs with 
either at least three alternating treatments compared with a baseline condition or two 
alternating treatments compared with each other, changing criterion designs with at 
least three different criteria, and more complex variants of these designs. Examples of 
designs not meeting this standard include AB, ABA, and BAB designs.10

• For a phase to qualify as an attempt to demonstrate an effect, the phase must 
have a minimum of three data points.

 

11

- To Meet Standards a reversal /withdrawal (e.g., ABAB) design must have 
a minimum of four phases per case with at least 5 data points per phase.  

  

                                                 
8 If the PI determines that there are exceptions to this Standard, they will be specified in the topic area or 

practice guide protocol. These determinations are based on the PIs content knowledge of the outcome variable. 

9 The three demonstrations criterion is based on professional convention (Horner, Swaminathan, Sugai, & 
Smolkowski, under review). More demonstrations further increase confidence in experimental control (Kratochwill 
& Levin, 2009).  

10 Although atypical, there might be circumstances in which designs without three replications meet the 
standards. A case must be made by the WWC PI researcher (based on content expertise) and at least two WWC 
reviewers must agree with this decision. 

11 If the PI determines that there are exceptions to this standard, these will be specified in the topic area or 
practice guide protocol. (For example, extreme self-injurious behavior might warrant a lower threshold of only one 
or two data points). 
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To Meet Standards with Reservations a reversal /withdrawal (e.g., ABAB) 
design must have a minimum of four phases per case with at least 3 data 
points per phase. Any phases based on fewer than three data points cannot 
be used to demonstrate existence or lack of an effect. 

- To Meet Standards a multiple baseline design must have a minimum of six 
phases with at least 5 data points per phase. To Meet Standards with 
Reservations a multiple baseline design must have a minimum of six 
phases with at least 3 data points per phase.  Any phases based on fewer 
than three data points cannot be used to demonstrate existence or lack of 
an effect. 

• An alternating treatment design needs five repetitions of the alternating sequence to 
Meet Standards. Designs such as ABABBABAABBA, BCBCBCBCBC, and 
AABBAABBAABB would qualify, even though randomization or brief functional 
assessment may lead to one or two data points in a phase. A design with four 
repetitions would Meet Standards with Reservations, and a design with fewer than 
four repetitions Does Not Meet Standards. 

C. CRITERIA FOR DEMONSTRATING EVIDENCE OF A RELATION BETWEEN 
AN INDEPENDENT VARIABLE AND AN OUTCOME VARIABLE 

For studies that meet standards (with and without reservations), the following rules are used 
to determine whether the study provides Strong Evidence, Moderate Evidence, or No Evidence of 
a causal relation. In order to provide Strong Evidence, at least two WWC reviewers certified in 
visual (or graphical) analysis must verify that a causal relation was documented. Specifically this 
is operationalized as at least three demonstrations of the intervention effect along with no non-
effects by12

• Documenting the consistency of level, trend, and variability within each phase 

  

• Documenting the immediacy of the effect, the proportion of overlap, the consistency 
of the data across phases in order to demonstrate an intervention effect, and 
comparing the observed and projected patterns of the outcome variable 

• Examining external factors and anomalies (e.g., a sudden change of level within a 
phase)  

If a SCD does not provide three demonstrations of an effect, then the study is rated as No 
Evidence. If a study provides three demonstrations of an effect and also includes at least one 
demonstration of a non-effect, the study is rated as Moderate Evidence. The following 
characteristics must be considered when identifying a non-effect: 

                                                 
12 This section assumes that the demonstration of an effect will be established through “visual analysis,” as 

described later. As the field reaches greater consensus about appropriate statistical analyses and quantitative effect-
size measures, new standards for effect demonstration will need to be developed. 
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- Data within the baseline phase do not provide sufficient demonstration of a 
clearly defined pattern of responding that can be used to extrapolate the 
expected performance forward in time assuming no changes to the 
independent variable  

- Failure to establish a consistent pattern within any phase (e.g., high variability 
within a phase)  

- Either long latency between introduction of the independent variable and 
change in the outcome variable or overlap between observed and projected 
patterns of the outcome variable between baseline and intervention phases 
makes it difficult to determine whether the intervention is responsible for a 
claimed effect 

- Inconsistent patterns across similar phases (e.g., an ABAB design in which the 
first time an intervention is introduced the outcome variable data points are 
high, the second time an intervention is introduced the outcome variable data 
points are low, and so on) 

- Comparing the observed and projected patterns of the outcome variable 
between phases does not demonstrate evidence of a causal relation  

When examining a multiple baseline design also consider the extent to which the time in 
which a basic effect is initially demonstrated with one series (e.g. first five days following 
introduction of the intervention for participant #1) is associated with change in the data pattern 
over the same time frame in the other series of the design (e.g. same five days for participants #2, 
#3, #4). If a basic effect is demonstrated within one series and there is a change in the data 
patterns in other series, the highest possible design rating is Moderate Evidence. 

If a study has either Strong Evidence or Moderate Evidence, then effect-size estimation 
follows. 

D. VISUAL ANALYSIS OF SINGLE-CASE RESEARCH RESULTS13

Single-case researchers traditionally have relied on visual analysis of the data to determine 
(a) whether evidence of a relation between an independent variable and an outcome variable 
exists; and (b) the strength or magnitude of that relation (Hersen & Barlow, 1976; Kazdin, 1982; 
Kennedy, 2005; Kratochwill, 1978; Kratochwill & Levin, 1992; McReynolds & Kearns, 1983; 
Richards, Taylor, Ramasamy, & Richards, 1999; Tawney & Gast, 1984; White & Haring, 1980). 
An inferred causal relation requires that changes in the outcome measure resulted from 
manipulation of the independent variable. A causal relation is demonstrated if the data across all 
phases of the study document at least three demonstrations of an effect at a minimum of three 
different points in time (as specified in the Standards). An effect is documented when the data 
pattern in one phase (e.g., an intervention phase) differs more than would be expected from the 
data pattern observed or extrapolated from the previous phase (e.g., a baseline phase) (Horner et 
al., 2005). 

 

                                                 
13 Prepared by Robert Horner, Thomas Kratochwill, and Samuel Odom. 
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Our rules for conducting visual analysis involve four steps and six variables (Parsonson & 
Baer, 1978). The first step is documentation of a predictable baseline pattern of data (e.g., 
student is reading with many errors; student is engaging in high rates of screaming). If a 
convincing baseline pattern is documented, then the second step consists of examining the data 
within each phase of the study to assess the within-phase pattern(s). The key question is to assess 
whether there are sufficient data with sufficient consistency to demonstrate a predictable pattern 
of responding (see below). The third step in the visual analysis process is to compare the data 
from each phase with the data in the adjacent (or similar) phase to assess whether manipulation 
of the independent variable was associated with an “effect.” An effect is demonstrated if 
manipulation of the independent variable is associated with predicted change in the pattern of the 
dependent variable. The fourth step in visual analysis is to integrate all the information from all 
phases of the study to determine whether there are at least three demonstrations of an effect at 
different points in time (i.e., documentation of a causal or functional relation) (Horner et al., in 
press). 

To assess the effects within SCDs, six features are used to examine within- and between-
phase data patterns: (1.) level, (2.) trend, (3.) variability, (4.) immediacy of the effect, (5.) 
overlap, and (6.) consistency of data patterns across similar phases (Fisher, Kelley, & 
Lomas, 2003; Hersen & Barlow, 1976; Kazdin, 1982; Kennedy, 2005; Morgan & Morgan, 2009; 
Parsonson & Baer, 1978). These six features are assessed individually and collectively to 
determine whether the results from a single-case study demonstrate a causal relation and are 
represented in the “Criteria for Demonstrating Evidence of a Relation between an Independent 
Variable and Outcome Variable” in the Standards. “Level” refers to the mean score for the data 
within a phase. “Trend” refers to the slope of the best-fitting straight line for the data within a 
phase and “variability” refers to the range or standard deviation of data about the best-fitting 
straight line. Examination of the data within a phase is used (a) to describe both the observed 
pattern of a unit’s performance and (b) to extrapolate the expected performance forward in time 
assuming no changes in the independent variable were to occur (Furlong & Wampold, 1981). 
The six visual analysis features are used collectively to compare the observed and projected 
patterns for each phase with the actual pattern observed after manipulation of the independent 
variable. This comparison of observed and projected patterns is conducted across all phases of 
the design (e.g., baseline to treatment, treatment to baseline, treatment to treatment, etc.).  

In addition to comparing the level, trend, and variability of data within each phase, the 
researcher also examines data patterns across phases by considering the immediacy of the effect, 
overlap, and consistency of data in similar phases. “Immediacy of the effect” refers to the change 
in level between the last three data points in one phase and the first three data points of the next. 
The more rapid (or immediate) the effect, the more convincing the inference that change in the 
outcome measure was due to manipulation of the independent variable. Delayed effects might 
actually compromise the internal validity of the design. However, predicted delayed effects or 
gradual effects of the intervention may be built into the design of the experiment that would then 
influence decisions about phase length in a particular study. “Overlap” refers to the proportion of 
data from one phase that overlaps with data from the previous phase. The smaller the proportion 
of overlapping data points (or conversely, the larger the separation), the more compelling the 
demonstration of an effect. “Consistency of data in similar phases” involves looking at data from 
all phases within the same condition (e.g., all “baseline” phases; all “peer-tutoring” phases) and 
examining the extent to which there is consistency in the data patterns from phases with the same 
conditions. The greater the consistency, the more likely the data represent a causal relation. 
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These six features are assessed both individually and collectively to determine whether the 
results from a single-case study demonstrate a causal relation. 

Regardless of the type of SCD used in a study, visual analysis of: (1) level, (2) trend, (3) 
variability, (4) overlap, (5) immediacy of the effect, and (6) consistency of data patterns across 
similar phases are used to assess whether the data demonstrate at least three indications of an 
effect at different points in time. If this criterion is met, the data are deemed to document a causal 
relation, and an inference may be made that change in the outcome variable is causally related to 
manipulation of the independent variable (see Standards). 

Figures 1–8 provide examples of the visual analysis process for one common SCD, the 
ABAB design, using proportion of 10-second observation intervals with child tantrums as the 
dependent variable and a tantrum intervention as the independent variable. The design is 
appropriate for interpretation because the ABAB design format allows the opportunity to assess a 
causal relation (e.g., to assess if there are three demonstrations of an effect at three different 
points in time, namely the B, A, and B phases following the initial A phase). 

Step 1: The first step in the analysis is to determine whether the data in the Baseline 1 (first 
A) phase document that: (a) the proposed concern/problem is demonstrated (tantrums occur too 
frequently) and (b) the data provide sufficient demonstration of a clearly defined (e.g., 
predictable) baseline pattern of responding that can be used to assess the effects of an 
intervention. This step is represented in the Evidence Standards because if a proposed concern is 
not demonstrated or a predictable pattern of the concern is not documented, the effect of the 
independent variable cannot be assessed. The data in Figure 1 in Appendix B demonstrate a 
Baseline 1 phase with 11 sessions, with an average of 66 percent throwing tantrums across these 
11 sessions. The range of tantrums per session is from 50 percent to 75 percent with an 
increasing trend across the phase and the last three data points averaging 70 percent. These data 
provide a clear pattern of responding that would be outside socially acceptable levels, and if left 
unaddressed would be expected to continue in the 50 percent to 80 percent range.  

The two purposes of a baseline are to (a) document a pattern of behavior in need of change, 
and (b) document a pattern that has sufficiently consistent level and variability, with little or no 
trend, to allow comparison with a new pattern following intervention. Generally, stability of a 
baseline depends on a number of factors and the options the researcher has selected to deal with 
instability in the baseline (Hayes et al., 1999). One question that often arises in single-case 
design research is how many data points are needed to establish baseline stability. First, the 
amount of variability in the data series must be considered. Highly variable data may require a 
longer phase to establish stability. Second, if the effect of the intervention is expected to be large 
and demonstrates a data pattern that far exceeds the baseline variance, a shorter baseline with 
some instability may be sufficient to move forward with intervention implementation. Third, the 
quality of measures selected for the study may impact how willing the researcher/reviewer is to 
accept the length of the baseline. In terms of addressing an unstable baseline series, the 
researcher has the options of: (a) analyzing and reporting the source of variability; (b) waiting to 
see whether the series stabilizes as more data are gathered; (b) considering whether the correct 
unit of analysis has been selected for measurement and if it represents the reason for instability in 
the data; and (d) moving forward with the intervention despite the presence of baseline 
instability. Professional standards for acceptable baselines are emerging, but the decision to end 
any baseline with fewer than five data points or to end a baseline with an outlying data point 
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should be defended. In each case it would be helpful for reviewers to have this information 
and/or contact the researcher to determine how baseline instability was addressed, along with a 
rationale. 

Step 2: The second step in the visual analysis process is to assess the level, trend, and 
variability of the data within each phase and to compare the observed pattern of data in each 
phase with the pattern of data in adjacent phases. The horizontal lines in Figure 2 illustrate the 
comparison of phase levels and the lines in Figure 3 illustrate the comparison of phase trends. 
The upper and lower defining range lines in Figure 4 illustrate the phase comparison for phase 
variability. In Figures 2–4, the level and trend of the data differ dramatically from phase to 
phase; however, changes in variability appear to be less dramatic. 

Step 3: The information gleaned through examination of level, trend, and variability is 
supplemented by comparing the overlap, immediacy of the effect, and consistency of patterns in 
similar phases. Figure 5 illustrates the concept of overlap. There is no overlap between the data 
in Baseline 1 (A1) and the data in Intervention 1 (B1). There is one overlapping data point (10 
percent; session 28) between Intervention 1 (B1) Baseline 2 (A2), and there is no overlap 
between Baseline 2 (A2) and Intervention 2 (B2). 

Immediacy of the effect compares the extent to which the level, trend, and variability of the 
last three data points in one phase are discriminably different from the first three data points in 
the next. The data in the ovals, squares, and triangles of Figure 6 illustrate the use of immediacy 
of the effect in visual analysis. The observed effects are immediate in each of the three 
comparisons (Baseline 1 and Intervention 1, Intervention 1 and Baseline 2, Baseline 2 and 
Intervention 2). 

Consistency of similar phases examines the extent to which the data patterns in phases with 
the same (or similar) procedures are similar. The linked ovals in Figure 7 illustrate the 
application of this visual analysis feature. Phases with similar procedures (Baseline 1 and 
Baseline 2, Intervention 1 and Intervention 2) are associated with consistent patterns of 
responding. 

Step 4: The final step of the visual analysis process involves combining the information 
from each of the phase comparisons to determine whether all the data in the design (data across 
all phases) meet the standard for documenting three demonstrations of an effect at different 
points in time. The bracketed segments in Figure 8 (A, B, C) indicate the observed and projected 
patterns of responding that would be compared with actual performance. Because the observed 
data in the Intervention 1 phase are outside the observed and projected data pattern of Baseline 1, 
the Baseline 1 and Intervention 1 comparison demonstrates an effect (Figure 8A). Similarly, 
because the data in Baseline 2 are outside of the observed and projected patterns of responding in 
Intervention 1, the Intervention 1 and Baseline 2 comparison demonstrates an effect (Figure 8B). 
The same logic allows for identification of an effect in the Baseline 2 and Intervention 2 
comparison. Because the three demonstrations of an effect occur at different points in time, the 
full set of data in this study are considered to document a causal relation as specified in the 
Standards. 

The rationale underlying visual analysis in SCDs is that predicted and replicated changes in 
a dependent variable are associated with active manipulation of an independent variable. The 
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process of visual analysis is analogous to the efforts in group-design research to document 
changes that are causally related to introduction of the independent variable. In group-design 
inferential statistical analysis, a statistically significant effect is claimed when the observed 
outcomes are sufficiently different from the expected outcomes that they are deemed unlikely to 
have occurred by chance. In single-case research, a claimed effect is made when three 
demonstrations of an effect are documented at different points in time. The process of making 
this determination, however, requires that the reader is presented with the individual unit’s raw 
data (typically in graphical format) and actively participates in the interpretation process.  

There will be studies in which some participants demonstrate an intervention effect and 
others do not. The evidence rating (Strong Evidence, Moderate Evidence, or No Evidence) 
accounts for mixed effects.  

E. RECOMMENDATIONS FOR COMBINING STUDIES  

When implemented with multiple design features (e.g., within- and between-case 
comparisons), SCDs can provide a strong basis for causal inference (Horner et al., 2005). 
Confidence in the validity of intervention effects demonstrated within cases is enhanced by 
replication of effects across different cases, studies, and research groups (Horner & Spaulding, in 
press). The results from single-case design studies will not be combined into a single summary 
rating unless they meet the following threshold:14

1. A minimum of five SCD research papers examining the intervention that Meet 
Evidence Standards or Meet Evidence Standards with Reservations 

 

2. The SCD studies must be conducted by at least three different research teams at three 
different geographical locations 

3. The combined number of experiments (i.e., single-case design examples) across the 
papers totals at least 20 

F. EFFECT-SIZE ESTIMATES FOR SINGLE-CASE DESIGNS15

Effect-size estimates are available for most designs involving group comparisons, and in 
meta-analyses there is widespread agreement about how these effect sizes (ES) should be 
expressed, what the statistical properties of the estimators are (e.g., distribution theory, 
conditional variance), and how to translate from one measure (e.g., a correlation) to another (e.g., 
Hedges’ g). This is not true for SCDs; the field is much less well-developed, and there are no 
agreed-upon methods or standards for effect size estimation. What follows is a brief summary of 
the main issues, with a more extensive discussion in an article by Shadish, Rindskopf, and 
Hedges (2008). 

 

                                                 
14 These are based on professional conventions. Future work with SCD meta-analysis can offer an empirical 

basis for determining appropriate criteria and these recommendations might be revised. 

15 Prepared by David Rindskopf and William Shadish. 
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Several issues are involved in creating effect size estimates. First is the general issue of how 
to quantify the size of an effect. One can quantify the effect for a single case, or for a group of 
cases within one study, or across several SCD studies. Along with a quantitative ES estimate, 
one must also consider the accuracy of the estimate; generally the issues here are estimating a 
standard error, constructing confidence intervals, and testing hypotheses about effect sizes. Next 
is the issue of comparability of different effect sizes for SCDs. Finally the panel considers 
comparability of ES estimates for SCDs and for group-based designs. 

Most researchers using SCDs still base their inferences on visual analysis, but several 
quantitative methods have been proposed. Each has flaws, but some methods are likely to be 
more useful than others; the panel recommends using some of these until better methods are 
developed. 

A number of nonparametric methods have been used to analyze SCDs (e.g., Percentage of 
Nonoverlapping Data [PND], Percentage of All Nonoverlapping Data [PAND], or Percent 
Exceeding the Median [PEM]). Some of these have been accompanied by efforts to convert them 
to parametric estimators such as the phi coefficient, which might in turn be comparable to typical 
between-groups measures. If that could be done validly, then one could use distribution theory 
from standard estimators to create standard errors and significance tests. However, most such 
efforts make the erroneous assumption that nonparametric methods do not need to be concerned 
with the assumption of independence of errors, and so the conversions might not be valid. In 
such cases, the distributional properties of these measures are unknown, and so standard errors 
and statistical tests are not formally justified. Nonetheless, if all one wanted was a rough measure 
of the approximate size of the effect without formal statistical justification or distribution theory, 
selecting one of these methods would make sense. However, none of these indices deal with 
trend, so the data would need to be detrended16

Various parametric methods have been proposed, including regression estimates and 
multilevel models. Regression estimates have three advantages. First, many primary researchers 
are familiar with regression so both the analyses and the results are likely to be easily 
understood. Second, these methods can model trends in the data, and so do not require prior 
detrending of the data. Third, regression can be applied to obtain an effect size from a single 
case, whereas multilevel models require several cases within a study. But they also come with 
disadvantages. Although regression models do permit some basic modeling of error structures, 
they are less flexible than multilevel models in dealing with complex error structures that are 

 with, say, first-order differencing before 
computing the index. One could combine the results with ordinary unweighted averages, or one 
could weight by the number of cases in a study. 

                                                 
16 When a trend is a steady increase or decrease in the dependent variable over time (within a phase), such a 

trend would produce a bias in many methods of analysis of SCD data.  For example, if with no treatment, the 
number of times a student is out of her seat each day for 10 days is 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, this is a 
decreasing trend. If a “treatment” is introduced after the fifth day, so that the last 5 days’ data are during a treatment 
phase, some methods would find the treatment very effective. For example, all of the measurements after the 
treatment are lower than any of the measurements before the treatment, apparently showing a strong effect. To 
correct for the effect of trend (i.e., to “detrend” the data), one can either subtract successive observations (e.g., 19-
20, 18-19, etc.) and compile these in a vector within a phase (one cannot subtract from the final observation and so it 
is excluded) which is called differencing, or use statistical methods that adjust for this trend. 



  23  

likely to be present in SCD data. For multi-level models, many researchers are less familiar with 
both the analytic methods and the interpretation of results, so that their widespread use is 
probably less likely than with regression. Also, practical implementation of multilevel models for 
SCDs is technically challenging, probably requiring the most intense supervision and problem-
solving of any method. Even if these technical developments were to be solved, the resulting 
estimates would still be in a different metric than effect-size estimates based on between-group 
studies, so one could not compare effect sizes from SCDs to those from group studies.  

A somewhat more optimistic scenario is that methods based on multilevel models can be 
used when data from several cases are available and the same outcome measure is used in all 
cases. Such instances do not require a standardized effect-size estimator because the data are 
already in the same metric. However, other technical problems remain, estimators are still not 
comparable with those from between-groups studies (see further discussion below), and such 
instances tend to be rare across studies.  

The quantitative methods that have been proposed are not comparable with those used in 
group-comparison studies. In group studies, the simplest case would involve the comparison of 
two groups, and the mean difference would typically be standardized by dividing by the control 
group variance or a pooled within-group variance. These variances reflect variation across 
people. In contrast, single-case designs, by definition, involve comparison of behavior within an 
individual (or other unit), across different conditions. Attempts to standardize these effects have 
usually involved dividing by some version of a within-phase variance, which measures variation 
of one person’s behavior at different times (instead of variation across different people). 
Although there is nothing wrong statistically with doing this, it is not comparable with the usual 
between-groups standardized mean difference statistic. Comparability is crucial if one wishes to 
compare results from group designs with SCDs.  

That being said, some researchers would argue that there is still merit in computing some 
effect size index like those above. One reason is to encourage the inclusion of SCD data in 
recommendations about effective interventions. Another reason is that it seems likely that the 
rank ordering of most to least effective treatments would be highly similar no matter what effect 
size metric is used. This latter hypothesis could be partially tested by computing more than one 
of these indices and comparing their rank ordering.  

An effect-size estimator for SCDs that is comparable to those used in between-groups 
studies is badly needed. Shadish et al. (2008) have developed an estimator for continuous 
outcomes that is promising in this regard, though the distribution theory is still being derived and 
tested. However, the small number of cases in most studies would make such an estimate 
imprecise (that is, it would have a large standard error and an associated wide confidence 
interval). Further, major problems remain to be solved involving accurate estimation of error 
structures for noncontinuous data—for example, different distributional assumptions that might 
be present in SCDs (e.g., count data should be treated as Poisson distributed). Because many 
outcomes in SCDs are likely to be counts or rates, this is a nontrivial limitation to using the 
Shadish et al. (2008) procedure. Finally, this method does not deal adequately with trend as 
currently developed, although standard methods for detrending the data might be reasonable to 
use. Hence, it might be premature to advise the use of these methods except to investigate further 
their statistical properties.  
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Until multilevel methods receive more thorough investigation, the panel suggests the 
following guidelines for estimating effect sizes in SCDs. First, in those rare cases in which the 
dependent variable is already in a common metric, such as proportions or rates, then these are 
preferred to standardized scales. Second, if only one standardized effect-size estimate is to be 
chosen, the regression-based estimators are probably best justified from both technical and 
practical points of view in that SCD researchers are familiar with regression. Third, the panel 
strongly recommends doing sensitivity analyses. For example, one could report one or more 
nonparametric estimates (but not the PND estimator, because it has undesirable statistical 
properties) in addition to the regression estimator. Results can then be compared over estimators 
to see if they yield consistent results about which interventions are more or less effective. Fourth, 
summaries across cases within studies and across studies (e.g., mean and standard deviation of 
effect sizes) can be computed when the estimators are in a common metric, either by nature (e.g., 
proportions) or through standardization. Lacking appropriate standard errors to use with the 
usual inverse-variance weighting, one might report either unweighted estimators or estimators 
weighted by a function of either the number of cases within studies or the number of time points 
within cases, although neither of these weights has any strong statistical justification in the SCD 
context.  
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Assessed for eligibility (individual n = …, group n =  
…, individuals within groups n =…) 

Note whether the case (i.e., 
unit of analysis) is an 
individual or a group 

Allocated to intervention (individual n = …,  
group n = …, individuals within groups n =…) 
 

• Received allocated intervention   
(individual n = …, group n = …, 
individuals within groups n =…) 

• Did not receive allocated intervention 
(individual n = …, group n = …, 
individuals within groups n =…) 

ABAB, Multiple Baseline and Alternating Treatment 
Designs 
 

• Received required number of phases (or 
alternations) (individual n = …, group n = 
…, individuals within groups n =…) 

• Discontinued intervention (give reasons) 
(individual n = …, group n = …, individuals 
within groups n =…) 

ABAB and Multiple Baseline Designs  
 

• Had adequate number of data points     
(individual n = …, group n = …, individuals 
within groups n =…) 

• Did not have a minimum number of data      
points (give reasons) (individual n = …, 
group n = …, individuals within groups n 
=…) 

Excluded (individual n = …, group n =   
…, individuals within groups n =…) 

• Did not meet inclusion 
criteria (individual n = …, 
group n = …, individuals 
within groups n =   …) 

• Refused to participate   
(individual n = …, group n = 
…, individuals within groups 
n    =…) 

• Other reasons (give reasons) 
(individual n = …, group n = 
…, individuals within groups 
n    =…) 
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Figure 1. Depiction of an ABAB Design 

 

Figure 2. An Example of Assessing Level with Four Phases of an ABAB Design 

 

Figure 3. An Example of Assessing in Each Phase of an ABAB Design 
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Figure 4. Assess Variability Within Each Phase 

 

Figure 5. Consider Overlap Between Phases 

 

Figure 6. Examine the Immediacy of Effect with Each Phase Transition 
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Figure 7. Examine Consistency Across Similar Phases 

 

Figure 8A. Examine Observed and Projected Comparison Baseline 1 to Intervention 1 

 

Figure 8B. Examine Observed and Projected Comparison Intervention to Baseline 2 
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Figure 8C. Examine Observed and Projected Comparison Baseline 2 to Intervention 2 
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