NLTS2 Module 14 Transcript

Module 14B: Accessing Data Files in SAS

This is Module 14B: Accessing Data Files in SAS. Before you begin this module, we recommend that you have completed some other modules about the NLTS2 training modules themselves, about the study design of NLTS2, and the study overview, about the NLTS2 data sources, and about the NLTS2 documentation.

Just for a brief overview of what we’ll cover in this module, we’ll review the purpose of the module, we’ll look at opening and viewing data files using SAS, we’ll talk about limiting variables and subsetting cases, and we’ll talk about joining and combining files. We’ll have a brief summary, closing, and I’ll give you some important contact information.

We remind you that NLTS2 data are restricted use data, and the data in these presentations are from a randomly selected sample of the actual NLTS2 restricted use data. Consequently, you will not be able to replicate the results in these presentations using the full NLTS2 restricted use data.
The purpose of this module is for you to learn how to open a file using SAS, see what’s in the file - that is the contents of the file -size a data set for a perfect fit by limiting the number of cases and the number of variables, combine information from multiple sources by joining two files, and create a new file.

Let’s talk now about opening and viewing data files. For your convenience, we’ve placed the SAS and SPSS data in separate folders. All SAS files, data files that is, have a “.sas7bdat” extension. The associated value formats with those data files are stored in a SAS library called “Formats.SAS7bcat.” SAS programming and code is available for you to recreate the user defined formats, if you wish, in the SAS format library, which is hyperlinked to the table of contents on the database and documentation disk.
Now, data files are either read from or written to. And in addition to a name, files need to have a location telling SAS where they're stored. SAS needs a LIBNAME statement to identify the path where the data are stored. The path describes the nesting of folders. So, here’s an example of a path: C:\myprojects\NLTS2\Data, tells SAS that your data set is located on drive C, in the folder Data, which is nested in My Projects and NLTS2 folders.
An example of a LIBNAME statement for a path would be LIBNAME – that’s always a key word in SAS – SASDB, giving your ddname, or you can think of that as an alias for the path, and then you would say C:\myprojects\NLTS2\Data, and that will tell SAS where the data set is stored. An easy way to view what’s in the file is by running a PROC CONTENTS. But before you actually run your syntax for your PROC CONTENTS, you need to tell SAS again the name of your file, or the name of the path and where the library is stored. And you do this with a simple LIBNAME dd path statement and a LIBNAME library – notice the ddname can differ, but the library key word is always the same, and you give SAS the path in quotation marks. The syntax for the actual PROC CONTENTS itself is very simple. It’s just PROC CONTENTS. Data equals your ddname, and your file name, and a run statement.
Here is an example of the output that’s produced if we were to run a PROC CONTENTS on the Wave 1 teacher file. Let’s look at it in a little bit more detail. At the top of the PROC CONTENTS output, we have some important and basic information, such as the data set name, when the data set was created, and when it was modified. We also have at the upper right hand corner the number of observations and the number of variables. These can be very important when you're modifying data or keeping or dropping variables to see how many observations and variables you have. Then later in the PROC CONTENTS output, we have the variable position in the left hand most column we’ve got the variable name, the format, the type of the variable, whether it’s character or numeric, and we’ve got the label. For your convenience, we’ve always included in the variable label the variable name in parentheses. And then there is some more information about the variable. So, for instance, the variable NTS1A1, which is not very informative, the variable label tells you that’s academic general ed subject taught by the teacher.
The NLTS2 data files are enormous. They’ve got thousands of cases and they’ve got many, many variables. So, it’s often a good idea to reduce confusion, to keep things simple, and to reduce processing time, if that’s an issue, to create a simpler data set with fewer variables and fewer cases. Just the variables, for instance, that you will be using in your analyses are a good idea. How do you do this? You either drop variables or you keep variables. You just tell SAS either which variables you want to keep, or which variables you want to drop. Which is best? They both accomplish the same thing. Usually what we do is just the one that requires less typing. So, if there are more variables in the data set that you want to drop than keep, use the KEEP statement – and vice versa.
When you're making changes to your data, you may want to use work files for temporary changes. Work files are files that are only in existence for the duration of the SAS interactive session. They're temporary files, unless they're saved, and they have a one level name, they do not need a ddname. To save data that you’ve modified permanently, what you do is you create a new permanent data file, usually it’s best to create a new file, rather than modifying your source file, because you may want to go back to that source file and see what was there.
The syntax for limiting variables is pretty simple. We have an example here that has both a KEEP statement and a DROP statement. We are keeping variables on the set statement so that when SAS reads the data in from the file that it’s accessing, it won't go ahead and even put into this new data set any of the variables that are not on the KEEP statement. Then we’ve got a DROP statement on the data statement, which is the statement that SAS uses to write out the file. Now, you may notice that some of the variables that we’re keeping we’re later dropping. Why would we do this? Well, we might do this if we want to use those variables in the data step, say to create another variable, but then we don’t need them for later. So, before we write the permanent file, or even the temporary file, we drop them so we don’t have extraneous variables. The point though here, mainly, is that you can use either a KEEP or a DROP statement, and you can put them, either statement, on either the set statement or on the data statement. And notice, we remind you that SAS statements always end in a semi colon. Typically, if you have an error in your program, the first thing to do is look for a missed semi colon.
All right. Let's talk about how we would actually do this in SAS. We’ll look at actual SAS software and how it handles things. Let’s create a file with fewer variables. We’ll call the new file PrScores, and it will be created from the Wave 2 direct assessment file, and we’ll keep only a few variables. We’ll keep always the ID variable, and the weight variable, and then we’ll keep some basic demographic variables and a couple of test scores. We’ll save the new file and we’ll review it with a PROC CONTENTS.
Let's go to SAS software now and see how this works. All right, the first thing I’m going to do is run my LIBNAME statements and I’ve also got an option not to center the output. If you like to do it that way, that’s fine. If you prefer your output centered, you don’t need that statement. All right, so let’s limit the variables to the ones that we just discussed. We’re reading in the direct assessment file and we’ve got a KEEP statement and we’re writing out the new file. All right. Let’s look at our log to see if that ran –ok, and yes it did. There are no error statements, no notes – except the regular ones. Now let's view the contents of the data file. All right. So, here we see at the top of the contents output, we see what I was talking about – the data set name that we just produced, when it was created, and we see the number of observations and the number of variables, which would have been huge in the original data set, but now we only have the 11 variables that we were looking for, and they are exactly the ones we had on our KEEP statement. We include the output of all of our demonstrations in the presentations that you can download for your convenience. So, here you have the alphabetic listing, again, of all of the variables that we kept. All right, so we talked about limiting the number of variables to reduce the size of your data file, and to reduce confusion.
Let’s talk now about subsetting cases. Now, why would you want to subset cases? Well, supposing you want to do an analysis that only includes certain groups of youth. So, for instance, youth with a visual impairment, or only youth who are out of secondary school, or supposing you want to exclude younger students. These and many other kinds of things you might want to subset the cases for. So, here’s an example – supposing we want to limit the weight for a parent/youth interview data to only youth who are 21 or older, and we want to exclude youth who were 19 or 20 in 2007. So, that is our age variable, the w4_Age2007, would be equal to 19 or 20. The syntax is pretty straight forward and there are two ways to do it. First we can put a WHERE statement, a WHERE option that is, on the set statement. So, we can say, in parenthesis, where, w4_Age2007 is greater than 20 ((WHERE=(w4_Ages2007>20))). Or we can have a separate IF statement after the set statement. Although SAS handles these in slightly different ways, the outcome is just identical. If we don’t want to modify our actual data set, (what we saw just produces data sets with fewer cases) but if we don’t want to do that, but we want to run a procedure with a subset of cases, we can put a WHERE statement on the procedure statement. In this case, we’ve got a PROC FREQ and right after the PROC FREQ statement we say, WHERE – and we tell SAS which cases we want. And then we have our TABLES statement.
Again, let's look at how SAS software actually handles this. What we’re going to do here in this demonstration is create a small data set with a subset of cases. We’re going to use PrScores, which is the data set that we created in the previous example and we’re going to limit the cases to only students with hearing impairments. That is, students who have a 5 on the variable w2_Dis12. And we’re going to look at the notes on the log window when we do this, not the output window but the log window, to see whether there are any clues that the file has changed.
All right. As we discussed, we can make a new data set using a WHERE option on the set statement, or using an IF statement after the set statement. So, let's see what happens when we run this first code. All right, and it’s already run – and let's look at the log. Well, the log is telling us that we’ve got 411 observations that met our constraints. And we’ve got 11 variables. Great. That is just what we wanted. All right. So, now let's run it the other way with the If statement, and let's see if we get the same thing. We should. All right. That’s done. And let’s look at the log. Aha – now, this tells us something a little bit different. It tells us that it read in 3652 observations, but we wound up with 411 observations and 11 variables. So, things are handled a little bit differently, but you get the same result - which you use is entirely your preference.
Now let's run our PROC FREQ statement to see that we really got who we wanted. So, we’re going to run a frequency of the disability variable, and indeed, here we have the 411 cases, all of whom have a hearing impairment. This is our disability variable, and this shows that we have only cases with a hearing impairment. All right, now, let's look at the second way to do this, if we didn’t want to create a new data set, if the only thing we were going to do was just a quick something on students with hearing impairments. We have the WHERE statement here in the PROC FREQ procedure, and we have it right after the PROC FREQ statement. And then we’ve got our table statement for our disability variable. We’ll run this – and here we have exactly the same result as you see – hearing impairment, 411 cases. So, yes - to answer the last question here - were there any clues in the log window that the file had changed? Yes, indeed there were. We started out with 3600 and some odd observations and we wound up with 411.
Now let's talk about how to join or combine data files. Now that you’ve got your files in a size that you can work with them, you might want to join them to bring in data from another source, or to bring in data from another wave. So, by another source, I mean, for instance a teacher interview and a parent interview. From another wave, you might want to look at things over time, and from the same, say a teacher survey, and see how things change over time. When you're joining or combining files, you want to take a look always at the number of cases in the combined file. You do this either through a PROC CONTENTS or in the log window. And you want to look at how the cases are joined. You always will need in SAS a key variable to join files. And in NLTS2, that key variable is always ID.
You’ll also want to think about in your keyed file which cases to keep, and we’ll talk a little bit more about that in a minute. Now, why would you want to join or combine files? Well, I kind of got ahead of myself and told you that you might want to combine information from different sources. You might want to perform comparative analyses, for instance, comparing what a teacher said and what a parent said about some given thing. Or create new variables, say, a variable that indicates whether a student was expelled or suspended in a couple ways. Or you might want to do both of those. Let’s look at an example of composite variables from multiple sources, so for instance, if we wanted to create a variable telling us whether the parent attended a teacher conference, using the Wave 2 teacher survey item, that variable might have some missing cases. In fact, I can tell you it will have some missing cases. Well, we might want to then fill in the missing cases with a similar variable that asks the parent the same question – “Did you attend any parent/teacher conferences?” Taking and thinking about variables at different points in time, supposing we wanted to create a variable to look at a youth’s pattern of employment, to look at whether the youth was never employed at all in Waves, say 2 and 3, whether they were employed at one of the two waves, or whether they were employed at both waves.
There are a lot of times when not all cases have all the data. So, here’s a hypothetical example of what you might find if you actually took a look at who has got data for which survey. You can see that youth number 6 has data for the Wave 1 interview, the Wave 2 assessment, the Wave 2 interview and the Wave 2 school program data. Supposing these are the files that you're interested in for your analyses. On the other hand, youth number three has no data for either the Wave 1 interview, the Wave 2 assessment or the Wave 2 interview -but does have school program data. This is sort of what you're going to find as you look through as you look at your missing cases. And when you're joining files, you’ll need to really take this into consideration, and you’ll need to think about how you're going to handle these missing situations.
In joining or combining data files, all the files must be sorted by what you're going to match on, which is, as I said, in NLTS2 is always ID. The files on the CD that NLTS2 supplies are sorted by ID, but as you work with the files, they may become unsorted. It is very simple to sort the data, though. Here’s the syntax – and all it is is PROC SORT and the data set name and the by ID, and that’s something that is very important to remember to have that by ID statement, because if not, you can get all kinds of crazy things. And the run statement. Now, for those of you who don’t want to overwrite your old data, who want to keep your original file in tact so that you can go back and reference it and maybe use it again, if you use a KEEP or DROP statement, if you do a temporary sort or otherwise change the data, we very much recommend that you save the output to a new file.
Here’s some syntax to join multiple files. After the data have been sorted in each file, you give your new file a name and you just use the key word MERGE and you give the file names that you want to merge. And in this case, we’ve got some KEEP statements because we don’t want to keep all of the variables from each of the files. We’re only keeping ID, which we need to merge, and we’re keeping one other variable from each file – whether the youth had a paid job in each wave. Here is the SAS log that would result from that syntax. You see the syntax again, data employment and the files, and then you see the numbers of observations that were read in from each data set. And you see that the new file has, in fact, more observations than any of the data sets that were read in. That would indicate that each data set had some unique cases. So, you've got 6,700 and some odd observations, and five variables, which were exactly the five you kept.
If you don’t want all of the cases – supposing you only want the cases that have valid data in Wave 4, what you can do is simply put an In option on the KEEP statement when you read in the Wave 4 data. Here you see the KEEP – it says KEEP equals ID np4HasJob (keep = id np4HasJob). Then we have the IN option, and we’ve chosen to say, IN equals inW4 (in=inW4), which is sort of a meaningful name. You can say in equals A (in = A), or in equals one (in = 1) , or in equals W4 (in = W4), or any word that you care for. So then we’ve got the BY ID for the merge. You must merge by ID – if you don’t, you're going to have really weird things. And then we’ve got the IF in W4. It’s not IF in W4 equals one; it’s simply IF in W4. And that subsets the cases that are in wave 4. So, here we’ve got the log file from that, and we see that the new data set has 3882 observations, which are exactly the number and they are the identical observations to those in the wave 4 parent / youth data file.
We suggest that when you're creating new files, you name the files in a meaningful way. Maybe with the date – say, ‘Analysis File’ with the date – or by type of analysis. So, for instance, having the name ‘CrossWave’ in the name. By source – for instance, that you’ve got Waves 1, 2, and 3. Or by sequence – this is your 5th file, for instance. Be sure to use a two level name with a ddname before the file name if you want to have a permanent data set. If not, what you’ve got is a work or temporary file that will go away when the SAS session ends. So, here’s what the temporary file would look like: DATA Emplmt. And here’s what the permanent file would look like: sasdb.Emplmt.
Ok. Let’s look at another example using SAS software, about how to join or combine data. We’re going to combine the data from two existing files. We’re going to begin by sorting the file we created before – PrScores by ID. We’re going to bring in the Wave 2 paid job variable from the Wave 2 parent / youth data set, and we’re going to bring in the Wave 3 paid job variable from the Wave 3 parent / youth data set, and we’re going to save the file with a new name, that tells us that we’ve got both test scores and employment variables on the file.
All right. As we mentioned, the first thing we’re going to do is sort our data. We’re going to sort sasdb.PrScores, to make sure it’s in the right order we’re sorting it by ID, and that went well. We’ll look at our log to see that there are no problems, like a missing semi colon. Now we’re going to merge scores because in our sort statement, in our sort procedure, we read in the permanent data set, and we wrote out a temporary data set called Scores. Now we’re going to merge that file, Scores, with the Wave 2 and Wave 3 parent / youth data, keeping only the variables that we want. So, let's run this. All right. Let’s look at the log to see that everything is ok, and we see there there were 3652 observations read in from Scores, and the number of observations read in from the other data set, and that this new data set that we’ve created has almost 6,000 cases.
Now we’re going to do a PROC CONTENTS of the new data set, just to check that everything we wanted is here. So, here’s the list of our variables, and in fact we see that we have the paid job from Wave 2, the paid job variable, and we have the paid job variable from Wave 3. We have our ID, we have our weight variable, and we have the other variables about the test scores from the PrScores data set that we created earlier. All right. Here’s the contents again, and the presentation, for your convenience.
Well, congratulations - you have now completed Module 14 B. You've learned how to open and view a file, how to create a new file using SAS, how to reduce the size of files by either limiting the number of variables to those you need, or limiting the number of cases to those you need. You've learned how to join files using a key variable, and how to save files with a new name.
In closing, the topics we discussed in this module were the purpose of the module, how to open and view data files, how to limit variables in subset cases, and how to join or combine data files. The next module in this series is Module 15 B: Accessing Data Using Frequencies in SAS. Some important contact information before we wrap up – the NLTS2 web site has a wealth of information for you at NLTS2.org. NCES web site has both information about how to obtain the NLTS2 restricted use data and general information about restricted use data licenses, and you are very welcome to contact us at our email address: NLTS2@SRI.com.

