NLTS2 Module 17A Transcript

Module 17A: Accessing Data: Manipulating Variables in SPSS
We’re now at Module 17 Accessing Data, we’re going to look at manipulating variables in SPSS . Before we begin, we recommend that you have looked at the modules pertaining to the study, the study design, some of the implications of analyzing these data, the documentation for NLTS2. And it might be useful also to see the demonstration on the analysis of descriptive comparative using longitudinal data that had required a lot of data manipulation. And it might have been useful to look at some of the other accessing data presentations as well before beginning this one.

We’re going to look at the purpose of this module, we’re going to look at modifying existing variables, creating new variables, a summary of what we’ve done, and then we’ll wrap it up and give you some important contact information. As you know, we are using NLTS2 restricted data. These data are licensed to NCES. The data that we’re using for the presentations is a random sub sample of these data, any of the output that we have cannot be replicated by the full licensed data set.

The purpose of this module is to learn how to modify an existing variable, create a new variable and then create variables when you join and combined data from different sources. How do modify a variable – if you're in SPSS, it’s necessary to create a new variable to collapse categories, to break a continuous variable into categories, or to recode a variable. A note about created variables in the NLTS2 database – we do our analyses in SAS, which has a facility for temporarily changing ranges and formats with the SAS format library. So, although we have created many, many variables and these are included in the database, you are not likely to find any variables that are collapsed variables. This is not something we need to do when we’re using SAS. So, we are going to show you how to do it in SPSS, but you probably won't find those already created for you. But you will find a lot of very interesting created variables and it’s worth looking for those, but these are the ones that in SPSS you will have to create to your own specifications. This is briefly a syntax for recoding a variable into categories or ranges. There also is syntax to assign a variable label to the new variable that you are creating. And also to assign value labels to that new variable. Both of these are very important, it’s not very useful to have a variable that nobody knows what it means and what the codes represent. And this is how to do it in the menu-driven SPSS.

The programs and these instructions are available to you if you download the presentation. I won't walk through this. Ok. One of the things that you do after modifying it is you want to look at the results. So, once you have created a new variable, it will appear at the bottom of your list of variables in your data window, and I would recommend that you specify your format so that values are meaningful. That’s easy enough to do straight in the data menu, the data page, that you can see that right there. I’ll show you how to do that a little later. And to look at the frequency distribution of these variables, make sure that you’ve coded the way that you really want to. This is an example of a continuous variable which fortunately doesn’t have too many categories, but probably too many to show as a frequency distribution as it is. It has a range of zero to 17, and this is the age of the youth when he or she started having a problem or disability. If you collapse into categories, you make something a little bit more readable. In this case what we did is we collapsed into age one or younger, 2 to 5 years of age, 6 to 10 years of age, or 11 or older. And this gives us a little bit more readable table to work with.

So, now I’m going to demonstrate how we would do this. We’re going to open up the Wave 3 parent/ youth interview file, and we’re going to collapse a variable that is the number of problems that the parent has reported the youth has into a new variable that has ranges. This is a variable that has a minimum value of zero and a maximum value of 6. And what we’re going to do with this example is look at it collapsed zero to one, and then 2, 3, and then a collapse of 4 to 6. We’re also going to remember to label the variable so it means something to us later on. We are going to add value format so we know what those values mean. And we’re going to account for missing values, and of course, we’re going to paste our codes so that we have it to continue on to use.

What I have here is actually a file that I have put together that has the information that we need for this example and I’m going to select the menu item Transform. And I go to Recode into a Different Variable. There is an option to recode into this same variable. I don’t know who in their right mind would use this because basically if you made a mistake, you’ve destroyed the original variable. So, I think probably a good practice would be to always select the second option, which is to recode it to a different variable. We’re going to select a variable, number of problems (np3NbrProbs), in the pop up menu. And we’re going to move it over into the input/output variable. We’re going to give a name to the new one, and we can just call this np3NbrProbs_Cat. And we can label that, if you wish you can repeat the variable name so you always see that. And we’re going to say, number of problems categorized. And we are going to do this button here that says Old and New Values,” and that brings up another box. On the left-hand side there’s various different options for how you want to code. We can say we want all system or user missing to be system missing. And then we add that. So, basically I do something in the left-hand column, I have assigned a new value in the New Value box, and then I add it to this box here, which is Old to New.” The next thing I want to do is I want to take the lowest value, through one, which will capture zero to one, and give it a value of one for our new code. Add that. So, now we have two things in our Old to New box, we’re accounting for missing values, and we have collapsed the first range.

The second one I am not doing anything to but I am going to take the value of two and move it over and retain it as a value of two, and add that. Likewise for 3, I’m going to retain the value of 3, but I need to move that over and account for it. And then finally I’m going to do a range of 4 to the highest value that we have. We happen to know that it’s six, but this is useful if you don’t know what the maximum value is. So, that will now become value of 4, and we will add that. And then I have finished accounting for all my possible values, and I click Continue. And I click Change, and once I’ve clicked Change, I can use the paste option to paste my code. And that brings up the code which looks similar to what you might have seen in the presentation earlier, which has my recoding, it has my variable labels, and we can select that and execute. And we go back to the data window and we see that there is a new variable and if you enlarge the label, you can see that we have the new label there. And then we see that we have nothing in Values here. So, all I need to do in order to add my value labels is to go to the column that says Values, click on that, and I get a box which allows me to identify which each of the values are. So, I’m going to put in one, and I’m going to actually include the one in my value label so that I always know what the code is when I’m printing out procedures and so forth. And that represents zero to one problems, and we add that – see, now we have one equals, and then every time we do a procedure from now on, if it sees a code of one, it will print out (1) 0-1 problems.
We’ll do the same thing for (2)– 2 problems. And (3) is 3 problems. And actually I want to edit that one – I have to remove that, I want to fix that so it says 2 problems. That looks a little bit nicer. And I guess I should spell it correctly, too. Ok. And then, so we have accounted for one, two and three, and finally we have a value of four, and it is a code of (4), but it represents 4 to 6 problems. And we add that, and we should have accounted for all our 1, 2, 3, 4 values. And now let's take a look at it. So, we go back to Analyze, and we did this in an earlier module where we looked at how to do frequencies, and we’ll just take a look at that number of probs and see what it looks like. We select it, move to the Variable box, and we are going to just say Paste, go over to our syntax window, select that – and what we should see is a variable that has value labels and all those good things that we added to it. And there we have it, we have a new variable and it has labels on it, both for the name of the variable and for the values. I can further check out that I did exactly what I want to do by doing a cross tab of the original variable with the new variable. And so, we can take this number of problems – and we’ll make that a column because there’s many more values, and we’ll take the categorized one – I’m sorry, let me reverse that, we’ll take the, this guy, the rows, and our new variable as the columns. And we will Paste that and take a look and see what happened. Submit that. And so, now we see that the zero and one problems are all under code 1, code 2 remains code 2, code 3 remains code 3, but now 4, 5, and 6 are collapsed into this category 4. So, this is also good practice, not only to see what your new variable looks like but see how it looks in comparison to the one that you started with.

Here’s a reminder of what we just looked at in the demonstration – we saw the recoded variable and we also looked at the recoded variable by the original variable. Sometimes we want to create a brand new variable, so how do we do that? The values in the new variable can be results of calculations, assignments or logic. It can be created from an existing variable, it can be created from multiple variables, including variables from other sources or other waves. If you do bring in data from other sources, other waves, those have to be bought into the existing data set before you can proceed. Because they have to be in one place in order to have access to them. I would warn you, if you are combining variables from different places that you should be aware of any coding differences between the old and new variables. Sometimes there's similar items that have changed a little bit from wave to wave, or similar from one source or another source. So, you have to be sure that the codes do match up or that they can be accounted for in some way. You also have to decide what to do with missing values because often times when you combine data, data from one source is available, but not from another.
So, for an example, we’re going to just take a look at what we would do if we created a variable that used parent interview data from Waves 1, 2, and 3, it says – has student been suspended and/or expelled in any wave. So, you may look at a current wave and see that a student has been suspended, but that doesn’t give you the history of what might have happened before. So, here is just a sample code of creating a new variable that brings in data from multiple waves, and creates a new variable that says that they have to have a value for every wave. That if they don’t have a value for every wave, they're not even initialized. They are not going to be included in this new variable. And that’s the first statement that, with the And Statements, the logic of the and is that every one of those things has to be true. The next statement – I hate to drag you through code – but if the idea of the logic is important here, the next statement has ors, which any one of those things could be true. So, that is a one – results in a one if any of those items are true at all. So, the first statement initializes the variable at zero. We’re assuming they have never been suspended in any wave, if we have a value in every wave and we can answer that. The next statement overrides that initialize zero by saying, ok, do we have anybody anywhere at any time ever showing being suspended in any wave? And that becomes one. And then we want to go ahead and override it again and say, well, if they’ve been expelled or suspended in all 3 waves, we want to capture that. So, again we use the And Statement, which requires every one of those statements be true. So, if it’s true for every single wave that the value is one, then we have a value of two to the new variable, and it looks something like this: you have some number who have never been suspended or expelled, you have some number who were expelled in any wave, and then you have a few people who were suspended or expelled in every wave.
So, this is the result of the variable that we just created – we have some number who have never been suspended or expelled. So, we have some number who were suspended or expelled in any wave, and we have a few people who were suspended or expelled in all waves. And so, this is a way of bringing in data from other waves and getting a picture across time as opposed to a snapshot of one single wave. So, here are the instructions for creating the brand new variable. I am not going to read through this, we’ll demonstrate this, but this is available to you if you wanted to download the presentations at a later time. So, what we’re going to demonstrate is to create a new variable. And we’re going to start out with the Wave 4 parent / youth interview file. And we are going to bring in data from other waves, we’re going to bring in a variable from Wave 1, 2, and 3. And what we’re looking at is youth doing community service. So, we have a variable in Wave 4 that is a Yes/No, youth has done community service. But we want to know if they’ve ever reported doing that in these prior waves, and so what we’ll do is similar to what I described before – we’re going to initialize a value to zero if there’s a value for any of these variables. Now, we talked about accounting for missing values before and the variable I created earlier as an example, I required they have a value in every single wave. This is another option is to say if they have any value in any wave they're going to be included in this variable. These are decisions that you have to make, I think you just have to have a good reason for those decisions. But be aware that missing values are important and just be really mindful of what you're doing with missing values and why you're treating them that way. I’m looking at this variable as filling in an existing variable that if they have this represented at any time, I’ll allow them to have a value. But there are times that you may not want to do that, so the point is just be aware of missing values, and think about how you're treating them. We are going to – after we initialize it at zero if it has a value for any of these variables, is reassign it to a one if any of these variables are equal to one. And that will say, have they ever participated in community service or volunteering? And again, we’d want to assign a variable label and value labels, and we’d want to look at it afterward to make sure we did what we expected to do. So, let's take a look at how we would do this.
Ok, we’re returning to the little file that I created earlier, and once again we go to Transform, and this time we’re going to go to Compute Variable, we’re making a brand new variable, as opposed to just changing an existing variable. We are going to call this one np4P8_J4_ever, and I’m going to say, Ever. And I am going to give it a label while I’m here and thinking about it. I’ll put np4J4 Ever, and I’ll say, ever volunteered or participated in community service – a nice short label. And it is a numeric variable, we’ll click Continue. And the first thing I’m going to do is I’m going to assign a zero, because remember the first thing we want to do is initialize the variable. And then I’m going to come down here to this If Statement, way down in the corner. And this is where I put my logic in. So, I click on the If, and I have another box that comes up. I am going to click on a radio button that says, include if case satisfies conditions. And we’re going to bring in this equals – let's say this is greater than, greater or equal to zero. And optionally, you can go down here and use these buttons to build your code, or you can type in. Or – and then we have from Wave 1 the np1F7 greater equal to zero. And then we have or the value from Wave 2 is greater equal to zero. So, what we’re saying here is if it has any value at all, we are going to – another or in there – we’re going to set it to zero. So, we have a value from Wave 4, a value from Wave 1, a value from Wave 2, or a value from Wave 3, and if any of those are greater equal to zero, for this Yes/ No variable, then we click Continue, then it’s going to be assigned to zero. And then we’ll go ahead and click Paste and go over to our syntax editor, and we see that we have our first statement that assigns to zero. And we have a label for that variable. And we’re going to Submit that. And if we go over to our data window, we see that we have a new variable.
However, we’re not quite finished yet because we’ve only initialized it as zero. We also want to account for those that have any value of one. So, we go back to Compute Variable again, and it’s sort of like checking for your keys before you get out of the car and after you get out of the car – the order in which you do this is very important. The last statement that you make, an if/then statement, is going to overwrite previous statements. So, the first statement we did set it to zero, and now we will overwrite if any other condition is true. If we reversed it, it would set everybody back to zero. We would have set it to one in the first step, but then in the next step it would reassign back to zero, because that’s the latest condition that we’re applying. So, it’s very important the order that we do this in. So, the second statement we’re doing is, we’re going to set it to one if – now, instead of greater equal to zero, we’re going to have equal one. And notice I’m using or statements, which means that any of these can be true. So, it looks very similar to the last statement. The other one was, if anything had any value, it became zero, this one is if anything has a one, in any wave, it’s going to become one. We click on Continue, and we have a value of one.
I could take this step further and say that they had to do in in every wave. To do that, I would give this maybe a value of 2, return to here, and make these Ands. If I had an And between each of these equal one, it would require every single wave value would have to be equal to one. But at this point, I’m just looking at any occurrence, so I’m not going to do that. So, I’ll cancel that. So, we basically have a statement that says if any of these are one, then we are going to set the value of this new variable to one. So, I’m going to go ahead and paste that and it gives me a warning message that I may be changing my existing variable, which I do know I’m going to do that. So, that’s all right by me. So, we will Submit that. And then, knock on wood and hope when we look at it that it went through just like we had hoped. So, let's take a look. We’ll go to analyze, we know that the variable has been created because we checked that already. But let's do a frequency on it and just see what it looks like. We will remove this one from the prior example, and let's move our new variable in here, paste that, return to the syntax window, select that, cross our fingers and see what happens.
Ok. So, here we have - those who ever volunteered – we have some number who are zero, some number who are one. So, we do have a variable that has different values. The zero and one doesn’t tell me much, so I’m going to go back here to my Values window, click on that. And I’m going to say zero is either a no, or I could say never volunteered. And I can say one, volunteered in one or more waves. Or whatever is meaningful to you. But now if we go back to our syntax editor and submit this, we’ll get a little bit more meaningful table that tells us what those values mean. And once again, we can take a look at how it stacks up against the original. In this case, what I’ve done is I’ve taken a variable that exists, and I have filled in from prior waves. So, what I would want to do is I’d want to look at the P4 by the Ever and see what that looks like, to see if that’s really changed anything. So, let me paste that and return here to our lovely syntax window, select our code, and submit that. So, if we go down to our table, we see that 909 are No for both the variables, but 1199 No for the current wave but Yes for having done this in any of the other waves. So, this is kind of a way of saying that they may not be doing this now, but they have done this at some point in time. And this might be something of interest if you're doing longitudinal analyses. And we also find that we have, that 870 are Yes for both places. I think the important things about having pasted my code here is that when you're creating variables, you have a trail of bread crumbs of what you've done. And if you want to change how you recode something, or try to figure out what it was that you were doing 6 weeks ago when you created this variable, you have that record of it. So, I’d strongly recommend you’d never press just the OK, that you press the Paste, keep your code, and then perhaps even put comments next to why you were thinking of doing what you did because trust me – I’ve had many a time where I’ve gone back a year later and tried to remember why it was we did something. So, it’s very, very helpful to both have your code and even have the comments to tell you why you did something. Ok. Once again, this was the code we had for our example when we had the or statements rather than the and statements, so it allowed any value if anybody was a zero, and then this is what the example looked like. And this is what the cross tab looked like, so we found that it had actually filled in some values that we wouldn’t have had otherwise.

All right. So, to summarize creating variables, I would say you should always be aware of the differences in coding between similar variables. The one we just used, they were all Yes/No so that were pretty straight forward. But if you have several categories, it’s possible that categories are maybe in a different order from a different instrument or a different wave, or that a category has been added from one wave to the next. So, you have to be very careful about how those codes are when you’re combining things. You're also very, very likely much more likely to have missing values when you're combining variables, particularly from different sources and different waves. And you also have to consider weights. If you are – generally you use the analysis weight from the weight from the small sample when combining data is the rule of thumb, but if you're just filling in values from another wave, it’s ok to use the weight of the file that you're using as your active file. And as I mentioned earlier, strongly, strongly, strongly recommend pasting your code when creating variables because that way you’ll keep track of what it was that you had done in the past. And in summary, know the values, mind the missing, and watch your weights.

So, to wrap up, we talked about modifying existing variables, in other words, collapsing categories or ranges, creating brand new variables. And we summarized all the things you had to think about when you're doing that. And next up, we have a module on doing complex sample procedures in SPSS. And at last we will allow you to use standard errors. We’d like to remind you that we have a web site for NLTS2 and there’s lots of good valuable information on it, including reports and data tables at NLTS2.org. NCES has information about obtaining the data sets from NLTS2 as well as other data sets. And you can always email us at NLTS2@sri.com. Thank you.
