Project Activities
Structured Abstract
Setting
Sample
Research design and methods
Control condition
Key measures
Data analytic strategy
People and institutions involved
IES program contact(s)
Products and publications
Products: The expected outcome of this project is a revised Reading Tutor that assesses student abilities and provides customized interaction including the selection of appropriately challenging texts, practice, and feedback. Additionally, published reports on issues related to the development of the Tutor will be produced.
Book chapter
Mostow, J., Beck, J.E., Cuneo, A., Gouvea, E., Heiner, C., and Juarez, O. (2010). Lessons From Project LISTEN's Session Browser. In C. Romero, S. Ventura, S.R. Viola, M. Pechenizkiy, and R.S.J.D. Baker (Eds.), Handbook of Educational Data Mining (pp. 389-416). New York: CRC Press, Taylor and Francis Group.
Journal article, monograph, or newsletter
Duong, M., Mostow, J., and Sitaram, S. (2011). Two Methods for Assessing Oral Reading Prosody. ACM Transactions on Speech and Language Processing (TSLP), 7(4): 11-22.
González-Brenes, J.P., and Mostow, J. (2011). Classifying Dialogue in High-Dimensional Space. ACM Transactions on Speech and Language Processing (Special Issue on Machine Learning for Adaptivity in Dialogue Systems), 7(3): 1-15.
Korsah, G.A., Mostow, J., Dias, M.B., Sweet, T.M., Belousov, S.M., Dias, M.F., and Gong, H. (2010). Improving Child Literacy in Africa: Experiments With an Automated Reading Tutor. Information Technologies and International Development, 6(2): 1-19.
Proceeding
González-Brenes, J., Duan, W., and Mostow, J. (2011). How to Classify Tutorial Dialogue? Comparing Feature Vectors vs. Sequences. In Proceedings of the 4th International Conference on Educational Data Mining (pp. 169-178). Eindhoven, Netherlands: Educational Data Mining.
González-Brenes, J.P., and Mostow, J. (2010). Predicting Task Completion From Rich but Scarce Data. In Proceedings of the 3rd International Conference on Educational Data Mining (pp. 291-292). Pittsburgh, PA: Educational Data Mining.
Mostow, J., Chang, K., and Nelson, J. (2011). Toward Exploiting EEG Input in a Reading Tutor. In Proceedings of the 15th International Conference on Artificial Intelligence in Education (pp. 230-237). Auckland, NZ: Artificial Intelligence in Education.
Mostow, J., González-Brenes, J., and Tan, B.H. (2011). Learning Classifiers From a Relational Database of Tutor Logs. In Proceedings of the 4th International Conference on Educational Data Mining (pp. 149-158). Eindhoven, Netherlands: Educational Data Mining.
Mostow, J., Xu, Y., and Munna, M. (2011). Desperately Seeking Subscripts: Towards Automated Model Parameterization. In Proceedings of the 4th International Conference on Educational Data Mining (pp. 283-287). Eindhoven, Netherlands: Educational Data Mining.
Xu, Y., and Mostow, J. (2011). Logistic Regression in a Dynamic Bayes Net Models Multiple Subskills Better. In Proceedings of the 4th International Conference on Educational Data Mining (pp. 337-338). Eindhoven, Netherlands: Educational Data Mining.
Xu, Y., and Mostow, J. (2011). Using Logistic Regression to Trace Multiple Subskills in a Dynamic Bayes Net. In Proceedings of the 4th International Conference on Educational Data Mining (pp. 241-245). Eindhoven, Netherlands: Educational Data Mining.
Related projects
Supplemental information
Co-Principal Investigators: Paula Schwanenflugel, University of Georgia, and Joseph Beck, Worcester Polytechnic Institute
To detect improvements in the new version of the Reading Tutor over the current one, a 2-way mixed-model ANOVA will be employed, with Test (pre- vs. post-test) as the within-subjects variable and Tutor Version (new vs. current Tutor) as the between-subjects variable.
Questions about this project?
To answer additional questions about this project or provide feedback, please contact the program officer.