Skip to main content

Breadcrumb

Home arrow_forward_ios Information on IES-Funded Research arrow_forward_ios Talking Math: Improving Math Perfor ...
Home arrow_forward_ios ... arrow_forward_ios Talking Math: Improving Math Perfor ...
Information on IES-Funded Research
Grant Open

Talking Math: Improving Math Performance and Engagement Through AI-Enabled Conversational Tutoring

NCER
Program: Transformative Research in the Education Sciences
Award amount: $3,749,600
Principal investigator: Neil Heffernan III
Awardee:
Worcester Polytechnic Institute
Year: 2024
Award period: 3 years (03/01/2024 - 02/28/2027)
Project type:
Development and Innovation
Award number: R305T240029

Purpose

The purpose of this project is to develop a conversational artificial intelligence (AI) tutor (CAIT- pronounced as "Kate") to support independent math practice for middle school students who struggle with math and, otherwise, may not have access to after-school tutoring. CAIT will be integrated into ASSISTments, an existing, freely available, and evidence-based online math platform with widely used homework assignments from open education resources (OER). Through this work, the project team aims to dramatically improve students' engagement and math learning during independent math problem-solving time and narrow the persistent learning gap between groups of students by expanding the reach of after-school tutoring to low-income students who could not afford it otherwise.

Project Activities

First, the project team will train a large language model and engage in prompt engineering so that CAIT can interact with students through speech and text as they work through solving math problems. Next, the team will conduct design-based implementation research, usability testing, fairness testing, and feasibility testing to inform the iterative refinement of CAIT. Finally, the team will conduct a pilot study to establish evidence of promise for CAIT in supporting students' math learning and engagement.

Structured Abstract

Setting

Participating schools are located in urban, suburban, and rural locations in Massachusetts, Pennsylvania, Idaho, Louisiana, and Iowa.

Sample

In the first phase of the work, 10 middle school students will participate in 2 cycles of usability testing for CAIT as it is being developed. Next, 10 middle school math teachers and their students will participate in 2 rounds of feasibility studies to help identify logistical issues and inform iterative development. Across all 3 years of the project, 25 teachers from diverse backgrounds and schools will join fairness testing to systematically spot-check the content from the development and review some of the full dialogues for bias, ethics, correctness, and safety. Finally, 20 teachers and their 1,500 students will be recruited to participate in the pilot study.

Intervention

CAIT will engage in human-like dialogue with students through a conversational interface powered by natural language processing that uses both text-to-speech and speech-to-text capabilities, allowing students to interact with CAIT through speech or text. The conversational interface ensures that students can ask questions, seek explanations, and receive personalized feedback in a natural and engaging manner. CAIT will respond to student queries, provide explanations, and offer personalized feedback in a conversational format and will adapt to each student's performance level and learning pace allows for personalization comparable to human tutoring. This self-paced learning approach reduces the pressure of keeping up with the class or feeling left behind while empowering students to take charge of their education and build a strong foundation in math. CAIT will also provide continuous assessment and adaptive assignments by assessing students' understanding and misconceptions in real-time through dialogue and problem-solving, identifying areas of strengths and weakness, and then determining additional problems for students to solve that reflect appropriate prerequisite skills.

The project team will integrate CAIT within ASSISTments, which is freely available, and will be able to function on low-cost devices, mobile phones, and low-profile computers with Internet access to ensure that students have equal opportunities to access CAIT.

Research design and methods

First, the project team along with the teacher design team will develop and iteratively refine CAIT. The project team will train a large language model and engage in prompt engineering so that CAIT can interact with students through speech and text as they work through solving math problems. Next, the project team will conduct usability, fairness, and feasibility testing with students and collect data via system backend logs, interviews, focus groups, and surveys. Findings from the studies will be used to iteratively refine and improve the product. Finally, the team will conduct the pilot study to establish evidence of promise for enhancing math learning and engagement in math problem-solving. The pilot study will use a cluster-randomized control trial design, randomly assigning classrooms to use CAIT within ASSISTments to support homework or to use ASSISTments without access to CAIT.

Control condition

No control condition exists for the usability, fairness, or feasibility studies. For the pilot study, the classrooms assigned to the control condition will continue using ASSISTments but will not have access to CAIT.

Key measures

The primary outcome measure is students' performance on the end-of-unit summative assessments from the Illustrative Mathematics textbook (assigned by teachers). The team will also measure students' growth mindset, grit, and attitudes toward math. Using system log data, the project team will calculate students' math time-on-task.

Data analytic strategy

The project team will transcribe and analyze qualitative data from interviews, focus groups, and open-end survey responses using a linear, hierarchical analysis approach. For the pilot study, they will perform an intent-to-treatment analysis using a 2-level hierarchical linear model to account for classroom-level clustering. The team will conduct moderation analysis to estimate the effects on students of low socioeconomic status and low prior-year achievement. They will also utilize learning-analytic techniques to devise machine learning-based models on ASSISTments log data to identify patterns in the learning process data.

Cost analysis strategy

The project team will gather cost data systematically throughout the study. The team will use the ingredients method to gather costs and estimate the total costs of implementing CAIT during the pilot study.

People and institutions involved

IES program contact(s)

Courtney Pollack

Education Research Analyst
NCSER

Project contributors

Cristina Heffernan

Co-principal investigator

Mingyu Feng

Co-principal investigator

Partner institutions

WestEd

Partner Institution

Products and publications

The project team plans to disseminate research findings and information about developed products to teachers through the existing channels at the ASSISTments Foundation. The team will also disseminate findings to education researchers, educational technology developers, and the broader academic community through publications, presentations at academic and practitioner conferences, and the project website.

Publications:

ERIC Citations: Find available citations in ERIC for this award here.

Related projects

Using Web-Based Cognitive Assessment Systems for Predicting Student Performance on State Exams

R305K030140

Making Longitudinal Web-Based Assessments Give Cognitively Diagnostic Reports to Teachers, Parents, and Students While Employing Mastery Learning

R305A070440

An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform

R305A120125

Efficacy of ASSISTments Online Homework Support for Middle School Mathematics Learning: A Replication Study

R305A170641

Revisions to the ASSISTments Digital Learning Platform to Expand Its Support for Rigorous Education Research

R305N210049

Supplemental information

Partner Institutions: The ASSISTments Foundation; WestEd; Greater Commonwealth Virtual School

 

Questions about this project?

To answer additional questions about this project or provide feedback, please contact the program officer.

 

Tags

Education TechnologyK-12 EducationMathematics

Share

Icon to link to Facebook social media siteIcon to link to X social media siteIcon to link to LinkedIn social media siteIcon to copy link value

Questions about this project?

To answer additional questions about this project or provide feedback, please contact the program officer.

 

You may also like

Zoomed in IES logo
Workshop/Training

Innovation Science for Education Analytics (ISEA)

January 01, 2026
Read More
Blue zoomed in IES logo
News

IES Releases the Forum Guide to Student Mobility D...

October 28, 2025 by
Read More
Zoomed in IES logo
Forum Guide

Forum Guide to Student Mobility Data

Author(s): National Center for Education Statistics (NCES)
Publication number: NFES 2026001
Read More
icon-dot-govicon-https icon-quote