Inside IES Research

Notes from NCER & NCSER

Research and Development Partnerships Using AI to Support Students with Disabilities

A speach therapist uses a laptop to work with a student

It is undeniable that artificial intelligence (AI) is, sooner rather than later, going to impact the work of teaching and learning in special education. Given formal adoption of AI technologies by schools and districts and informal uses of ChatGPT and similar platforms by educators and students, the field of special education research needs to take seriously how advancements in AI can complement and potentially improve our work. But there are also ways that these advancements can go astray. With these technologies advancing so quickly, and with AI models being trained on populations that may not include individuals with disabilities, there is a real risk that AI will fail to improve—or worse, harm—learning experiences for students with disabilities. Therefore, there is a pressing need to ensure that voices from within the special education community are included in the development of these new technologies.

At NCSER, we are committed to investing in research on AI technologies in a way that privileges the expertise of the special education community, including researchers, educators, and students with disabilities and their families. Below, we highlight two NCSER-funded projects that demonstrate this commitment.

Using AI to support speech-language pathologists

In 2023, NCSER partnered with the National Science foundation to fund AI4ExceptionalEd, a new AI Institute that focuses on transforming education for children with speech and language disorders. Currently, there is a drastic shortage of speech-language pathologists (SLPs) to identify and instruct students with speech and language needs. AI4ExceptionalEd brings together researchers from multiple disciplines including special education, communication disorders, learning sciences, linguistics, computer science, and AI from nine different universities across the United States to tackle pressing educational issues around the identification of students and the creation of specially designed, individualized instruction for students with speech and language disorders.

By bringing together AI researchers and education researchers, this interdisciplinary research partnership is setting the foundation for cutting-edge AI technologies to be created that solve real-world problems in our schools. A recent example of this is in the creation of flash cards for targeted intervention. It is common practice for an SLP to use flash cards that depict a noun or a verb in their interventions, but finding or creating the exact set of flash cards to target a specific learning objective for each child is very time consuming. Here is where AI comes into play. The Institute’s team of researchers is leveraging the power of AI to help SLPs identify optimal sets of flash cards to target the learning objectives of each learner while also creating the flash cards in real time. To do this effectively, the AI researchers are working hand-in-hand with speech and language researchers and SLPs in the iterative development process, ensuring that the final product is aligned with sound educational practices. This one AI solution can help SLPs optimize their practice and reduce time wasted in creating materials.

Adapting a popular math curriculum to support students with reading disabilities

Another example of how partnerships can strengthen cutting-edge research using AI to improve outcomes for students with disabilities is a 2021 grant to CAST to partner with Carnegie Learning to improve their widely used digital math curriculum, MATHia. The goal of this project is to develop and evaluate reading supports that can be embedded into the adaptive program to improve the math performance, particularly with word problems, of students with reading disabilities. CAST is known for its research and development in the area of universal design for learning (UDL) and technology supports for students with disabilities. Carnegie Learning is well known for their suite of curriculum products that apply cognitive science to instruction and learning. The researchers in this partnership also rely on a diverse team of special education researchers who have expertise in math and reading disabilities and an educator advisory council of teachers, special educators, and math/reading specialists.

It has taken this kind of partnership—and the inclusion of relevant stakeholders and experts—to conduct complex research applying generative AI (ChatGPT) and humans to revise word problems within MATHia to decrease reading challenges and support students in understanding the semantic and conceptual structure of a word problem. Rapid randomized control trials are being used to test these revised versions with over 116,000 students participating in the study. In 2022-2023 the research team demonstrated that humans can successfully revise word problems in ways that lead to improvements in student performance, including students with disabilities. The challenge is in trying to train generative AI to reproduce the kinds of revisions humans make. While generative AI has so far been unevenly successful in making revisions that similarly lead to improvements in student outcomes, the researchers are not ruling out the use of generative AI in revising word problems in MATHia.

The research team is now working with their expert consultants on a systematic reading and problem-solving approach as an alternative to revising word problems. Instead of text simplification, they will be testing the effect of adding instructional support within MATHia for some word problems.

The promise of AI

AI technologies may provide an opportunity to optimize education for all learners. With educators spending large amounts of their day planning and doing paperwork, AI technologies can be leveraged to drastically decrease the amount of time teachers need to spend on this administrative work, allowing more time for them to do what only they can—teach children. Developers and data scientists are invariably going to continue developing AI technologies, many with a specific focus on solutions to support students with disabilities. We would like to encourage special education researchers to exert their expertise in this development work, to partner with developers and interdisciplinary teams to apply AI to create innovative and novel solutions to improve outcomes for students with disabilities. For AI to lead to lasting advances in education spaces, it will be imperative that this development is inclusive of the special education field.

This blog was written by NCSER Commissioner, Nate Jones (Nathan.Jones@ed.gov) and NCSER program officers Britta Bresina (Britta.Bresina@ed.gov) and Sarah Brasiel (Sarah.Brasiel@ed.gov).

IES Makes Three New Awards to Accelerate Breakthroughs in the Education Field

Through the Transformative Research in the Education Sciences Grants program (ALN 84.305T), IES  invests in innovative research that has the potential to make dramatic advances towards solving seemingly intractable problems and challenges in the education field, as well as to accelerate the pace of conducting education research to facilitate major breakthroughs. In the most recent FY 2024 competition for this program, IES invited applications from partnerships between researchers, product developers, and education agencies to propose transformative solutions to major education problems that leverage advances in technology combined with research insights from the learning sciences.

IES is thrilled to announce that three grants have been awarded in the FY 2024 competition. Building on 20 years of IES research funding to lay the groundwork for advances, these three projects focus on exploring potentially transformative uses of generative artificial intelligence (AI) to deliver solutions that can scale in the education marketplace if they demonstrate positive impacts on education outcomes. The three grants are:

Active Learning at Scale (Active L@S): Transforming Teaching and Learning via Large-Scale Learning Science and Generative AI

Awardee: Arizona State University (ASU; PI: Danielle McNamara)

The project team aims to solve the challenge that postsecondary learners need access to course materials and high-quality just-in-time generative learning activities flexibly and on-the-go.  The solution will be a mobile technology that uses interactive, research-informed, and engaging learning activities created on the fly, customized to any course content with large language models (LLMs). The project team will leverage two digital learning platforms from the SEERNet networkTerracotta and ASU Learning@Scale – to conduct research and will include over 100,000 diverse students at ASU, with replication studies taking place at Indiana University (IU). IES funding has supported a large portion of the research used to identify the generative learning activities the team will integrate into the system—note-taking, self-explanation, summarization, and question answering (also known as retrieval practice). The ASU team includes in-house technology developers and researchers, and they are partnering with researchers at IU and developers at INFLO and Clevent AI Technology LLC. The ASU and IU teams will have the educator perspective represented on their teams, as these universities provide postsecondary education to large and diverse student populations.

Talking Math: Improving Math Performance and Engagement Through AI-Enabled Conversational Tutoring

Awardee: Worcester Polytechnic Institute (PI: Neil Heffernan)

The project team aims to provide a comprehensive strategy to address persistent achievement gaps in math by supporting students during their out-of-school time. The team will combine an evidence-based learning system with advances in generative AI to develop a conversational AI tutor (CAIT– pronounced as “Kate”) to support independent math practice for middle school students who struggle with math, and otherwise, may not have access to after-school tutoring. CAIT will be integrated into ASSISTments, a freely available, evidence-based online math platform with widely used homework assignments from open education resources (OER). This solution aims to dramatically improve engagement and math learning during independent math problem-solving time. The team will conduct research throughout the product development process to ensure that CAIT is effective in supporting math problem solving and is engaging and supportive for all students. ASSISTments has been used by over 1 million students and 30,000 teachers, and IES has supported its development and efficacy since 2003. The project team includes researchers and developers at Worcester Polytechnic Institute and the ASSISTments Foundation, researchers from WestEd, educator representation from Greater Commonwealth Virtual School, and a teacher design team.

Scenario-Based Assessment in the age of generative AI: Making space in the education market for alternative assessment paradigm

Awardee: University of Memphis (PI: John Sabatini)

Educators face many challenges building high-quality assessments aligned to course content, and traditional assessment practices often lack applicability to real world scenarios. To transform postsecondary education, there needs to be a shift in how knowledge and skills are assessed to better emphasize critical thinking, complex reasoning, and problem solving in practical contexts. Supported in large part by numerous IES-funded projects, including as part of the Reading for Understanding Initiative, the project team has developed a framework for scenario-based assessments (SBAs). SBAs place knowledge and skills into a practical context and provide students with the opportunity to apply their content knowledge and critical thinking skills. The project team will leverage generative AI along with their framework for SBAs to create a system for postsecondary educators to design and administer discipline-specific SBAs with personalized feedback to students, high levels of adaptivity, and rich diagnostic information with little additional instructor effort. The project team includes researchers, developers, and educators at University of Memphis and Georgia State University, researchers and developers at Educational Testing Service (ETS), and developers from multiple small businesses including Capti/Charmtech, MindTrust, Caimber/AMI, and Workbay who will participate as part of a technical advisory group.

We are excited by the transformative potential of these projects and look forward to seeing what these interdisciplinary teams can accomplish together. While we are hopeful the solutions they create will make a big impact on learners across the nation, we will also share lessons learned with the field about how to build interdisciplinary partnerships to conduct transformative research and development.


For questions or to learn more about the Transformative Research in the Education Sciences grant program, please contact Erin Higgins (Erin.Higgins@ed.gov), Program Lead for the Accelerate, Transform, Scale Initiative.

ED/IES SBIR Special Education Technology is Showcased at the White House Demo Day

On Tuesday, November 7, 2023, the White House’s Office of Science and Technology Policy hosted a Demo Day of American Possibilities at the Showroom in Washington, DC.  The event featured 45 emerging technologies created by innovators through federal research and development programs across areas such as health, national security, AI, robotics, climate, microelectronics, and education. President Biden attended the event and met with several developers to learn about and see demonstrations of the innovations.

An IES-supported project by a Michigan-based Alchemie, the KASI Learning System (KASI), was invited to represent the U.S. Department of Education and its Small Business Innovation Research program, which IES administers.

KASI is an inclusive assistive technology that employs computer vision and multi-sensory augmented reality to support blind and low vision learners in using hand-held physical manipulatives to practice chemistry. A machine learning engine in KASI generates audio feedback and prompts to personalize the experience as learners progress. At the event, the project’s principal investigator and former high school chemistry educator, Julia Winter, demonstrated KASI to leaders in government and to attendees from the assistive technology field.

ED/IES SBIR supported the initial development for KASI through three awards. Based on these awards, Alchemie received funding from angel investors in Michigan, won a commercialization grant from the Michigan Emerging Technology Fund, and is establishing partnerships with publishers in K-12 and higher education. To extend KASI to more topics, Alchemie has won additional SBIR awards from the National Science Foundation, the National Institutes of Health, and the National Institute of Disability, Independent Living, and Rehabilitation Research, and is currently a finalist in the 2024 Vital Prize Challenge competition. KASI has also recently been highlighted in Forbes and Crain’s Detroit Business.

 

 

Stay tuned for updates on KASI and other education technology projects through the ED/IES SBIR program on Twitter, Facebook, and LinkedIn.


About ED/IES SBIR: The Department of Education’s (ED) Small Business Innovation Research (SBIR) program, administered by the Institute of Education Sciences (IES), funds entrepreneurial developers to create the next generation of technology products for learners, educators, and administrators. The program, known as ED/IES SBIR, emphasizes an iterative design and development process and pilot research to test the feasibility, usability, and promise of new products to improve outcomes. The program also focuses on planning for commercialization so that the products can reach schools and end-users and be sustained over time. Millions of students in thousands of schools around the country use technologies developed through ED/IES SBIR.

Edward Metz (Edward.Metz@ed.gov) is the Program Manager of the ED/IES SBIR program.

Laurie Hobbs (Laurie.Hobbs@ed.gov) is the Program Analyst of the ED/IES SBIR program.

Inspiring Girls to Pursue STEM careers with the Dear Smart Girl Career Exploration Platform

The Department of Education’s Small Business Innovation Research Program (SBIR), which IES administers, funds the research, development, and evaluation of new, commercially viable education technology products. In this guest blog, Abi Olukeye of Smart Girl HQ discusses the inspiration behind her recently completed SBIR project, Dear Smart Girl, and the importance of helping girls envision themselves in STEM Careers.

What is Dear Smart Girl?

Our Dear Smart Girl platform is a learning experience that combines online interactive game-based learning curriculum with offline engaging activity kits and personalized STEM learning recommendations to enable elementary-aged girls achieve STEM career literacy by age 12. Our Dear Smart Girl platform is the only STEM career education platform on the market with an ecosystem of products with a research-driven design featuring age-appropriate, experienced-based informal learning content designed to facilitate STEM discovery, self-efficacy, and fluency for young female-identifying learners.

Through our Dear Smart Girl digital platform, we transform the way girls perceive and engage in STEM learning pathways by providing an innovative multi-stage learning experience.

Learning begins in the whimsical town of Ingenia, where learners are immersed into a digital world that is designed to capture aesthetics and themes that resonate with female-identifying students. Learners begin by selecting a storyline, each of which is associated with a STEM career and features a project-based problem-solving activity. Along the way, students gain new vocabulary and fluency with the subject area being exposed to them. In stage two, learners take their new skills offline and work to complete the real-life version of their game project using our complementary Dear Smart Girl project kit. These two stages of learning combine powerfully to strategically introduce, challenge, and engage young girls in STEM career exploration that builds their confidence and literacy in STEM pathways.

What inspired you to create the Dear Smart Girl platform?

The idea was born out of personal need. I started observing that at about age 3 my daughters were often describing toys and activities as either “boy things” or “girl things.” I was really stunned to see how early biases develop and felt strongly about finding ways to balance out their views. My first instincts were to find more toys and activities that would appeal to them and activities that would expose them broadly. And I fully anticipated that a quick internet search would surface plenty of options. I was so wrong. Not only were there limited options, most of what I found did not appeal to my daughters in terms of type of activity and aesthetics.

Reflecting on my own experience as someone who has a STEM degree and was, at the time, working at a global manufacturing firm leading technical projects, I decided to dive into the research about girls and STEM. I discovered that although women participate equally in the labor force, they only make up 28% of the STEM workforce. In addition, early adolescence tends to be when girls lean away from STEM at a higher rate than their male peers. That inspired me to work with other talented and passionate people to build products and facilitate experiences and help young female-identifying learning achieve STEM career literacy by age 12.

What are the types of STEM careers featured in Dear Smart Girl and why did you choose them?

Our pilot career module is an electrical engineering module, but over the course of the next two years, we are working to add five more game modules featuring chemical science, mechanical engineering, biology, software development and product designer careers. We select careers based on science standards being taught in 4th–7th grade. Our goal is to take topical themes and relate them to their real-world applications while also putting them in the context of the career domains that features the scientific concept and related skills. We also working to align to the National Career Clusters framework, which supports Career Technical Education (CTE) programs. 

What elements of Dear Smart Girl are uniquely tailored to female-identifying students?

We tailor our product to help sustain interest in STEM Career pathways in the following ways.

  • We are intentional about selecting and mapping careers in ways that show real-world relevance. Anecdotally, we find that when learners are excited about what they are building, they are more engaged and motivated to learn the skills needed to accomplish their goal.
  • We optimize our projects to create an experience that is a perfect blend of learning a new technical skill and creative design. According to Microsoft research on closing the STEM gap, 91% of girls describe themselves as creatives. When girls learn about how real-world STEM jobs can be used to help the world, their perception of the creativity and positive impact of STEM careers can more than double.
  • We use beautiful illustrations, colors, and imagery to creative engaging worlds and digital environment rich with representation for diverse female-identifying students.

What advice can you give technology developers who focus on female-identifying students?
For developers working on products designed for female-identifying students, I recommend a collaborative development approach. We co-create every career module we work on with students to get feedback early and often. While it is easy to fall for stereotypical storylines, female-identifying students have diverse needs, interests, and learning styles that should be celebrated with well-designed learning platforms.

What are the next steps for Dear Smart Girl?

We are so excited to have been recently award a phase 2 award to expand and commercialize our career exploration modules. Over next two years, we will develop and launch five additional career modules, expand educator tools, build in extension activities, and launch to CTE programs across the country.


Abi Olukeye is the founder and CEO of Smart Girl HQ, a company dedicated to closing the gender gap for females in the STEM pipeline by increasing the number of positive experiences young girls have with STEM early in their learning journey. Her vision is to create an ecosystem of products that when used together are a powerful catalyst for sustaining long-term engagement in STEM for young girls. Her work has been supported by National Science Foundation and the Department of Education through Small Business Innovation Research (SBIR) Awards, the NC Idea Foundation, and the Vela Education Fund. Abi is the chair of the board of CSEdResearch.org and a past member of the Computer Science K12 Standards Committee for North Carolina. She holds a bachelor’s degree in computer science from Virginia Tech and MBA from Indiana University. She and her husband live in Charlotte, NC and have two young daughters who greatly inspire her work.

This blog was produced by Katina Stapleton (Katina.Stapleton@ed.gov), co-chair of the IES Diversity Council.

Innovating Math Education: Highlights from IES Learning Acceleration Challenges

A teacher and students work on math problems on a white board

The Institute of Education Sciences (IES) held two Learning Acceleration Challenges during the 2022–23 school year, designed to incentivize innovation in math and science. The Math Prize sought school-based, digital interventions to significantly improve math outcomes, specifically in fractions, for upper elementary school students with or at risk for a disability that affects math performance. An unprecedented number of students are performing below grade level in core academic subjects according to the most recent data from the National Assessment of Educational Progress. In response to this problem, the grand prize required interventions to reach an effect size equal to or exceeding 0.77 on a broad measure of math achievement, the NWEA® MAP™ Growth math assessment. The challenge included two phases: In Phase 1, intervention providers submitted information on their interventions and research plans for implementing and testing their interventions under routine conditions. In Phase 2, selected research teams (finalists) were given $25,000 to implement and test their interventions with a shot at receiving the grand prize.

There were four submissions scored by a panel of judges during Phase 1. Two teams were selected to proceed to Phase 2 of the challenge to implement their intervention in schools: The DRUM (Digital Rational Number) Intervention and the ExploreLearning’s Reflex + Frax intervention. These two interventions were implemented in schools between November 2022 and April 2023 and participating students completed the NWEA MAP Growth math assessment before and after implementation. At the completion of Phase 2, the judging panel scored the Phase 2 submissions according to a rigorous set of criteria that included impact (as evaluated by a randomized controlled trial), cost effectiveness, scalability, and sustainability. Based on the scores received by the finalists, the panel did not recommend awarding any Phase 2 Prizes.

We recognize this challenge was an ambitious and rapid effort to improve math achievement. With the knowledge gained from this challenge, we hope to continue to design opportunities that encourage transformative, innovative change within education. While disappointing, these results shed light on some of the challenges of targeting ambitious improvements in student math achievement:

  • The implementation hurdles experienced by both teams reinforce the difficulties of conducting research in schools, especially in the current post-pandemic era climate. In the present circumstances, many schools face extra strains that may make it challenging to implement new interventions, as is required during an RCT.
  • It has historically been, and continues to be, difficult to create accelerated growth in math achievement for students who are with or at risk for disabilities that affect math performance. An improvement in line with the challenge’s 0.77 effect size criterion for the grand prize would substantially lessen the average achievement gap between students with disabilities and their nondisabled peers—and would be no small feat!
  • Barriers still exist to implementation of a technology-based intervention. For intervention developers, the cost and time required to create a digital intervention can be very large. For schools, the necessary infrastructure and acceptance of digital interventions is not always present.
  • Researching interventions within schools takes a lot of time and resources. Sometimes getting answers to our most pressing educational problems takes time, despite the best efforts of those involved to accelerate this process. The results of this competition underscore the continued need for research to support the significant difficulties of this population of learners.

Thank you to all who participated. We would also like to thank Luminary Labs, the contractor providing support for the IES Learning Acceleration Challenges and the two strong partners they included in the work: NWEA and Abt Associates. We appreciate NWEA’s support in conducting the evaluation of the effects of the intervention on the MAP Growth assessment and Abt Associates for their technical assistance during the Phase 2 implementation. We also appreciate all their work to collect and summarize data to understand what we can learn from the challenges and recommendations from other open innovation initiatives to inform future similar work at IES.

If you have an intervention or an idea for an intervention that could accelerate math achievement for students with or at risk for disabilities, you are encouraged to learn more about additional funding opportunities at IES, and contact Sarah Brasiel, program officer for NCSER’s STEM topic area.

This blog was written by Britta Bresina, NCSER program officer.