Inside IES Research

Notes from NCER & NCSER

Research and Development Partnerships Using AI to Support Students with Disabilities

A speach therapist uses a laptop to work with a student

It is undeniable that artificial intelligence (AI) is, sooner rather than later, going to impact the work of teaching and learning in special education. Given formal adoption of AI technologies by schools and districts and informal uses of ChatGPT and similar platforms by educators and students, the field of special education research needs to take seriously how advancements in AI can complement and potentially improve our work. But there are also ways that these advancements can go astray. With these technologies advancing so quickly, and with AI models being trained on populations that may not include individuals with disabilities, there is a real risk that AI will fail to improve—or worse, harm—learning experiences for students with disabilities. Therefore, there is a pressing need to ensure that voices from within the special education community are included in the development of these new technologies.

At NCSER, we are committed to investing in research on AI technologies in a way that privileges the expertise of the special education community, including researchers, educators, and students with disabilities and their families. Below, we highlight two NCSER-funded projects that demonstrate this commitment.

Using AI to support speech-language pathologists

In 2023, NCSER partnered with the National Science foundation to fund AI4ExceptionalEd, a new AI Institute that focuses on transforming education for children with speech and language disorders. Currently, there is a drastic shortage of speech-language pathologists (SLPs) to identify and instruct students with speech and language needs. AI4ExceptionalEd brings together researchers from multiple disciplines including special education, communication disorders, learning sciences, linguistics, computer science, and AI from nine different universities across the United States to tackle pressing educational issues around the identification of students and the creation of specially designed, individualized instruction for students with speech and language disorders.

By bringing together AI researchers and education researchers, this interdisciplinary research partnership is setting the foundation for cutting-edge AI technologies to be created that solve real-world problems in our schools. A recent example of this is in the creation of flash cards for targeted intervention. It is common practice for an SLP to use flash cards that depict a noun or a verb in their interventions, but finding or creating the exact set of flash cards to target a specific learning objective for each child is very time consuming. Here is where AI comes into play. The Institute’s team of researchers is leveraging the power of AI to help SLPs identify optimal sets of flash cards to target the learning objectives of each learner while also creating the flash cards in real time. To do this effectively, the AI researchers are working hand-in-hand with speech and language researchers and SLPs in the iterative development process, ensuring that the final product is aligned with sound educational practices. This one AI solution can help SLPs optimize their practice and reduce time wasted in creating materials.

Adapting a popular math curriculum to support students with reading disabilities

Another example of how partnerships can strengthen cutting-edge research using AI to improve outcomes for students with disabilities is a 2021 grant to CAST to partner with Carnegie Learning to improve their widely used digital math curriculum, MATHia. The goal of this project is to develop and evaluate reading supports that can be embedded into the adaptive program to improve the math performance, particularly with word problems, of students with reading disabilities. CAST is known for its research and development in the area of universal design for learning (UDL) and technology supports for students with disabilities. Carnegie Learning is well known for their suite of curriculum products that apply cognitive science to instruction and learning. The researchers in this partnership also rely on a diverse team of special education researchers who have expertise in math and reading disabilities and an educator advisory council of teachers, special educators, and math/reading specialists.

It has taken this kind of partnership—and the inclusion of relevant stakeholders and experts—to conduct complex research applying generative AI (ChatGPT) and humans to revise word problems within MATHia to decrease reading challenges and support students in understanding the semantic and conceptual structure of a word problem. Rapid randomized control trials are being used to test these revised versions with over 116,000 students participating in the study. In 2022-2023 the research team demonstrated that humans can successfully revise word problems in ways that lead to improvements in student performance, including students with disabilities. The challenge is in trying to train generative AI to reproduce the kinds of revisions humans make. While generative AI has so far been unevenly successful in making revisions that similarly lead to improvements in student outcomes, the researchers are not ruling out the use of generative AI in revising word problems in MATHia.

The research team is now working with their expert consultants on a systematic reading and problem-solving approach as an alternative to revising word problems. Instead of text simplification, they will be testing the effect of adding instructional support within MATHia for some word problems.

The promise of AI

AI technologies may provide an opportunity to optimize education for all learners. With educators spending large amounts of their day planning and doing paperwork, AI technologies can be leveraged to drastically decrease the amount of time teachers need to spend on this administrative work, allowing more time for them to do what only they can—teach children. Developers and data scientists are invariably going to continue developing AI technologies, many with a specific focus on solutions to support students with disabilities. We would like to encourage special education researchers to exert their expertise in this development work, to partner with developers and interdisciplinary teams to apply AI to create innovative and novel solutions to improve outcomes for students with disabilities. For AI to lead to lasting advances in education spaces, it will be imperative that this development is inclusive of the special education field.

This blog was written by NCSER Commissioner, Nate Jones (Nathan.Jones@ed.gov) and NCSER program officers Britta Bresina (Britta.Bresina@ed.gov) and Sarah Brasiel (Sarah.Brasiel@ed.gov).

What We are Learning from NAEP Data About Use of Extended Time Accommodations

For students with learning disabilities, many of whom may take more time to read and process information than non-disabled peers, an extended time accommodation (ETA) is often used on standardized assessments. In 2021, IES awarded a grant for researchers to explore the test-taking behavior, including use of accommodations such as ETA, of students with disabilities in middle school using response process data from the NAEP mathematics assessment. In this blog, we interview Dr. Xin Wei from Digital Promise to see what she and Dr. Susu Zhang from University of Illinois at Urbana-Champaign are learning from their study.

The researchers have delved into the performance, process, and survey data of the eighth graders who took the digital NAEP mathematics test in 2017. Their recent article presents a quasi-experimental study examining the differences in these data across three distinct profiles of students with learning disabilities (LDs)—students with LD who received and utilized ETAs, students with LD who were granted ETAs but did not use them, and students with LD who did not receive ETAs.

The key findings from their study are as follows:

  • Students with LDs who used their ETAs performed statistically significantly better than their peers with LDs who were not granted ETA and those who received ETA but did not use it. They also engaged more with the test, as demonstrated by more frequent actions, revisits to items, and greater use of universal design features like drawing tool and text-to-speech functionalities on most of the math items compared to students who were not granted extended time.
  • Students with LDs who had ETAs but chose not to use them performed significantly worse than their peers with LDs who were not granted extended time.
  • Students with LDs who were granted ETAs saw the best performance with an additional 50% time (45 minutes compared to the usual 30 minutes provided to students without ETA).
  • Students who were given extra time, regardless of whether they used it, reported feeling less time pressure, higher math interest, and enjoying math more.
  • There were certain item types for which students who used ETAs performed more favorably.

We recently discussed the results of the study with Dr. Wei to learn more.


Which types of items on the test favored students who used extended time and why do you think they benefited?

Headshot of Xin Wei

The assessment items that particularly benefited from ETAs were not only complex but also inherently time-consuming. For example, students need to complete four sub-questions for item 5, drag six numbers to the correct places for item 6, type answers into four places to complete an equation for item 9, type in a constructive response answer for item 11, and complete a multiple-choice question and type answers in eight places to complete item 13.

For students with LDs, who often have slower processing speeds, these tasks become even more time-intensive. The additional time allows students to engage with each element of the question thoroughly, ensuring they have the opportunity to fully understand and respond to each part. This extended time is not just about accommodating different processing speeds; it's about providing the necessary space for these students to engage with and complete tasks that are intricate and time-consuming by design.

Why did you decide to look at the additional survey data NAEP collects on math interest and enjoyment in your study of extended time?

These affective factors are pivotal to academic success, particularly in STEM fields. Students who enjoy the subject matter tend to perform better, pursue related fields, and continue learning throughout their lives. This is especially relevant for students with LDs, who often face heightened test anxiety and lower interest in math, which can be exacerbated by the pressure of timed assessments. Our study's focus on these affective components revealed that students granted extra time reported a higher level of math interest and enjoyment even if they did not use the extra time. ETAs appear to alleviate the stress tied to time limits, offering dual advantages by not only aiding in academic achievement but also by improving attitudes toward math. ETAs could be a low-cost, high-impact accommodation that not only addresses academic needs but also contributes to emotional health.

What recommendations do you have based on your findings for classroom instruction?

First, it is crucial to prioritize extra time for students with LDs to enhance their academic performance and engagement. This involves offering flexible timing for assignments and assessments to reduce anxiety and foster a greater interest in learning. Teachers should be encouraged to integrate Universal Design for Learning principles into their instructional methods, emphasizing the effective use of technology, such as text-to-speech tools and embedded digital highlighters and pencils for doing scratchwork. Professional development for educators is essential to deepen their proficiency in using digital learning tools. Additionally, teachers should motivate students to use the extra time for thorough problem-solving and to revisit math tasks for accuracy. Regularly adjusting accommodations to meet the evolving needs of students with LDs is vital in creating an inclusive learning environment where every student can achieve success.

What is the implication of the study findings on education equity? 

Our study demonstrates that ETAs offer more than just a performance boost: they provide psychological benefits, reducing stress and enhancing interest and enjoyment with the subject matter. This is vital for students with LDs, who often face heightened anxiety and performance pressure. To make the system more equitable, we need a standardized policy for accommodations that ensures all students who require ETAs receive them. We must consider the variable needs of all students and question the current practices and policies that create inconsistencies in granting accommodations. If the true aim of assessments is to gauge student abilities, time is a factor that should not become a barrier.


U.S. Department of Education Resources

Learn more about the Department’s resources to support schools, educators, and families in making curriculum, instruction, and assessment accessible for students with disabilities.

Learn more about conducting research using response process data from the 2017 NAEP Mathematics Assessment.

 

This  interview blog was produced by Sarah Brasiel (Sarah.Brasiel@ed.gov), a program officer in the National Center for Special Education Research.

ED/IES SBIR Special Education Technology is Showcased at the White House Demo Day

On Tuesday, November 7, 2023, the White House’s Office of Science and Technology Policy hosted a Demo Day of American Possibilities at the Showroom in Washington, DC.  The event featured 45 emerging technologies created by innovators through federal research and development programs across areas such as health, national security, AI, robotics, climate, microelectronics, and education. President Biden attended the event and met with several developers to learn about and see demonstrations of the innovations.

An IES-supported project by a Michigan-based Alchemie, the KASI Learning System (KASI), was invited to represent the U.S. Department of Education and its Small Business Innovation Research program, which IES administers.

KASI is an inclusive assistive technology that employs computer vision and multi-sensory augmented reality to support blind and low vision learners in using hand-held physical manipulatives to practice chemistry. A machine learning engine in KASI generates audio feedback and prompts to personalize the experience as learners progress. At the event, the project’s principal investigator and former high school chemistry educator, Julia Winter, demonstrated KASI to leaders in government and to attendees from the assistive technology field.

ED/IES SBIR supported the initial development for KASI through three awards. Based on these awards, Alchemie received funding from angel investors in Michigan, won a commercialization grant from the Michigan Emerging Technology Fund, and is establishing partnerships with publishers in K-12 and higher education. To extend KASI to more topics, Alchemie has won additional SBIR awards from the National Science Foundation, the National Institutes of Health, and the National Institute of Disability, Independent Living, and Rehabilitation Research, and is currently a finalist in the 2024 Vital Prize Challenge competition. KASI has also recently been highlighted in Forbes and Crain’s Detroit Business.

 

 

Stay tuned for updates on KASI and other education technology projects through the ED/IES SBIR program on Twitter, Facebook, and LinkedIn.


About ED/IES SBIR: The Department of Education’s (ED) Small Business Innovation Research (SBIR) program, administered by the Institute of Education Sciences (IES), funds entrepreneurial developers to create the next generation of technology products for learners, educators, and administrators. The program, known as ED/IES SBIR, emphasizes an iterative design and development process and pilot research to test the feasibility, usability, and promise of new products to improve outcomes. The program also focuses on planning for commercialization so that the products can reach schools and end-users and be sustained over time. Millions of students in thousands of schools around the country use technologies developed through ED/IES SBIR.

Edward Metz (Edward.Metz@ed.gov) is the Program Manager of the ED/IES SBIR program.

Laurie Hobbs (Laurie.Hobbs@ed.gov) is the Program Analyst of the ED/IES SBIR program.

Experimenting with Science Education to Improve Learner Opportunities and Outcomes

The NAEP science assessment measures science knowledge and ability to engage in scientific inquiry and conduct scientific investigations. According to results from the 2019 NAEP science assessment, only one-third of grade 4 and grade 8 students, and less than one-quarter of grade 12 students scored at or above proficient. In addition, for grade 4 middle-performing and low-performing students, their science performance showed declines from 2015. While IES has a history of investing in high quality science education research to improve science teaching and learning, these data suggest that much more work is needed.

To that end, during the 2022-23 school year, IES held two Learning Acceleration Challenges designed to incentivize innovation to significantly improve learner outcomes in math and science. Under the Challenge for the Science Prize, IES sought interventions to significantly improve science outcomes for middle school students with low performance in science. Unfortunately, the judging panel for the Challenge did not recommend any finalists for the Science Prize (more information about the Math Prize results can be found here). IES recognized this Challenge was an ambitious and rapid effort to improve science achievement. Feedback from potential Science Prize entrants indicated that the rapid cycle for evaluating the intervention along with the lack of resources to implement the intervention were barriers to this competition.

With the knowledge gained from the Science Prize, IES is continuing to design opportunities that encourage transformative, innovative change to improve teaching and learning in science. In our newest opportunity, the National Center for Education Research (NCER) at IES, in partnership with the National Science Foundation (NSF), released a Request for Applications for a National Research and Development Center (R&D Center) on Improving Outcomes in Elementary Science Education. Results from the most recent NAEP science assessment and the lessons learned from the Science Prize suggest opportunities for improving teaching and learning in science education need to begin early in education, and more resources are needed to conduct high quality research in science education. Through this R&D Center, IES and NSF will provide greater resources (grant award of up to $15 million over 5 years) to tackle persistent challenges in elementary science education, including the measurement of elementary science learning outcomes, and generating evidence of the impact of elementary science interventions on learner’s science achievement. In doing so, the new Elementary Science R&D Center will provide national leadership on elementary science education and build capacity in conducting high-quality science education research.


This blog was written by NCER program officer, Christina Chhin. For more information about the Elementary Science R&D Center competition, contact NCER program officers, Jennifer Schellinger or Christina Chhin, take a look at the 84.305C RFA, and/or attend one of our virtual office hours.

Celebrating National STEM Day on November 8 and Every Day

IES widely supports and disseminates high-quality research focusing on science, technology, engineering, and mathematics (STEM) through NCER and NCSER. To celebrate National STEM Day on November 8 and every day, we highlight some of the work that NCER and NCSER have supported over the years in the various STEM areas, as well as opportunities for funding future work. Additional information about IES’s investment in STEM education can also be found on our STEM topic page.

Science

  • Researchers developed ChemVLab+ an online chemistry intervention that allows high school students to perform experiments and analyze data in a flexible, multimedia virtual chemistry lab environment. The online modules promote conceptual understanding and science inquiry skills aligned to the Next Generation Science Standards. The chemistry activities are freely available on the project website.
  • Researchers are developing Words as Tools, an intervention for emergent bilingual adolescents that is designed for use in English as a second language classes to promote development of metalinguistic awareness with science vocabulary. The lessons, being developed with a lens of culturally sustaining pedagogy, are intended to help build knowledge of essential science words as well as how words work in science.
  • Researchers are evaluating the efficacy of an integrated science and literacy curriculum (ISLC) designed to engage first grade students in scientific investigations at a level appropriate for young learners. ISLC addresses the challenges of language and literacy development by ensuring that the language of science is brought forward and explicitly addressed in an integrated approach.
  • Through Project MELVA-S, researchers are developing an online formative assessment that measures the science vocabulary knowledge of Latinx bilingual students with different levels of English and Spanish language proficiencies. Results from the assessment can be used to monitor the progress of individual students, help teachers differentiate language and vocabulary instruction, and provide additional science vocabulary supports.

Technology

  • Using The Foos by codeSpark, researchers are exploring computational thinking processes in grades 1 and 3 through a series of classroom-based studies.
  • Researchers are evaluating the efficacy of the CAL-KIBO curriculum, an educational robotics program designed for use with early elementary school-aged students to examine its impact on computational thinking, fluid reasoning, and math achievement.
  • Researchers are systematically investigating how specific features of immersive virtual reality (IVR) can be used to improve student outcomes in science learning. In particular, the researchers are exploring how visual and auditory IVR design features can enhance affective state and cognitive processing in general and for specific subgroups of learners.
  • Researchers are developing and testing TaylorAI, an artificial intelligence formative feedback and assessment system for hands-on science investigations to help build student competence as they engage in laboratory activities.
  • In partnership with the National Science Foundation, IES is co-funding two National Artificial Intelligence (AI) Institutes. Under NCER, the Institute for Inclusive and Intelligent Technologies for Education (INVITE) is developing artificial intelligence (AI) tools and approaches to support behavioral and affective skills (for example, persistence, academic resilience, and collaboration) to improve learning in STEM education. Under NCSER, the AI Institute for Exceptional Education (AI4ExceptionalEd) is using multiple cutting-edge AI methodologies to create the technology to assist speech-language pathologists with identifying students in need of speech and language services and delivering individualized interventions.

Engineering

  • Researchers are developing an innovative teacher professional learning intervention called Elevating Engineering with Multilingual Learners that is intended to help grade 3-5 teachers develop the knowledge and skills they need to effectively teach engineering to English learners and all students through culturally and linguistically responsive pedagogies and engineering instruction.
  • Product developers and researchers are developing and testing NEWTON-AR, an augmented reality (AR) application-based engineering, computer science, and STEM puzzle game for children in kindergarten to grade 3. Intended for use in classrooms, after-school programs, and at home, NEWTON-AR will combine AR, engineering, simulation, making, and programming into a sandbox game where students create, modify, simulate, prototype, and test contraptions to solve puzzle challenges.

Mathematics

  • Researchers have developed and tested for efficacy of Fusion, a first-grade intervention aimed at developing understanding of whole numbers for students at risk for mathematics learning disabilities. It is designed as a program for schools using a multi-tiered approach to instruction that provides increasingly intense levels of instruction based on the results of frequent progress monitoring of students.
  • Researchers tested for efficacy of Pirate Math Equation Quest, a word problem-solving intervention for third grade students with mathematics difficulties, including students with or at risk for mathematics learning disabilities.
  • Researchers assessed the efficacy of Interleaved mathematics practice, an intervention that rearranges math practice problems so that 1) different kinds of math problems are mixed together, which improves learning, and 2) problems of the same kind are distributed across multiple assignments, which improves retention. A new systematic replication study is also now underway to further examine the efficacy of interleaved mathematics practice.
  • Researchers have conducted several impact studies (one conducted with grade 7 students in Maine and replication study conducted in North Carolina) of ASSISTments, a free web-based program that provides immediate feedback to students and teachers on homework. ASSISTments can be used with any commercial or locally developed math curriculum, and teachers can assign "mastery" problem sets that organize practice to facilitate the achievement of proficiency.  

STEM Education Research Funding Opportunities

Research grant funding opportunities focusing on STEM education can be found across several programs and competitions. Currently, there are several active funding opportunities where training or research with a STEM education focus would fit:  

More information on these fundings opportunities can also be found at: https://ies.ed.gov/funding/


This blog was written by Sarah Brasiel (sarah.brasiel@ed.gov), program officer at NCSER and Christina Chhin (christina.chhin@ed.gov), program officer at NCER.