Inside IES Research

Notes from NCER & NCSER

The ED/IES SBIR 2021 Year in Review and a Look Ahead to 2022

The Department of Education’s Small Business Innovation Research Program (SBIR), administered by IES, provides awards for the research and development of new, commercially viable education technology products. Known as ED/IES SBIR, the program’s goal is to grow a portfolio of scalable, research-based products that address pressing needs across topic areas in education and special education.

From an education technology perspective, 2021 will surely be remembered as the “year after” the onset of the global pandemic—where demand for effective education tools and platforms skyrocketed and developers pivoted to meet the needs of the return to in-person and hybrid learning environments. Dozens of ED/IES SBIR-developers contributed to these efforts, with millions of students and educators using their products to support remote and in-person learning in 2021. This blog shares some highlights from the ED/IES SBIR program in 2021 and provides a preview of its recently released 2022 solicitations.

The ED Games Expo

IES hosted the 8th annual ED Games Expo virtually in June 2021 to provide resources to the public in response to pandemic-related challenges. As part of the virtual Expo, 170 IES- and government-supported education technology products were available at no cost to educators and students around the country. The Expo also presented 35 virtual events for the public that have been viewed more than 10,000 times on YouTube, highlighted by a Kick Off Show introduced by Secretary of Education Miguel Cardona and including master classes for educators and behind-the-sciences “how to” events for students. Dates for the next ED Games Expo will be announced soon.

New ED/IES SBIR Awards

ED/IES SBIR announced 29 new 2021 awards, including 18 for prototype development and 11 for full-scale education technology product development. The awards continue trends from recent years.

One exciting trend is the employment of advanced technologies such as artificial intelligence, machine learning, natural language processing, or algorithms to personalize student learning. Examples include projects by Myriad Sensors (Pocket Lab) to develop an AI engine to assess and provide feedback to students while doing physical science experiments, Analytic Measures Inc. (AMI) to create an natural language processing engine to recommend personalized practice activities based on a student’s level of oral reading fluency, and by KooApps and Kings Peak Technology to use machine learning to provide immediate vocabulary support to English learners.

Another trend in 2021 is the development of new products to scale existing IES-funded research. Projects that build on prior IES research include: Nimble Hiring to develop a platform to improve school district hiring and educator retention, xSEL Labs to create a platform for social and behavioral learning innovations, and Emberex to create a user interface with reporting and recommendation features to meet modern standards for a reading assessment.

ED/IES SBIR also continues to support projects in new areas. For example, three new projects are developing music-based technologies to support learning (Muzology, Edify, and Lyrics to Learn).

Highlights From Individual Projects in the Portfolio

Many ED/IES SBIR-supported companies enjoyed newsworthy successes in 2021.

ED/IES SBIR Releases Two 2022 Program Solicitations

On December 1, 2021, ED/IES SBIR released two new solicitations. Phase I solicitation #91990022R0001 is a request for proposals for $250,000 awards for 8 months for the research, development, and evaluation of new prototypes of education and special education technology products. Direct to Phase II solicitation #91990022R0002 is a request for proposals for $1,000,000 for 2 years for R&D and evaluation to develop new technology to prepare existing researcher-developed evidence-based innovations (products, interventions, practices) for use at scale, and to plan for commercialization. The goal is to support the successful transfer of research to practice at scale in education and special education. Proposals for both solicitations are due February 1, 2022.

Stay tuned for updates in 2022 on Twitter and Facebook as IES continues to support innovative forms of technology.


Edward Metz is a research scientist and the program manager for the Small Business Innovation Research Program at the US Department of Education’s Institute of Education Sciences. Please contact Edward.Metz@ed.gov with questions or for more information.

 

AI-Augmented Learning for Individuals with Disabilities: New Funding Opportunity, Current Research, and the Potential for Improving Student Outcomes

This March, IES Director Mark Schneider released a blog in which he discussed exploring a partnership with the National Science Foundation (NSF) to encourage scientists with expertise in AI and related fields to address the important post-pandemic need for accelerating learning. IES is now excited to announce our resulting participation in NSF’s National Artificial Intelligence (AI) Research Institutes—Accelerating Research, Transforming Society, and Growing the American Workforce solicitation. In this blog, we describe this new funding opportunity, provide examples of existing NCSER-funded research in this area, and highlight the potential for such research to further improve outcomes for learners with disabilities.

 Artificial Intelligence Research Funding Opportunity

With funding from the American Rescue Plan, NCSER plans to support research under Theme 6, Track B: AI-Augmented Learning for Individuals with Disabilities. Proposals must discuss how the work will respond to the needs of learners with or at risk for a disability in an area where the COVID-19 pandemic has further widened existing gaps and/or resulted in decreased access and opportunities for students with disabilities to learn and receive support services. Please review the solicitation, the webinar (November 16), and the frequently asked questions for more information. Interested applicants should note the primary focus of this institute:

The primary focus of an institute in AI-Augmented Learning includes research and development of AI-driven innovations to radically improve human learning and education. Achievement and opportunity gaps, particularly for learners from disadvantaged or underserved communities, have always been present, but COVID-19 has exacerbated them. Institute plans for this theme should address and measure outcomes with direct education impact, in both the short- and long- term, that have practical significance to educators, parents, or other decision-makers. Plans must also directly address algorithmic bias, model transparency, security and data privacy in the support of learning.”

Current NCSER-Funded Grants Applying Artificial Intelligence and Machine Learning

Prior to the new collaboration between IES and NSF, NCSER funded several grants that apply artificial intelligence and machine learning approaches, including those described below.

With a 2018 NCSER grant, Dr. Maithilee Kunda and her team at Vanderbilt University are building on a technology-based intervention known as Betty’s Brain. This computer-based instructional program for middle school science, designed with the support of a 2006 NCER grant, allows students to teach a computer agent to understand certain concepts, increasing their own knowledge and understanding. Dr. Kunda and her team are developing a new game called Film Detective, which is designed to improve theory of mind (ToM) reasoning in adolescents with autism spectrum disorder (ASD). More information about this project can be found in this IES blog.

With a 2021 NCSER grant, Dr. Patrick Kennedy and his team at University of Oregon are using machine learning to validate a well-known assessment, Dynamic Indicators of Basic Early Literacy Skills, 8th Edition® (DIBELS 8) as a screener for dyslexia. As of 2020, 47 states require that students be screened for dyslexia in early elementary school and many states use DIBELS for this screening. However, it remains to be validated for this purpose. To address the validity of the DIBELS for screening, this research team is using machine learning approaches to predict and classify scores in relation to a pre-defined target. This will allow the research team to draw conclusions about the validity of the DIBELS 8 for dyslexia screening. These conclusions will be disseminated widely to state and local education agencies and other stakeholders.

The Potential of AI for Improving Outcomes for Learners with Disabilities

In addition to the work that IES is funding, AI has already demonstrated potential for improving outcomes for learners with disabilities in many other ways:

  • AI has been used to support children with ASD who have difficulties understanding people’s emotions, with AI-driven apps and robots helping students practice emotion recognition and other social skills.
  • AI has informed the development of algorithms that can help those involved in assessment identify disabilities in students, such as ASD, specific learning disabilities (dyslexia, dysgraphia, and dyscalculia), and attention-deficit/hyperactivity disorder (ADHD).
  • AI-embedded interventions have included error analysis to inform instruction and personalized feedback in spelling and math for students with disabilities.

Despite these advancements, there appear to be persistent gaps in AI research for students with disabilities, such as AI for students with intellectual and developmental disabilities. This is an especially important area of work because many of these learners have multiple disabilities and/or serious health conditions. For example, children with intellectual and developmental disabilities who also have hearing loss or visual impairment have compounded challenges. Some students with Down syndrome also have hearing loss and other health complications, such as cardiac issues. AI affords an opportunity to integrate health information across different applications to improve the quality of life for these students. These technological solutions can assist in managing information about the students and communicating health information between teachers, physicians, and caregivers.

AI has the potential to transform special education. We hope that this NCSER-NSF partnership will encourage researchers to be creative in planning projects that move the field of AI forward as well as provide innovative solutions to support learners with disabilities.

This blog was co-authored by Sarah Brasiel (Sarah.Brasiel@ed.gov), program officer at NCSER and Bennett Lunn (Bennett.lunn@ed.gov), Truman-Albright Fellow for NCSER and the National Center for Education Research (NCER). IES encourages special education researchers to partners with experts in Artificial Intelligence to submit to this NSF AI Institute solicitation 22-502 to increase the evidence base on use of AI for this population.

Film Detective: How an AI-powered Game Aims to Improve Outcomes for Students with ASD

Artificial intelligence (AI) is poised to revolutionize the way humans live, even in ways yet unseen, and education is no exception. IES funds research at the cutting edge of technology and education science, and, as Director Mark Schneider has recently pointed out, AI may eventually serve to help educators identify, assess, and support students with disabilities. In 2018, NCSER awarded funding to Dr. Maithilee Kunda of Vanderbilt University to do just that.

Dr. Kunda and her team are developing a new game called Film Detective to improve theory of mind (ToM) reasoning in adolescents with autism spectrum disorder (ASD). ToM reasoning is the ability to infer the mental state of others, allowing us to understand and predict behavior based on our perception of their beliefs, intentions, and desires. The game builds on a technology-based intervention known as Betty’s Brain. Developed with support from a NCER grant, Betty’s Brain is a computer-based instructional program for middle school science that allows students to teach a computer agent to understand certain concepts. By teaching the agent, students grew their own knowledge and understanding. Dr. Kunda and her team are building on this software by adapting the learning-by-teaching model to improve ToM reasoning in neurodiverse students. (For more on Dr. Kunda’s perspective on the importance of neurodiversity, see this blog.)

The Film Detective game takes students through an interactive storyline in which they must help a scientist from the year 3021 “decode” the way people in today’s world behave in a series of films. The stakes are high as students help a scientist unlock a time machine by retrieving codes hidden in films by an evil scientist—aptly named Von Klepto—who has stolen items from the Museum of Human History. By teaching the computer agent—the player’s robot sidekick (named T.O.M.)—how to identify modern behaviors, the student develops their own ToM reasoning. The Film Detective storyline is a product of the creative talents of several Vanderbilt creative writing students, and the game mechanics were designed with insights of college students with ASD themselves. With the help of post-doctoral student and project lead, Roxanne Rashedi, the project team has used participatory design and qualitative methods to better tailor the game to the community for which it is intended. By working closely with students with ASD and their families, the project team was able to refine the original Betty’s Brain structure with new reward structures and storylines that balance the challenge of the game with the frustration that students can feel playing the game.

Screen shot of the Film Detective’s theatre and time machine room
Film Detective’s Theatre and Time Machine Room (illustration by Kayla Stark)

Every part of the project draws on the diverse expertise of the team, and the inclusion of a variety of perspectives has been crucial to informing the project’s development. The team includes experts from Vanderbilt’s School of Engineering and the Vanderbilt Medical Center’s Treatment and Research Institute for Autism Spectrum Disorders (TRIAD), with Dr. Kunda and students in computer science and psychology providing insights in cognitive science and artificial intelligence. The joining of expertise in artificial intelligence, clinical psychology, and educational psychology has allowed the team to merge theoretical perspectives on ToM development with conceptions of knowledge representation and modeling in computational systems. This approach offers the team a unique framework for understanding the development of social reasoning skills in students with ASD. Beyond the theoretical, the team has also leveraged artificial intelligence to evaluate how students progress through the game, using advanced data mining techniques and eye-tracking-enabled user studies to better understand how students with ASD can develop greater ToM reasoning through learning-by-teaching.

Film Detective’s hallway to concessions
Film Detective’s Hallway to Concessions (illustration by Kayla Stark)

The work that has gone into Film Detective exemplifies the ways that novel research that combines technological advancement and diverse perspectives can lead to important innovations in the education sciences. While Film Detective is still under development (it is currently being user tested, and readers are encouraged to sign up to take part here), IES is eager to see what will come out of this exciting collaboration.

Dr. Maithilee Kunda is the director of the Laboratory for Artificial Intelligence and Visual Analogical Systems and a faculty investigator for the Frist Center for Autism and Innovation at Vanderbilt University. This blog was written and edited by Bennett Lunn, Truman-Albright Fellow for the National Center for Education Research and the National Center for Special Education Research.

Building a Community around Digital Learning Platforms

Last month, we were excited to announce grants within the Digital Learning Platforms Network, which includes five platform teams and a network lead. The purpose of this network is to leverage existing, widely used digital learning platforms for rigorous education research. This network is part of IES’s investments in innovation within education research and development and is funded through the Research Networks Focused on Critical Problems of Policy and Practice grant program. That program is designed to focus resources and attention on critical education issues faced by our nation as well as create infrastructure and process to bring together researchers who are working on similar issues. A major focus of the network—and why we chose a network approach—is bringing together educators, researchers, and platform developers to figure out how to leverage the potential of platforms for research insights. IES hopes that a major contribution from this network will be building that community of stakeholders and creating resources that reflect best practices for doing this kind of work. 

With that goal in mind, Digital Promise Global, the network lead, will host an event on October 22 at 3pm Eastern Time with introductory remarks from IES Director Mark Schneider. At the event, each of the five platform teams will briefly share the purpose of their project, and you can learn more about the network’s planned activities. You will also learn where you can go to find out more about the work that the network will pursue and to receive updates on their progress.

To join the event, please RSVP here: https://www.eventbrite.com/e/seernet-launch-webinar-tickets-186961746617 


For more information or questions about the Digital Learning Platforms Network, please contact Erin Higgins (Erin.Higgins@ed.gov), Program Officer at the National Center for Education Research.

Perspective Matters: How Diversity of Background, Expertise, and Cognition Can Lead to Good Science

IES funds cutting-edge researchers who often bring multiple disciplines together. Dr. Maithilee Kunda (Vanderbilt University) is one such researcher who stands at the juncture of multiple fields, using artificial intelligence (AI) to address questions related to cognition and autism spectrum disorder. Recently, Dr. Kunda received an award from the National Center for Special Education Research to develop an educational game that leverages AI to help students with autism spectrum disorder better infer and understand the beliefs, desires, and emotions of others. As a computer scientist and woman of color performing education research, Dr. Kunda exemplifies the value that diverse backgrounds, experiences, and disciplines bring to the field.

Bennett Lunn, a Truman-Albright Fellow at IES, asked Dr. Kunda about her work and background. Her responses are below.

As a woman of color, how have your background and experiences shaped your scholarship and career?

Photo of Dr. Maithilee Kunda

In college, I was a math major on the theory track, which meant that my math classes were really hard! I had been what one might call a “quick study” in high school, so it was a new experience for me to be floating around the bottom quartile of each class. The classes were mostly men, but it happened that there was a woman of color in our cohort—an international student from Colombia—and she was flat-out brilliant. She would ask the professor a question that no one else even understood, but the professor’s eyes would light up, and the two of them would start having some animated and incomprehensible discussion about whatever “mathy” thing it was. That student’s presence bestowed upon me a valuable gift: the ability to assume, without even thinking twice, that women of color quite naturally belong in math and science, even at the top of the heap! I don’t even remember her name, but I wish I could shake her hand. She was a role model for me and for every other student in those classes just by being who she was and doing what she did.

I have been extremely lucky to have seen diverse scientists and academics frequently throughout my career. My very first computer science teacher in high school was a woman. At a high school science camp, my engineering professor was a man who walked with two forearm crutches. Several of my college professors in math, chemistry, and robotics were women. My favorite teaching assistant in a robotics class was a Black man. In graduate school, I remember professors and senior students who were women, LGBTQ people, and people of color. Unfortunately, I know that the vast majority of students do not have access to such a wealth of diverse role models. It is heartening, though, that even a single role model—just by showing up—has so much power to positively shape the perceptions of everyone who sees them in their rightful place, be it in STEM, academia, or whatever context they inhabit.

What got you interested in a career in education science?

I read a lot of science fiction and fantasy growing up, and in high school, I was wrestling with why I liked these genres so much. I came up with a pet theory about fiction writing. All works of fiction are like extended thought experiments; the author sets up some initial conditions—characters, setting, etc.—and they run the experiment via writing about it. In general fiction, the experiments mostly involve variables at the people scale. In sci-fi and fantasy, on the other hand, authors are trying to run experiments at civilization or planetary scales, and that’s why they have to create whole new worlds to write about. I realized that was why I loved those genres so much: they allowed me to think about planetary-scale experiments! 

This “what if” mindset has continued to weave itself throughout my scholarship and career.

How did it ever become possible for humans to imagine things that don’t exist? Why do some people think differently from others, and how can we redesign the workings of our societies to make sure that everyone is supported, enriched, and empowered to contribute to their fullest potential? These kinds of questions fuel my scientific passions and have led me to pursue a variety of research directions on visual thinking, autism, AI, and education.

How does your research contribute to a better understanding of the importance of neurodiversity and inclusion in education?

Early in graduate school, and long before I heard the term neurodiversity, the first big paper I wrote was a re-analysis of several research studies on cognition in autism. This research taught me there can be significant individual variation in how people think. Even if 99 other people with similar demographic characteristics happen to solve a problem one particular way, that does not mean that the hundredth person from the same group is also going to solve the problem that way.

I realized much later that this research fits very well into the idea of neurodiversity, which essentially observes that atypical patterns of thinking should be viewed more as differences than as being inherently wrong or inadequate. Like any individual characteristics you have, the way you think brings with it a particular set of strengths and weaknesses, and different kinds of thinking come with different strengths and weaknesses.

Much of my team’s current research is a continuation of this theme. For example, in one project, we are developing new methods for assessing spatial skills that dig down into the processes people use to solve problems. This view of individual differences is probably one that teachers know intuitively from working one-on-one with students. One of the challenges for today’s education research is to continue to bring this kind of intuitive expertise into our research studies to describe individual differences more systematically across diverse learner populations.

In your area of research, what do you see as the greatest research needs or recommendations to address diversity and equity and improve the relevance of education research for diverse communities of students and families?

For the past 3 years, I have been leading an IES project to create a new educational game called Film Detective to help students with autism spectrum disorder improve their theory of mind (ability to take another’s perspective) and social reasoning skills. This was my first experience doing research on an interactive application of this kind. I was a newcomer to the idea of participatory design, which basically means that instead of just designing for some particular group of users, you bring their voices in as active contributors early in the design process. Our amazing postdoc Dr. Roxanne Rashedi put together a series of early studies using participatory methods, so we had the opportunity to hear directly from middle schoolers on the spectrum, their parents, and their teachers about what they needed and wanted to see in this kind of technology.

In one of these studies, we had students try out a similar education game and then give us feedback. One young man, about 11 or 12 years old, got frustrated in the middle of the session and had a bit of a meltdown. After he calmed down, we asked him about the game and what he would like to see taught in similar games. He told us that he would really like some help in learning how to handle his frustration better so that he could avoid having those kinds of meltdowns. Impressed by his self-awareness and courage in talking to us about his personal challenges, we ended up designing a whole new area in our game called the Relaxatron arcade. This is where students can play mini-games that help them learn about strategies for self-regulation, like deep breathing or meditation. This whole experience reinforced for me the mindset of participatory design: we are all on a team—researchers, students, parents, and teachers—working collaboratively to find new solutions for education.

We are also proud to work with Vanderbilt’s Frist Center for Autism and Innovation to make our research more inclusive and participatory. One of the many excellent programs run by this center is a software internship program for college students or recent graduates on the spectrum. This summer, we are pleased to be welcoming three Frist Center interns who will be helping us on our Film Detective project.

What has been the biggest challenge you have encountered and how did you overcome the challenge?

Throughout my career, I seem to have gravitated towards questions that not many other people are asking, using methods that not many other people are using. For example, I am a computer scientist who studies autism. My research investigates visual thinking, but not vision. I work in AI, but mostly in areas out of the mainstream.

I get a lot of personal and intellectual satisfaction out of my research, but I do face some steep challenges that I believe are common for researchers working in not-so-mainstream areas. For instance, it is sometimes harder to get our papers published in the big AI conferences because our work does not always follow standard patterns for how studies are designed and implemented. And I do experience my share of impostor syndrome (feeling unqualified for your job even when you are performing well) and FOMO (fear of missing out), especially when I come across some trendy paper that already has a thousand citations in 3 months and I think to myself, “Why am I not doing that? Should I be doing that?”

I try to remember to apply the very lessons that my research has produced, and I am fortunate to have friends and colleagues who help lift me out of self-doubt. I actively remind myself about the importance to our species of having diverse forms of thinking and how my own individual view of things is a culmination of my unique lifetime of educational and intellectual experiences. That particular perspective—my perspective—is irreplaceable, and, more than any one paper or grant or citation, it is the true value I bring to the world as a scientist.

How can the broader education research community better support the careers and scholarship of researchers from underrepresented groups?

I think research communities in general need to recognize that inclusion and diversity are everybody’s business, regardless of what someone’s specific research topic is. For example, we assume that every grant proposal and paper follow principles of rigorous and ethical research design, no matter the specific methodology. While some researchers in every discipline specialize in thinking about research design from a scholarly perspective, everyone has a baseline responsibility for knowing about it and for doing it.

Similarly, while we will always want and need researchers who specialize in research on inclusion and diversity, these topics should not be considered somehow peripheral to “real science." They are just as much core parts of a discipline as anything else is. As I constantly remind my students, science is a social enterprise! The pool of individual minds that make our discoveries for us is just as important as any piece of equipment or research method.

What advice would you give to emerging scholars from underrepresented, minoritized groups that are pursuing a career in education research?

A few years ago, when I was a newly minted assistant professor, I went to a rather specialized AI symposium where I found myself to be one of only two women there—out of over 70 attendees! The other woman was a senior researcher whom I had long admired but never met, and I felt a bit star-struck at the idea of meeting her. During one of the coffee breaks, I saw her determinedly heading my way. I said to myself as she approached, “Be cool, Maithilee, be cool, don’t mention the women thing…”  I was gearing myself up to have a properly research-focused discussion, but when she arrived, the very first words out of her mouth were, “So, there’s only the two of us, huh!” We both burst out laughing, and over the next couple of days, we talked about our research as well as about the lack of diversity at the symposium and in the research area more broadly.

The lesson I learned from this wonderful role model was that taking your rightful place in the research community does not mean papering over who you are. Certain researchers are going to be rarities, at least for a while, because of aspects of who we are, but that is nothing to hide. The value we bring as scientists comes from our whole selves and we should not just accept that but embrace and celebrate it.

This blog is part of a series of interviews showcasing a diverse group of IES-funded education researchers that are making significant contributions to education research, policy, and practice. For the first blog in the series, please see Representation Matters: Exploring the Role of Gender and Race on Educational Outcomes.

Dr. Maithilee Kunda is the director of the Laboratory for Artificial Intelligence and Visual Analogical Systems and founding investigator for the Frist Center for Autism and Innovation at Vanderbilt University. This interview was produced and edited by Bennett Lunn, Truman-Albright Fellow for the National Center for Education Research and the National Center for Special Education Research.