Inside IES Research

Notes from NCER & NCSER

Investing in Next Generation Technologies for Education and Special Education

The Department of Education’s (ED) Small Business Innovation Research (SBIR) program, administered by the Institute of Education Sciences (IES), funds entrepreneurial developers to create the next generation of technology products for students, teachers, and administrators in education and special education. The program, known as ED/IES SBIR, emphasizes an iterative design and development process and pilot research to test the feasibility, usability, and promise of new products to improve outcomes. The program also focuses on planning for commercialization so that the products can reach schools and end-users and be sustained over time.

In recent years, millions of students in tens of thousands of schools around the country have used technologies developed through ED/IES SBIR, including more than million students and teachers who used products for remote teaching and learning during the COVID-19 pandemic.

ED/IES SBIR Announces 2022 Awards

IES has made 10 2022 Phase I awards for $250,000*. During these 8 month projects, teams will develop and refine prototypes of new products and test their usability and initial feasibility. All awardees who complete a Phase I project will be eligible to apply for a Phase II award in 2023.

IES has made nine 2022 Phase II awards, which support further research and development of prototypes of education technology products that were developed under 2021 ED/IES SBIR Phase I awards. In these Phase II projects, teams will complete product development and conduct pilot studies in schools to demonstrate the usability and feasibility, fidelity of implementation, and the promise of the products to improve the intended outcomes.

IES also made one Direct to Phase II award to support the research, development, and evaluation of a new education technology product to ready an existing researcher-developed evidence-based intervention for use at scale and to plan for commercialization. The Direct to Phase II project is awarded without a prior Phase I award. All Phase II and the Direct to Phase II awards are for $1,000,000 for two-years. Across all awards, projects address different ages of students and content areas.

The list of all 2022 awards is posted here. This page will be updated with the two additional Phase I awards after the contracts are finalized.

 

 

The 2022 ED/IES SBIR awards highlight three trends that continue to emerge in the field of education technology.

Trend 1: Projects Are Employing Advanced Technologies to Personalize Learning and Generate Insights to Inform Tailored Instruction

About two-thirds of the new projects are developing software components that personalize teaching and learning, whether through artificial intelligence, machine learning, natural language processing, automated speech recognition, or algorithms. All these projects will include functionalities afforded by modern technology to personalize learning by adjusting content to the level of the individual learner, offer feedback and prompts to scaffold learning as students progress through the systems, and generate real-time actionable information for educators to track and understand student progress and adjust instruction accordingly. For example:

  • Charmtech Labs and Literably are fully developing reading assessments that provide feedback to inform instruction.
  • Sirius Thinking and studio:Sckaal are developing prototypes to formatively assess early grade school students in reading.
  • Sown To Grow and xSEL Labs are fully developing platforms to facilitate student social and emotional assessments and provide insights to educators.
  • Future Engineers is fully developing a platform for judges to provide feedback to students who enter STEM and educational challenges and contests.
  • Querium and 2Sigma School are developing prototypes to support math and computer science learning respectively.
  • ,Soterix is fully developing a smart walking cane and app for children with visual impairments to learn to navigate.
  • Alchemie is fully developing a product to provide audio cues to blind or visually impaired students learning science.
  • Star Autism Support is developing a prototype to support practitioners and parents of children with autism spectrum disorder.

Trend 2: Projects Focusing on Experiential and Hands-On Learning
Several new projects are combining hardware and software solutions to engage students through pedagogies employing game-based, hands-on, collaborative, or immersive learning:

  • Pocketlab is fully developing a matchbox-sized car with a sensor to collect physical science data as middle school students play.
  • GaiaXus is developing a prototype sensor used for environmental science field experiments.
  • Mind Trust is a developing a virtual reality escape room for biology learning.
  • Smart Girls is developing a prototype science game and accompanying real-world hands-on physical activity kits.
  • Indelible Learning is developing a prototype online multi-player game about the electoral college.
  • Edify is fully developing a school-based program for students to learn about, create, and play music.

Trend 3: Projects to Advance Research to Practice at Scale

Several new awards will advance existing education research-based practices into new technology products that are ready to be delivered at scale:

  • INSIGHTS is fully developing a new technology-delivered version to ready an NIH- and IES-supported social and emotional intervention for use at scale.
  • xSEL Laband Charmtech Labs (noted above) are building on prior IES-funded research-based interventions to create scalable products.
  • Scrible is developing an online writing platform in partnership with the National Writers Project based on prior Department of Education-funded research. 

 


*Note: Two additional 2022 Phase I awards are forthcoming in 2022. The contracts for these awards are delayed due to a back-up in the SAM registration process.

Stay tuned for updates on Twitter and Facebook as IES continues to support innovative forms of technology.

Edward Metz (Edward.Metz@ed.gov) is the Program Manager of the ED/IES SBIR program.

Michael Leonard (Michael.Leonard@ed.gov) is the Program Analyst of the ED/IES SBIR program.

 

Powering Our Future: How Service-Learning Aligned with Next Generation Science Standards Can Promote Science Learning, Social and Emotional Skills, and Civic Engagement

Each generation faces its own societal challenges. Two prominent issues—the climate crisis and America’s political divide—are heavy burdens for today’s youth. Without explicit focus in schools, it is hard to imagine how children will learn to work across differences and collaborate with others to solve complex environmental problems. Youth are very capable people, and school comes alive when they feel agency and see how their efforts matter in the community. Service-learning can help teachers make instruction feel relevant and teach skills that lead to civic engagement as youth learn to design, implement, and evaluate solutions to problems that are important to them. In this interview blog, the Connect Science project team explains how they developed curriculum and professional development to support teachers to engage their students in service-learning experiences.

Can you tell us about Connect Science and what it looks like in action?

Fueled by an IES Development and Innovation grant, our team developed and evaluated a science-based service-learning approach for the upper-elementary school years. In doing so, we answered a need that teachers and schools face as they strive to create engaging experiences aligned with the Next Generation Science Standards (NGSS).

Connect Science is a 12-week project-based learning unit for upper elementary students. Early on, teachers and students explore topics of energy and natural resources using lessons aligned with the NGSS. Teachers guide student learning on what it means to be an engaged citizen and on the social and collaborative skills needed to take action in the community. To prepare, teachers receive five days of professional development and follow-up coaching. Teachers also receive a Connect Science manual, related books, and science materials.

But what does Connect Science actually look like in action? Imagine fourth graders engaged in a science unit on renewable and non-renewable resources. The students learn about different energy sources and then discuss pros and cons of each source. They become aware that non-renewable energy resources are rapidly diminishing and would not always be available to generate electricity. The awareness of this problem energizes them to promote energy conservation. Toward that goal, the students decide to educate other students and families at their school about energy use. At the next open house night, they turn their cafeteria into an energy fair where they share important information. For example, one group of students teaches about what types of energy sources were used in their state to produce electricity and another group teaches ways that people can save energy in their home. Before and after the energy fair, the students administer a pre- and post-survey on energy facts to size up what their visitors learned.

How did the IES grant support the development and pilot testing of Connect Science?

In the first two years of this grant, we developed and tested materials with teachers. In the third year, we conducted a randomized controlled trial of Connect Science involving 41 classrooms with 20 in Connect Science and 21 in a waitlist comparison group, resulting in a student sample of 868 students (423 students participated in the intervention).

We found that Connect Science impacted teacher practices and student outcomes. Teachers in the Connect Science group were more effective at engaging in the two NGSS practices that we measured: eliciting and building on prior knowledge and creating opportunities for student critique, explanation, and argument. Further, we saw higher science achievement and energy attitudes and behaviors in the intervention than control condition. The social skill results hinged on the fidelity of implementation. When teachers used more Connect Science practices, students showed improved communication and social competence. As a result of these findings, Connect Science is designated as a Promising Program by the Collaborative for Academic, Social, and Emotional Learning (CASEL).

What are the implications of your findings?

Too few projects integrate academic and social learning in schools. Often, high-quality NGSS materials are developed with little thought about the social skills students need to engage in that instruction. Likewise, social and emotional learning is often taught separately from academic content. Service-learning is a framework that bridges these two areas and allows students to engage in authentic, science-based work. Given our experiences, we have a few recommendations for educators eager to use service-learning.

  • Teach social, emotional, and collaborative skills with intention before launching into group work. In the elementary schools, children thrive from being in supportive caring classrooms and they respond well to lessons on active listening, respectful communication, and understanding people with multiple perspectives.
  • Leverage the existing curriculum and build in service-learning experiences. Rather than adding one more new topic, look at existing curricular topics and use service-learning to facilitate deep learning on content areas that already part of the curriculum.
  • Amplify youth voice. Teachers need to work with students to identify a relevant community problem and generate solutions to that problem. We carefully developed the Connect Science materials to be more teacher-directed toward the beginning of the unit and more student-directed toward the end. This approach was based both on theoretical and empirical work supporting the importance of student autonomy.

 


Sara Rimm-Kaufman is the Commonwealth Professor of Education at the University of Virginia School of Education and Human Development. Her recent book for teachers, SEL from the Start, is based on the Connect Science work.

Eileen Merritt is a Research Scientist in the College of Natural Resources and the Environment at Virginia Tech. Her research and teaching focus on environmental and sustainability education.

Tracy Harkins is the owner of Harkins Consulting, LLC in Maine. Her focus is providing professional development and resources to engage and motivate student learners through service-learning. She will be offering an upcoming Connect Science Institute in Summer 2022.

For questions about this project, please contact Corinne.Alfeld@ed.gov, NCER program officer.

“Grow-your-own” to Diversify the Teacher Workforce: Examining Recruitment Policies and Pathways to Recruit More Black Teachers

Research identifies benefits of access to same-race/ethnicity teachers for Black and Hispanic students. However, the teacher workforce is overwhelmingly White, and little is known about the system-level strategies that are successful at diversifying the profession. In recognition of Black History Month, we asked researcher Dr. David Blazar to discuss his recently awarded IES project that aims to advance the literature base on how school systems can recruit more Black teachers. This is what he shared.

What does existing research say about the need for more Black teachers?

Building on a longstanding theoretical and qualitative literature base from scholars including Gloria Ladson-Billings, Geneva Gay, Richard Milner, and many others, researchers have gathered causal evidence to support the claim of the benefit of Black teachers to Black students. Analyzing test score data from Tennessee's Project STAR experiment, Dee (2004) found that assignment to a Black teacher significantly increased the math and reading achievement of Black students.

Fast forward 18 years, and the research findings largely remain the same while the evidence base has grown substantially (see one meta-analysis, and a research synthesis). In the second experiment on this topic after Dee, my own recent analyses currently available in a working paper not only replicate the earlier test-score impacts, but also show that

  • Test-scores effects (roughly 0.2 SD) persist at very similar magnitudes 6 years later when students are in high school, a rare pattern in education research
  • Black and other underrepresented teachers of color have even larger effects (upwards of 0.45 SD) on the social-emotional development of their students of color and their White students
  • Black and other teachers of color are much more likely than White teachers to hold mindsets and engage in classroom practices aligned to “culturally responsive teaching,” which in turn benefits a range of student outcomes

In short: The effects of Black teachers on the outcomes of Black students are larger than those of most other interventions as documented in the broader education research literature (generally no higher than 0.1 SD).

I pair these hugely meaningful findings with three more sobering facts:

  • Black teachers are underrepresented in the teacher workforce. Roughly 7% of teachers nationally are Black, compared to roughly 15% of students. These patterns have not shifted much over the last several decades, even though calls to diversify the teacher workforce started over 30 years ago.
  • The mismatch between student and teacher demographics may be due to “leaks” at multiple stages of the school-to-career pipeline, including lower rates of high school graduation amongst Black students relative to their White peers, similar gaps in college graduation rates, less interest in teaching as a career, and greater financial barriers and opportunity costs even when the interest is there.
  • Despite impressive work by educators, scholars, and policymakers to design multiple strategies for recruiting Black individuals into teaching, the bulk of these remain “promising practices” rather than evidence-based best practices.

How will your IES-funded study address the need for more Black teachers?

Because the underrepresentation of Black teachers in U.S. schools is notable and longstanding, researchers and school systems must work together—and quickly—to consider multiple strategies. Stating that we need to diversify the teacher workforce is neither new nor novel. The imperative was posed several decades ago, and it is time that we figure out how best to do it.

To address this challenge head on, I am collaborating with Ramon Goings, Seth Gershenson, and other scholars, as well as with state agencies and policy actors in Maryland to explore several recruitment strategies aimed at diversifying the teacher workforce, implemented at different stages of the school-to-career pipeline.

Aligned to the theoretical literature, a core feature of our study is that we focus on strategies that look locally for prospective teaching talent and are therefore known as “grow-your-own” programs. These approaches aim to align the demographics of incoming teachers with the demographics of current student populations and ensure that those incoming teachers are familiar with the local area. We further designed our study to explore multiple components of and potential solutions to the policy problem, given that recruitment is unlikely to be addressed with a one-size-fits-all approach. Even though the partnership and data come from Maryland, the recruitment strategies and our study are relevant to the recruitment strategies used in states across the country.

The three strategies are—

  • Early exposure to teaching in high school through the Teacher Academy of Maryland—a career and technical education program of study—that provides high school students with an opportunity to learn about teaching as a career, gain teaching experience in a real-world classroom, and earn an associate’s degree in teaching alongside their high school diploma.
  • Financial support and incentives for college students, including the recently implemented Teaching Fellows for Maryland Scholarship. Scholarships aim to decrease financial barriers and opportunity costs that may prevent Black individuals from becoming teachers.
  • Career-changer programs, such as alternative-route teacher certification and residency programs that both decrease barriers to entry into the profession and focus on recruiting locally.

Our analyses will provide some of the first quantitative data linking the rollout of varied recruitment strategies and the workforce decisions of prospective Black teachers. Beyond analyses of each individual program, our findings will provide important guidance not only about how best to intervene but also when to do so. We look forward to sharing what we find and to building an evidence base alongside other scholars and funding agencies tackling this important issue.


David Blazar is an Assistant Professor at the University of Maryland College Park (UMCP) in the Education Policy and Leadership program. He also is the Faculty Director of the Maryland Equity Project, a UMCP initiative to improve educational outcomes and close achievement gaps through research.

This interview blog is part of a larger IES blog series on diversity, equity, inclusion and accessibility (DEIA) in the education sciences. It was produced by Katina Stapleton (Katina.Stapleton@ed.gov), co-Chair of the IES Diversity and Inclusion Council, and Wai-Ying Chow (Wai-Ying.Chow@ed.gov), the Effective Instruction program officer within the National Center for Education Research.

Student-Led Action Research as a School Climate Intervention and Core Content Pedagogy

Improving the social and emotional climate of schools has become a growing priority for educators and policymakers in the past decade. The prevailing strategies for improving school climate include social and emotional learning, positive behavioral supports, and trauma-informed approaches. Many of these strategies foreground the importance of students having a voice in intervention, as students are special experts in their own social and emotional milieus.

Parallel to this trend has been a push toward student-centered pedagogical approaches in high schools that are responsive to cultural backgrounds and that promote skills aligned with the demands of the modern workplace, like critical thinking, problem-solving, and collaboration. Culturally responsive and restorative teaching and problem- and project-based learning are prominent movements. In this guest blog, Dr. Adam Voight at Cleveland State University discusses an ongoing IES-funded Development and Innovation project taking place in Cleveland, Ohio that aims to develop and document the feasibility of a school-based youth participatory action research intervention.

 

Our project is exploring how youth participatory action research (YPAR) may help to realize two objectives—school climate improvement and culturally-restorative, engaged learning. YPAR involves young people leading a cycle of problem identification, data collection and analysis, and evidence-informed action. It has long been used in out-of-school and extracurricular spaces to promote youth development and effect social change. We are field testing its potential to fit within more formal school spaces.

Project HighKEY

The engine for our project, which we call Project HighKEY (High-school Knowledge and Education through YPAR), is a design team composed of high school teachers and students, district officials, and university researchers. It is built from the Cleveland Alliance for Education Research, a research-practice partnership between the Cleveland Metropolitan School District, Cleveland State University, and the American Institutes for Research. The design team meets monthly to discuss YPAR theory and fit with high school curriculum and standards and make plans for YPAR field tests in schools. We have created a crosswalk of the documented competencies that students derive from YPAR and high school standards in English language arts (ELA), mathematics, science, and social studies in Ohio. For example, one state ELA standard is “Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence,” and through YPAR students collect and analyze survey and interview data and use their findings to advocate for change related to their chosen topic. A state math standard is “Interpret the slope and the intercept of a linear model in the context of data,” and this process may be applied to survey data students collect through YPAR, making an otherwise abstract activity more meaningful to students.  

Assessing the Effectiveness of YPAR

Remaining open-minded about the various ways in which YPAR may or may not fit in different high school courses, we are currently testing its implementation in a pre-calculus course, a government course, an English course, and a life-skills course. For example, a math teacher on our design team has built her statistics unit around YPAR. Students in three separate sections of the course have worked in groups of two or three to identify an issue and create a survey that is being administered to the broader student body. These issues include the lack of extracurricular activities, poor school culture, and unhealthy breakfast and lunch options. Their survey data will be used as the basis for learning about representing data with plots, distributions, measures of center, frequencies, and correlation after the winter holiday. Our theory is that students will be more engaged when using their own data on topics of their choosing and toward the goal of making real change. Across all of our project schools, we are monitoring administrative data, student and teacher survey data, and interview data to assess the feasibility, usability, and student and school outcomes of YPAR.

Impact of COVID-19 and How We Adapted

We received notification of our grant award in March 2020, the same week that COVID-19 shut down K-12 schools across the nation. When our project formally began in July 2020, our partner schools were planning for a wholly remote school year, and we pivoted to hold design team meetings virtually and loosen expectations for teacher implementation. Despite these challenges, several successful YPAR projects during that first year—all of which were conducted entirely remotely—taught all of us much about how YPAR can happen in online spaces. This school year, students and staff are back to in-person learning, but, in addition to the ongoing pandemic, the crushing teacher shortage has forced us to continue to adapt. Whereas we once planned our design team meeting during the school day, we now meet after school due to a lack of substitute teachers, and we use creative technology to allow for mixed virtual and in-person attendance. Our leadership team is also spending a great deal of time in classrooms with teachers to assist those implementing for the first time. Our goal is to create a resource that teachers anywhere can use to incorporate YPAR into their courses. The product will be strengthened by the lessons we have learned from doing this work during these extraordinary times and the resulting considerations for how to deal with obstacles to implementation.


Adam Voight is the Director of the Center for Urban Education at Cleveland State University.

For questions about this grant, please contact Corinne Alfeld, NCER Program Officer, at Corinne.Alfeld@ed.gov.

How Remote Data Collection Enhanced One Grantee’s Classroom Research During COVID-19

Under an IES grant, Michigan State University, in collaboration with the Michigan Department of Education, the Michigan Center for Educational Performance and Information, and the University of Michigan, is assessing the implementation, impact, and cost of the Michigan “Read by Grade 3” law intended to increase early literacy outcomes for Michigan students. In this guest blog, Dr. Tanya Wright and Lori Bruner discuss how they were able to quickly pivot to a remote data collection plan when COVID-19 disrupted their initial research plan.  

The COVID-19 pandemic began while we were planning a study of early literacy coaching for the 2020-2021 academic year. It soon became abundantly clear that restrictions to in-person research would pose a major hurdle for our research team. We had planned to enter classrooms and record videos of literacy instruction in the fall. As such, we found ourselves faced with a difficult choice: we could pause our study until it became safer to visit classrooms and miss the opportunity to learn about literacy coaching and in-person classroom instruction during the pandemic, or we could quickly pivot to a remote data collection plan.

Our team chose the second option. We found that there are multiple technologies available to carry out remote data collection. We chose one of them (a device known as the Swivl) that included a robotic mount, where a tablet or smartphone can be placed to take the video, with a 360-degree rotating platform that works in tandem with a handheld or wearable tracker and an app that allows videos to be instantly uploaded to a cloud-based storage system for easy access.

Over the course of the school year, we captured over 100 hours of elementary literacy instruction in 26 classrooms throughout our state. While remote data collection looks and feels very different from visiting a classroom to record video, we learned that it offers many benefits to both researchers and educators alike. We also learned a few important lessons along the way.

First, we learned remote data collection provides greater flexibility for both researchers and educators. In our original study design, we planned to hire data collectors to visit classrooms, which restricted our recruitment of schools to a reasonable driving distance from Michigan State University (MSU). However, recording devices allow us to capture video anywhere, including rural areas of our state that are often excluded from classroom research due to their remote location. Furthermore, we found that the cost of purchasing and shipping equipment to schools is significantly less than paying for travel and people’s time to visit classrooms. In addition, using devices in place of data collectors allowed us to easily adapt to last-minute schedule changes and offer teachers the option to record video over multiple days to accommodate shifts in instruction due to COVID-19.

Second, we discovered that we could capture more classroom talk than when using a typical video camera. After some trial and error, we settled on a device with three external wireless microphones: one for the teacher and two additional microphones to place around the classroom. Not only did the extra microphones record audio beyond what the teacher was saying, but we learned that we can also isolate each microphone during data analysis to hear what is happening in specific areas of the classroom (even when the teacher and children were wearing masks). We also purchased an additional wide-angle lens, which clipped over the camera on our tablet and allowed us to capture a wider video angle.  

Third, we found remote data collection to be less intrusive than sending a research team into schools. The device is compact and can be placed on any flat surface in the classroom or be mounted on a basic tripod. The teacher has the option to wear the microphone on a lanyard to serve as a hands-free tracker that signals the device to rotate to follow the teacher’s movements automatically. At the end of the lesson, the video uploads to a password-protected storage cloud with one touch of a button, making it easy for teachers to share videos with our research team. We then download the videos to the MSU server and delete them from our cloud account. This set-up allowed us to collect data with minimal disruption, especially when compared to sending a person with a video camera to spend time in the classroom.

As with most remote work this year, we ran into a few unexpected hurdles during our first round of data collection. After gathering feedback from teachers and members of our research team, we were able to make adjustments that led to a better experience during the second round of data collection this spring. We hope the following suggestions might help others who are considering such a device to collect classroom data in the future:

  1. Consider providing teachers with a brief informational video or offering after-school training sessions to help answer questions and address concerns ahead of your data collection period. We initially provided teachers with a detailed user guide, but we found that the extra support was key to ensuring teachers had a positive experience with the device. You might also consider appointing a member of your research team to serve as a contact person to answer questions about the remote data collection during data collection periods.
  2. As a research team, it is important to remember that team members will not be collecting the data, so it is critical to provide teachers with clear directions ahead of time: what exactly do you want them to record? Our team found it helpful to send teachers a brief two-minute video outlining our goals and then follow up with a printable checklist they could use on the day they recorded instruction. 
  3. Finally, we found it beneficial to scan the videos for content at the end of each day. By doing so, we were able to spot a few problems, such as missing audio or a device that stopped rotating during a lesson. While these instances were rare, it was helpful to catch them right away, while teachers still had the device in their schools so that they could record missing parts the next day.

Although restrictions to in-person research are beginning to lift, we plan to continue using remote data collection for the remaining three years of our project. Conducting classroom research during the COVID-19 pandemic has proven challenging at every turn, but as we adapted to remote video data collection, we were pleased to find unanticipated benefits for our research team and for our study participants.


This blog is part of a series focusing on conducting education research during COVID-19. For other blog posts related to this topic, please see here.

Tanya S. Wright is an Associate Professor of Language and Literacy in the Department of Teacher Education at Michigan State University.

Lori Bruner is a doctoral candidate in the Curriculum, Instruction, and Teacher Education program at Michigan State University.