IES Blog

Institute of Education Sciences

Gender Stereotypes in STEM: Emergence and Prevention

In 2018, Dr. Allison Master and co-PI Andrew Meltzoff were awarded a grant, Gender Stereotypes in STEM: Exploring Developmental Patterns for Prevention. This 4-year project explores how and when gender stereotypes about STEM career pathways emerge. The study also seeks to identify ways to mitigate the effects of such stereotypes, such as whether a growth mindset can lead to changes in student attitudes and outcomes toward STEM. As an undergraduate student majoring in microbiology at UCLA, Yuri Lin, virtual intern at NCER, was interested in learning more about gender inequalities and stereotypes in STEM education. She recently had a chance to talk with Dr. Master about her research and its implications for increasing STEM participation among women.

 

How is American culture affecting the STEM gender gap, and how does the US compare to other countries on this issue?

When children grow up in American culture, they see lots of TV shows and books where mathematicians, scientists, and engineers are men. STEM-based toys are also heavily marketed toward boys rather than girls. Some countries have begun changing the portrayal of gender stereotypes in the media. For example, the UK’s Advertising Standards Authority has recently started banning TV commercials that reinforce gender stereotypes. Some cross-national studies have shown that gender-STEM stereotypes favoring men are linked to women’s lower success and participation in STEM. The United States is one of many Western countries in which women have more equality and freedom to choose their careers but are much less likely to choose STEM careers than men. We still have a lot of work to do in the United States to break down barriers for women in STEM, and we need to focus on helping girls and women see the value in choosing pathways into STEM.

 

Why do you think it is important to examine growth mindset as a potential way to reduce the effects of stereotypes and increase STEM interest in students?

Growth mindsets are beliefs that personal characteristics can be changed, through effort or the right strategies. This is contrasted with fixed mindsets, which are beliefs that those characteristics can’t be changed. Growth mindsets are particularly helpful for struggling students. Students who have a growth mindset remain focused on learning rather than looking smart, believe effort is important, and stay resilient even when they experience setbacks. These attitudes translate into putting forth more effort and determination, which lead to greater success. In our project, we want to know if a growth mindset can help girls stay motivated in computer science, a subject that can have a steep learning curve. Girls in particular often get discouraged when they feel that they don’t have what it takes to succeed in STEM. We hope that teaching girls to have a growth mindset will protect them from these negative stereotypes and increase their confidence in themselves and their sense of belonging in computer science.

 

Considering that your project includes students from grades 1 to 12, how do you plan to share your findings with teachers, students, and policymakers? Are there differences in how you might communicate the information for different age groups?

As a developmental psychologist, I think it’s important to communicate the information about different age groups to everyone! It can be very valuable to frame student motivation in the broader context of how students are growing and changing. Students start to endorse stereotypes about computer science and engineering very early—Grades 1-3—so elementary school is a great time to start counteracting stereotypes by showing a broad representation of who enjoys and succeeds in STEM. We start to see big gender gaps in computer science interest during middle school, so this is a great time to have girls participate in fun and engaging coding classes. And we’ve already noted how important it is for girls in high school to have a growth mindset in their STEM classes.

We have different goals for communicating with teachers, parents, and policymakers. We know that teachers are very busy, so we try to condense things into the most important practical tips. We’ve made short videos and infographics about our research for teachers. For policymakers, we write policy briefs, which combines our research with other findings that are relevant to education policy. And when we talk to parents, we try to focus on the importance of the experiences they provide for their kids. We really value spreading the word about our research to make sure it reaches people who can use it to make a difference. For more information and access to the various resources, please visit the I AM Lab website.

 


Allison Master, PhD (@AllisonMaster), a developmental psychologist and an assistant professor at the University of Houston, has conducted extensive research on the development of motivation and identity in STEM education. 

Written by Yuri Lin (ylin010101@g.ucla.edu), intern for the Institute of Education Sciences and a Microbiology, Immunology, and Molecular Genetics major at UCLA.

"Boys Have It; Girls Have to Work for It": Examining Gender Stereotypes in Mathematics Achievement

In 2020, Andrei Cimpian, along with co-PIs Sapna Cheryan, Joseph Cimpian, and Sarah Lubienski, were awarded a grant for “Boys Have It; Girls Have to Work for It”: The Development and Consequences of Gender Stereotypes About Natural Talent vs. Effort in Mathematics. The goal of this project is threefold: 1) to explore the origins of the gender stereotype that girls achieve in math due to effort and boys achieve in math due to natural talent, 2) to investigate the consequences of these stereotypes, and 3) to identify ways of reducing the negative effects of these stereotypes on mathematics outcomes. In this blog, we interviewed Dr. Andrei Cimpian on his inspiration and insights on this research, as well as his plans to disseminate the findings to education practitioners.

 

Dr. Andrew CimpianWhat spurred your research, and what prior research was foundational for this current study? 

The co-PIs and I were inspired to do this research because we were struck by the contrast between two sets of facts. On the one hand, girls do better in school than boys from kindergarten to grade 12. Women also obtain more bachelor’s and graduate degrees than men. On the other hand, we as a society still think of men as more brilliant and genius-like than women. For example, participants in a 2018 study referred more male than female acquaintances for a job that they were told requires natural smarts1. When the same job was said to require a strong work ethic instead, participants referred equal numbers of women and men.

Of course, societal views of women and men have changed quite a bit over the last century. With respect to general competence, women are now equal with men in the eyes of the American public. But the stereotype that associates “raw,” high-level intellectual talent with men more than women seems to have resisted change. Why?

Our research is testing a promising hypothesis: It is possible that people give different explanations for women’s and men’s intellectual successes, explaining men’s competence as being due primarily to their inborn intellectual talent and women’s as being due to their efforts. This effort-vs.-talent stereotype “explains away” women’s achievements by attributing them to a quality—perseverance—that is less valued in American culture than natural ability.

Versions of this explanatory stereotype have been documented in adults, but our project will provide its first systematic investigation among children. In particular, we will investigate the effort-vs.-talent stereotype in the domain of mathematics because innate ability is particularly valued in this domain1, which might make this stereotype especially consequential.

 

What are some examples of language or behavior that might suggest an individual holds a particular stereotype? Are there potential ways of mitigating the negative effects of stereotypes?

The best example of this stereotype that I can think of—and this is in fact the anecdote that crystallized our team’s interest in this topic—was recounted by co-PI Joseph Cimpian in a recent piece for The Brookings Institution (emphasis is mine):

About five years ago, while Sarah [Lubienski] and I were faculty at the University of Illinois, we gathered a small group of elementary teachers together to help us think through […] how we could intervene on the notion that girls were innately less capable than boys. One of the teachers pulled a stack of papers out of her tote bag, and spreading them on the conference table, said, “Now, I don’t even understand why you’re looking at girls’ math achievement. These are my students’ standardized test scores, and there are absolutely no gender differences. See, the girls can do just as well as the boys if they work hard enough.” Then, without anyone reacting, it was as if a light bulb went on. She gasped and continued, “Oh my gosh, I just did exactly what you said teachers are doing,” which is attributing girls’ success in math to hard work while attributing boys’ success to innate ability. She concluded, “I see now why you’re studying this.”

In terms of what can be done to mitigate the effects of this stereotype, our project will investigate a potential strategy: normalizing effort by making it clear to students that everyone (not just particular groups) needs to work hard to learn math. This message reframes what is viewed as necessary for success in math away from the belief that natural talent is key, thereby undercutting the power of effort-vs.-talent stereotypes.

 

The current study focuses on elementary school students in grades 1 through 4. What was the motivation for choosing this specific age group?

In general, gender stereotypes about intellectual ability seem to emerge quite early. For instance, girls as young as 6 and 7 are less likely than boys to associate being “really, really smart” with members of their own gender. For this reason, we think it is really important to focus on young children—we need to understand when effort-vs.-talent stereotypes first take root!

“Catching” these stereotypes when they first arise is also important for intervention purposes. If left unchecked, the effects of effort-vs.-talent stereotypes may snowball over time (for example, differences in the types of careers that young women and men are motivated to pursue).

 

What plans do you have to disseminate the findings of this research in ways that will be useful for education practitioners? 

We are mindful of the importance of getting this research into the hands of teachers so that they can use it in practice. We hope to write articles on this work for media outlets that draw educationally oriented audiences. To reach parents as well, we will coordinate with popular media outlets to disseminate the results of this work to general audiences. More generally, we will make every effort to ensure that the findings have maximal societal impact, raising awareness of effort-vs.-talent stereotypes among parents, educators, and the general public.

 


Andrei Cimpian, PhD (@AndreiCimpian), Professor of Psychology at New York University, has conducted extensive research on children’s conceptual development, explanations, and motivation in school.

Written by Yuri Lin (ylin010101@g.ucla.edu), intern for the Institute of Education Sciences.

Photo credit: Brian Stauffer


1The full PDF and resources are available at https://www.cimpianlab.com/motivation.

Calling All K-12 Students: NASA’s Artemis Program Invites You to Imagine Living on the Moon

Through its Artemis program, NASA will land the first woman and next man on the Moon by 2024, using innovative technologies to explore more of the lunar surface than ever before. NASA is collaborating with commercial and international partners to establish sustainable exploration by the end of the decade and to apply what is learned to take the next giant leap—sending astronauts to Mars.

 

K-12 Artemis Moon Pod Student Essay Contest

 

 

NASA is inviting students in kindergarten through Grade 12 to join the Artemis adventure.  Through its challenge, students can imagine “what it might be like if you were living with a pod of astronauts 250,000 miles from Earth.”

In the challenge, students write essays focusing on leading a one-week expedition at the Moon’s South Pole. Plans and details of the expedition should consider the types of skills, attributes, and personality traits of their Moon Pod crew, and one machine, robot, or technology that will be left on the lunar surface to help future astronauts explore the Moon.

Three levels of challenges are being held for students in Grades K-4, 5-8, and 9-12. Every student who submits an entry will receive a certificate from NASA and be invited to a special NASA virtual event—with an astronaut! For all entry requirements and judging criteria, please read the rules.  Students and teachers can sign up and submit their entry at the contest site. Even if you are not a student you can still participate. U.S. residents over the age of 18 can apply to be judges for the contest to help NASA make their selection.

The essay competition is being managed by a web-based platform developed by Future Engineers based in Burbank, California.  This platform was created with the support of a 2017 award from the IES Small Business Innovation Research program (ED/IES SBIR).  Future Engineers built this platform to be an online hub for classrooms and educators to access free, project-based STEM activities and to provide a portal where students submit and compete in different kinds of maker and innovation challenges across the country.  The Artemis essay contest follows the Mars 2020 “Name the Rover” contest, which was also managed by Future Engineers. (See the recap of that challenge here.)

 

Stay tuned for the winning essays in the months to come!

 


Edward Metz (Edward.Metz@ed.gov) is a research scientist at the Institute of Education Sciences at the US Department of Education and Program Manager of ED/IES SBIR.

Katherine Brown is the lead communication specialist for the Office of STEM Engagement at NASA.

 

About ED/IES SBIR

The U.S. Department of Education’s Small Business Innovation Research program, administered by the Institute of Education Sciences (IES), funds projects to develop education technology products designed to support students, teachers, or administrators in general or special education. The program emphasizes rigorous and relevant research to inform iterative development and to evaluate whether fully developed products show promise for leading to the intended outcomes. The program also focuses on commercialization once the award period ends so that products can reach students and teachers and be sustained over time. ED/IES SBIR-supported products are currently used by millions of students in thousands of schools around the country.

 

About NASA’s Office of STEM Engagement

NASA’s journeys have propelled technological breakthroughs, pushed the frontiers of scientific research, and expanded our understanding of the universe. These accomplishments, and those to come, share a common genesis: education in science, technology, engineering, and math. NASA’s Office of STEM Engagement strives to create unique opportunities for a diverse set of students to contribute to NASA’s work in exploration and discovery; build a diverse future STEM workforce by engaging students in authentic learning experiences with NASA’s people, content and facilities; and attract diverse groups of students to STEM through learning opportunities that spark interest and provide connections to NASA’s mission and work. To achieve these goals, NASA’s Office of STEM Engagement strives to inspire the next generation to discover their way to a new era of American innovation and explore further into space than ever before.

 

Small Changes to Textbook Design Can Make a Big Difference for Student Learning

During spring 2020, the COVID-19 pandemic forced the closure of millions of U.S. schools. As schools reopened this fall, conversations have revolved around using this unique situation as a chance to rethink education and how students learn. When we think about innovative ways to improve education, ideas tend to gravitate towards radical changes to the classroom experience, expensive interventions, and costly professional development. Everyone is looking for the next “big” idea, but perhaps part of the solution lies in a more subtle, inexpensive, and less disruptive change that may be as impactful as a completely new education approach: strategic revisions to the materials teachers and students already use in their classrooms (whether in person or virtual).

Textbooks (or ebooks) and supplemental education materials are central to providing students with the content knowledge and practice experiences to support mastery of academic skills. Textbook developers spend significant time and effort to ensure that the content in those textbooks aligns to standards and provides students with the information and examples needed to understand key concepts. However, even with age-appropriate content and high-quality practice exercises, textbooks may not be effective as learning tools if they present and sequence information in a way that is not aligned to what we know about how people learn.

You may be wondering how much room there is for improvement—textbooks seem pretty good at delivering content as is, right? Actually, findings from three IES-funded projects demonstrate that there are multiple ways to improve texts and student understanding of key concepts. Here are a few of those ways:

 

Present a wide range of fraction practice problems. Textbooks focused on fractions learning tend to present more problems with equal denominators for addition and subtraction problems than for multiplication problems. Why does this matter? In IES-funded research, David Braithwaite and Bob Siegler showed that students pick up on this bias. As a result, students are more likely to make errors on equal denominator fractions multiplication problems because they are so used to seeing those problems when practicing fractions arithmetic and subtraction. The recommended minor change is to include a wider range of fractions practice problems, including equal denominator multiplication problems, to ensure that students do not form irrelevant associations between superficial features of a practice problem and the solution strategies they are practicing.

 

Provide students with a mix of practice problems that require different strategies rather than practice problems of the same type. Typical math practice involves solving the same type of problem repeatedly to practice the specific solution strategy a student just learned. However, across numerous IES-funded studies, Douglas Rohrer and his research team have shown that students benefit substantially more from math practice that involves a mix of problems that require different strategies (those learned in previous lessons mixed with those just learned). One of the major benefits of this approach is that students get practice choosing which strategy to use for a particular problem. Rohrer and his team found that across 13,505 practice problems from six popular math textbooks, only 9.7% of those problems were mixed up in this way. The recommended minor change is to simply mix up the problem sets so that students have more experiences encountering different types of problems in a single sitting.

 

Where and how you place visuals on textbook pages matters, especially when you want students to compare them. Textbooks typically use visuals such as diagrams and photos to help reinforce key concepts. In an IES-funded study, Bryan Matlen and colleagues examined anatomy and evolution chapters within three popular middle school science textbooks and found an average of 1.8 visuals per page. Students were expected to make comparisons using about a third of those visuals. Of those they had to compare, about half were positioned in suboptimal ways—that is, the images were not presented in a way that made it easy to identify how the elements of one image compare to the elements of the other. For example, imagine a student is asked to compare two x-ray images of hands to identify a bone that is missing from one of them. This task is much harder if one hand is shown upside down and the other is right-side up or perpendicular to the first image. Consistent with this example, Matlen and colleagues have conducted studies showing that visual comparisons are more effective when the features of the visuals that need to be compared are spatially aligned. The recommended minor change is to be intentional about the placement of visuals that students are supposed to be comparing; make sure they are placed in optimal alignment to each other so that it is easier for students to see how the features of one correspond to those of the other.

 

In sum, transformative, radical ideas about how to improve education are interesting to brainstorm about, but sometimes the key to improvement is identifying small changes that can deliver big results.


Written by Erin Higgins (Erin.Higgins@ed.gov), Program Officer for the Cognition and Student Learning Program, National Center for Education Research.

 

Exploring How COVID-19 Affects Learning and Critical Thinking

Our nation continues to navigate a unique and challenging year due to the COVID-19 pandemic. In our first blog post in this series, we highlighted how educators, students, families, and researchers are adapting while trying to engage in opportunities to support learning. COVID-19 has created numerous challenges in education research with many studies needing to be modified or put on hold. At the same time, new research questions arise focusing on the impact of the pandemic on student learning, engagement, and achievement. Here, we highlight two IES-funded projects that are conducting timely and relevant research exploring the impact of COVID-19 on learning and critical thinking.    

Guanglei Hong, Lindsey Richland, and their research team at University of Chicago and University of California, Irvine have received supplemental funds to build off their current grant, Drawing Connections to Close Achievement Gaps in Mathematics. The research team will conduct a study during the 2020-21 school year to explore the relationship between student anxiety about the health risks associated with COVID-19 and their math learning experiences. They predict that pressure and anxiety, like that induced by COVID-19, use the same executive function resources that students need to engage in higher order thinking and reasoning during math instruction, which negatively affects the ability to learn. Through this study, the research team will also test whether particular instructional approaches reduce the effects of pressure and anxiety on learning. These findings will be useful for teachers and students in the near term as they navigate the COVID-19 pandemic and longer term for students who experience anxiety due to a variety of other reasons.

In addition, IES has funded an unsolicited grant to Clarissa Thompson at Kent State University to investigate whether an education intervention aimed at decreasing whole number bias errors can help college-aged students and adults more accurately interpret health statistics about COVID-19. During the COVID-19 pandemic, the public receives daily updates about the number of people locally, nationally, and globally who are infected with and die from COVID-19. Beliefs about the risk of getting a disease is a key predictor of engagement in prevention behaviors. Understanding the magnitude of one’s risk may require making sense of numerical health information, often presented in the form of rational numbers, such as fractions, whole number frequencies, and percentages. An intervention to decrease whole number bias errors and improve understanding of rational numbers has the immediate and pressing benefit of being able to accurately reason about the risk of COVID-19 and other health risks. This skill is also critical for success in science, technology, engineering, and mathematics (STEM) fields.

Both of these projects offer opportunities to better understand learning and critical thinking in the midst of the pandemic. They will also provide the field with generalizable information about ways to improve learning in STEM fields. Stay tuned for more COVID-19 related education research discussions as we continue this series on our blog.

 


Written by Christina Chhin (christina.chhin@ed.gov) and Erin Higgins (erin.higgins@ed.gov), National Center for Education Research (NCER).

This is the third in a series of blog posts focusing on conducting education research during COVID-19. Other blog posts in this series include Conducting Education Research During COVID-19 and Measuring Attendance during COVID-19: Considerations for Synchronous and Asynchronous Learning Environments.