IES Blog

Institute of Education Sciences

New International Comparisons of Reading, Mathematics, and Science Literacy Assessments

The Program for International Student Assessment (PISA) is a study of 15-year-old students’ performance in reading, mathematics, and science literacy that is conducted every 3 years. The PISA 2018 results provide us with a global view of U.S. students’ performance compared with their peers in nearly 80 countries and education systems. In PISA 2018, the major domain was reading literacy, although mathematics and science literacy were also assessed.

In 2018, the U.S. average score of 15-year-olds in reading literacy (505) was higher than the average score of the Organization for Economic Cooperation and Development (OECD) countries (487). Compared with the 76 other education systems with PISA 2018 reading literacy data, including both OECD and non-OECD countries, the U.S. average reading literacy score was lower than in 8 education systems, higher than in 57 education systems, and not measurably different in 11 education systems. The U.S. percentage of top performers in reading was larger than in 63 education systems, smaller than in 2 education systems, and not measurably different in 11 education systems. The average reading literacy score in 2018 (505) was not measurably different from the average score in 2000 (504), the first year PISA was administered. Among the 36 education systems that participated in both years, 10 education systems reported higher average reading literacy scores in 2018 compared with 2000, and 11 education systems reported lower scores.

The U.S. average score of 15-year-olds in mathematics literacy in 2018 (478) was lower than the OECD average score (489). Compared with the 77 other education systems with PISA 2018 mathematics literacy data, the U.S. average mathematics literacy score was lower than in 30 education systems, higher than in 39 education systems, and not measurably different in 8 education systems. The average mathematics literacy score in 2018 (478) was not measurably different from the average score in 2003 (483), the earliest year with comparable data. Among the 36 education systems that participated in both years, 10 systems reported higher mathematics literacy scores in 2018 compared with 2003, 13 education systems reported lower scores, and 13 education systems reported no measurable changes in scores.  

The U.S. average score of 15-year-olds in science literacy (502) was higher than the OECD average score (489). Compared with the 77 other education systems with PISA 2018 science literacy data, the U.S. average science literacy score was lower than in 11 education systems, higher than in 55 education systems, and not measurably different in 11 education systems. The average science literacy score in 2018 (502) was higher than the average score in 2006 (489), the earliest year with comparable data. Among the 52 education systems that participated in both years, 7 education systems reported higher average science literacy scores in 2018 compared with 2006, 22 education systems reported lower scores, and 23 education systems reported no measurable changes in scores.

PISA is conducted in the United States by NCES and is coordinated by OECD, an intergovernmental organization of industrialized countries. Further information about PISA can be found in the technical notes, questionnaires, list of participating OECD and non-OECD countries, released assessment items, and FAQs.

 

By Thomas Snyder

The IES Investment in Mathematics and Science Education Research

By Christina Chhin, NCER Program Officer and Rob Ochsendorf, NCSER Program Officer

Here is a common question we receive at IES: “What has IES funded in the areas of mathematics and science?” Given that both NCER and NCSER have dedicated “Mathematics and Science Education” research topics, you would think it would be an easy question to answer. That is until you see that both NCER and NCSER also support projects focusing on math and science through other research topic areas, including programs such as Cognition and Student Learning, Early Learning Programs and Policies, Educational Technology, and Effective Teachers and Effective Teaching. To help answer this question, IES has just released a compendium of research grants focusing on mathematics or science funded between 2002 to 2013. This compendium is part of a series of documents intended to summarize the research investments that NCER and NCSER are making to improve student education outcomes in specific topical areas.

As noted in the compendium, between 2002 to 2013, NCER and NCSER has funded over 300 projects focused on mathematics or science education, with 215 of them being instructional interventions (e.g., packaged curricula, intervention frameworks, and instructional approaches), 75 professional development programs, 165 educational technologies, and 65 assessments in math and science. The math and science compendium is a useful tool for a wide array of education stakeholders, as it not only provides brief descriptions of each project, it also is categorizes each project into sections based on content area, grade level, and intended outcome.

Picture of the cover of "A Compendium of Math and Science Research Funded by NCER and NCSER: 2002–2013"

So, how does the investment in mathematics and science that NCER and NCSER have made compare to other education research investments? Between 2002 and 2013, NCER and NCSER funded more than 1,110 education research grants, so research on mathematics and science makes up approximately a third of the research centers' total investment.  The compendium shows that NCER and NCSER have made significant contributions to STEM education by supporting rigorous, scientifically valid research that is relevant to education practice and policy focused on mathematics and science education; however, there is still room for growth. For instance, the compendium makes apparent that NCER and NCSER have funded few projects focusing specifically on geometry or earth and space science in grades K to 12. NCER and NCSER have come a long way in helping to support high-quality mathematics and science education research and will continue to do so to help address the gaps and needs in the field. 

Do you have a research project that will address some of these identified gaps? If so, be sure to sign up for IES Newsflash or follow us on Twitter, so that you will receive notice when our new Requests for Applications are released. 

Questions? Comments? Send us an email at IESResearch@ed.gov.

 

The Month(s) in Review: September and October 2015

By Liz Albro, NCER Associate Commissioner of Teaching and Learning

New Evaluation of State Education Programs and Policies Awards Announced

Congratulations to the recipients of our Evaluation of State Education Programs and Policies awards. These projects examine a range of topics: low-performing schools, college- and career-readiness standards, and teacher effectiveness and evaluation.

Building Strength in Numbers: Friends of IES Briefings

The Friends of IES, a coalition of research organizations working to raise the visibility of IES-funded studies, asked three IES funded researchers to participate in briefings for Department of Education leadership and for the public on Capitol Hill. Sharing findings from their IES-funded studies, the researchers highlighted how providing high quality mathematics instruction to children as young as three-years-old, and providing systematic and sustained opportunities for those children to learn more mathematics in subsequent instructional years, can substantially narrow achievement gaps at the end of preschool and how those gains can persist over time. What to know more? Read our earlier blog post or the AERA news story for additional details.

Congratulations to Patricia Snyder on receiving the 2015 DEC Award for Mentoring

Congratulations to Patricia Snyder, recipient of the 2015 Division for Early Childhood (DEC) Award for Mentoring. DEC, a division of the Council for Exceptional Children, awards this honor to a member who has provided significant training and guidance to students and new practitioners in the field of early childhood special education. Snyder is a professor of special education and early childhood studies and the David Lawrence Jr. Endowed Chair in Early Childhood Studies at the University of Florida. She is also the Principal Investigator (PI) and Training Program Director for a NCSER-funded postdoctoral training grant, Postdoctoral Research Training Fellowships in Early Intervention and Early Learning in Special Education at the University of Florida. She has also served as the PI and co-PI on several other NCSER-funded awards.

Thanks to all of our IES Postdoctoral Fellows: Past, Present and Future!

Did you know that the third week of September was National Postdoc Appreciation Week? While we tweeted our appreciation for the postdocs we support through our NCER and NCSER Postdoctoral Training Programs, we thought you might like to learn a bit more about what some of our postdocs are doing.

Publishing: Postdocs are busy publishing findings from their research. For example, David Braithwaite, a fellow in this Carnegie Mellon postdoctoral training program recently published Effects of Variation and Prior Knowledge on Abstract Concept Learning. Two postdoc fellows, Kimberly Nesbitt and Mary Fuhs, who were trained in this Vanderbilt postdoctoral training program, are co-authors on a recent publication exploring executive function skills and academic achievement in kindergarten.  Josh Polanin, another Vanderbilt postdoc, recently published two methodological papers: one on effect sizes, the other on using a meta-analytic technique to assess the relationship between treatment intensity and program effects.

Receiving Research Funding:  Previous postdoc fellows who trained at the University of Illinois, Urbana-Champaign have recently been awarded research funding. Erin Reid and her colleagues were recently awarded an NSF DRK-12 grant to adapt and study a teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Former fellow David Purpura was recently awarded a grant from the Kinley Trust to delineate the role of language in early mathematics performance. Dr.  Purpura is also co-PI on a 2015 IES grant, Evaluating the Efficacy of Learning Trajectories in Early Mathematics.

Congratulations and good luck to all of our recently complete postdocs! Sixteen fellows have completed this year with 10 completing in the past two months. These fellows bringing their expertise to the community as full-time faculty, directors of research programs, and research associates at universities, non-profits, government agencies, and other organizations.

What have the Research Centers Funded? Check Out Our New Summary Documents

NCSER has funded research in a variety of topics relevant to special education and early intervention since 2006. Recently, NCSER staff summarized the work on several topics, with more to come in the future.

Research supported by both Centers is also described in our Compendium of Mathematics and Science Research, which was released in October.

Updated IES Research in the News

Curious to know what other IES-funded research projects have gotten media attention? We recently updated our IES Research in the News page, so that’s your quickest way to find out!

Where Are They Now? A Q&A With the Creators of EcoMUVE – A Virtual Environment for Middle School Science

Where Are They Now? showcases completed IES research projects. The feature describes the IES project and research findings, and updates the progress since IES project completion.

By Ed Metz, NCER Program Officer

In this inaugural Where Are They Now? feature, we take a look back at a 2008 grant to researchers at Harvard University for the development of EcoMUVE.

EcoMUVE uses Multi-User Virtual Environments (MUVEs), which have the look and feel of video games, to help middle school students gain a deeper understanding of ecosystems, scientific inquiry, and causal patterns. The MUVEs recreate authentic ecological settings within which students explore and collect information. Students work individually at their computers and collaborate in teams within the virtual world. EcoMUVE includes two modules, Pond and Forest; each module is a two-week inquiry-based ecosystems curriculum. EcoMUVE received the First Place award in the Interactive and Immersive Learning Category at the 2011 Association for Educational Communications and Technology conference, and has received follow-on support from the National Science Foundation and Qualcomm Wireless. 

In this blog, we catch up with two of the researchers who led the development of EcoMUVE, Chris Dede and Shari Metcalf, to look back at their IES project and to learn about recent developments.

How and when did the idea to develop a virtual environment for science learning come about?

Chris Dede’s prior research with the River City project looked at supporting student inquiry using immersive exploration in a virtual world. Meanwhile, Harvard Professor Tina Grotzer was developing ways to support students in understanding complex causality in ecosystems. They worked together on a grant proposal to IES to combine their interests.

How does a virtual environment provide meaningful learning opportunities that otherwise might not be possible?

Ecosystems are complex systems shaped by relationships that often happen at microscopic levels, at a distance, and over long periods of time. Immersion in virtual environments can transform the learning experience by situating the learner in a rich simulated context in which new visualization opportunities are possible – e.g., zooming in to the microscopic level, or traveling to different points in time.

Students start to get a feel for the ecosystem and its relationships through tacit sensory clues. It is an uphill walk from the pond to the housing development, and students can walk down along a drainage ditch and through the pipe where runoff flows into the pond. The pond becomes noticeably greenish during the algae bloom. 

Students can experience turbidity directly by walking under the water of the pond and seeing how murky it looks on different days.

 

What was an unexpected outcome of the development process?

The types of “big data” about motivation and learning for each student that EcoMUVE can generate include: time-stamped logfiles of movements and interactions in the virtual world, chat-logs of utterances, and tables of data collected and shared. Other digital tools can provide data from concept maps that chart the flow of energy through the ecosystem and that document each student team’s assertions about its systemic causal relationships, with adduced supporting evidence. Using Go-Pro cameras, students’ collaborative behaviors outside of digital media can be documented. We would like to use this data to provide near-real time feedback to students and teacher, through various forms of visualization.

What were your main research findings from the IES development project?

After using EcoMUVE, students showed gains in learning of science content, and also improvements in their attitudes towards science, particularly in the beliefs they were capable and interested in being scientists. Teachers felt that the curriculum was feasible, well-aligned with standards, and supported student engagement and learning of science content, complex causality, and inquiry, and had multiple advantages over a similar non-MUVE curriculum. A study that looked at student motivation found that, while at first students were most enthusiastic about the 3D virtual world and game-like environment, over time their engagement centered on the inquiry-based pedagogy and the collaborative problem-solving.  Gains were also found in students’ complex causal reasoning about non-obvious causes; distant drivers of ecosystems dynamics and the system parameters; and processes, steady states and change over time.

How has the EcoMUVE project proceeded in recent years since the IES research project ended?  

Beginning in May, 2012, we’ve been pleased to be able to offer a standalone version of the EcoMUVE software for download through a free license from Harvard University. As of January, 2015, over 1,200 users have registered with the website. The EcoMUVE project receives e-mail inquiries almost every week from educators who are interested in the curriculum. In some cases, whole districts have adopted the EcoMUVE curriculum, including Cambridge, MA, and Peoria, AZ.

Internationally, researchers at the University of Hong Kong have been working with Harvard University to use EcoMUVE for professional development, to help teachers understand how to use scientific investigations as learning activities for students. Other collaborators include Sydney University, and Aalborg University in Copenhagen.

Looking ahead, what does the future hold for EcoMUVE?

We continue to make EcoMUVE available for download from our new website, http://ecolearn.gse.harvard.edu. We have been extending our research to develop EcoMOBILE, an extension of the EcoMUVE curriculum that blends immersive virtual environments with the use of mobile technologies during field trips to real ecosystems for observations and data collection. EcoMOBILE is funded by the National Science Foundation (NSF) and Qualcomm’s Wireless Reach Initiative. We have also just started a new research project, EcoXPT, also funded through NSF, designed to work alongside EcoMUVE to support experiment-based inquiry in immersive virtual environments.

Questions? Comments? Please send them to us at IESResearch@ed.gov.

About the Interviewees

Shari J. Metcalf is Project Director of the EcoMUVE project at the Harvard Graduate School of Education. She holds SB and SM degrees from MIT, and a PhD from the University of Michigan, where she designed and developed Model-It, a software tool for students building models of dynamic systems. Her professional focus is the design of educational software tools, and in particular on using modeling, simulation, and virtual immersive environments to support inquiry-based science learning.

Chris Dede is the Timothy E. Wirth Professor in Learning Technologies at Harvard’s Graduate School of Education.  Chris was the Principal Investigator of the EcoMUVE project. His fields of scholarship include emerging technologies, policy, and leadership.  His research includes grants from NSF, IES, and the Gates Foundation to design and study immersive simulations, transformed social interactions, and online professional development.  

Supporting STEM Transfer Through Research at the Intersection of Cognitive Science and Education

By Erin Higgins, NCER Program Officer

Wait, have I already learned that?  Can I use what I learned in math class to help me solve this physics problem? Students struggle with these types of questions every day – unsure how to identify situations where their knowledge is transferrable. Even when they do recognize opportunities to use knowledge learned in one context in a different situation, they may not apply their knowledge appropriately. This is especially true in science, technology, engineering and math (STEM) disciplines. To improve student outcomes in STEM, we need instructional strategies and curricula that help students and teachers with this enduring challenge of transfer.

At the Association for Psychological Science’s 27th Annual Convention, I put together a symposium that highlighted emerging research that addresses this complex issue. Four researchers funded through NCER’s Cognition and Student Learning topic discussed findings from their ongoing research. Each is approaching this issue from a unique perspective regarding factors that help or hinder transfer, and each is examining this issue with different learning tasks, content areas (science, math) and age groups.

Jennifer Kaminski presented research conducted in collaboration with Vladimir Sloutsky (The Role of External Representations in Learning and Transfer of Mathematical Knowledge) that demonstrates that both undergraduate and elementary students who learned a mathematical concept in a simple symbolic format were more likely to transfer their knowledge than those who learned the concept in a more contextualized and perceptually-rich format. This finding is particularly interesting given the widely-held belief that students learn mathematics concepts better with concrete objects, and suggests that there may be many instances where teaching students in a more abstract way facilitates later transfer. This research team is continuing this line of work in their more recently funded IES grant, Facilitating Transfer of Mathematical Knowledge from Classroom to Real Life.

Charles Kalish presented research with elementary-aged students and adults showing that the structure of the math practice problems students encounter affects the memory representations built in response, which then determines whether students can successfully transfer their knowledge in mathematics (Promoting Discriminative and Generative Learning: Transfer in Arithmetic Problem Solving). For instance, in a study with elementary-aged students, 2nd graders practiced arithmetic by playing a computer-based ice cream game, where they had to make ice cream flavors for monsters by combining different types of ice cream. Students who received “grounded” practice interacted with the math practice problems in a way that highlighted the underlying quantities in the arithmetic problem while students who received “symbolic” practice were given standard arithmetic problems to solve. Students who received the grounded practice showed higher performance on a later test on arithmetic problems involving quantities not seen during practice. In light of the research presented by Kaminski in this symposium, this research demonstrates that the issue of transfer in mathematics is extremely complex, and it may be the case that there are circumstances where a more concrete, grounded approach to instruction is best and other circumstances where a symbolic, abstract approach will lead to the best transfer.

Kenneth Kurtz presented research on a technique called category construction, which is a sorting task intended to teach students the conceptual principles that underlie different examples of the same science concepts (Enhancing Learning and Transfer of Science Principles via Category Construction).  Compared to students who engaged in the more standard approach of completing worksheets about science concepts, students who engaged in category construction were better able to apply the newly learned science concepts to novel situations.

Finally, Holly Taylor presented research exploring the effects of a spatial thinking program for elementary-aged children on both spatial thinking and STEM performance (An Elementary-age Origami and Pop-up Paper Engineering Curriculum to Promote the 3-D Spatial Thinking and Reasoning Underlying STEM Education).  Based on origami and paper-engineering activities, the program trains 2D to 3D spatial transformation and diagram interpretation skills. This research is ongoing, though preliminary results suggest that students’ spatial reasoning skills are improved when they engage in this program. Future research will evaluate the extent to which this intervention improves STEM achievement.

Together, these four presenters’ lines of research demonstrate the value of applying traditional cognitive psychology and cognitive development theories to challenges in education practice in order to improve education outcomes for students. By aligning instructional approaches to the ways in which the mind works (e.g., by addressing how different memory models affect how we use information, how spatial reasoning impacts math and science problem solving, and how our perceptual system impacts how we represent information in our minds), we can begin to develop approaches that more effectively impart knowledge to students in ways that will allow for the broadest and most successful transfer.

Additional summaries of the research presented at this symposium can be found at: http://www.edweek.org/ew/articles/2015/06/03/findings-show-ways-students-can-transfer-math.html and http://blogs.edweek.org/edweek/inside-school-research/2015/06/sorting_improves_science_transfer.html

Questions? Comments? Please send us an email at IESResearch@ed.gov.